//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// Generic dominator tree construction - This file provides routines to /// construct immediate dominator information for a flow-graph based on the /// Semi-NCA algorithm described in this dissertation: /// /// Linear-Time Algorithms for Dominators and Related Problems /// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23: /// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf /// /// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns /// out that the theoretically slower O(n*log(n)) implementation is actually /// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs. /// /// The file uses the Depth Based Search algorithm to perform incremental /// upates (insertion and deletions). The implemented algorithm is based on this /// publication: /// /// An Experimental Study of Dynamic Dominators /// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10: /// https://arxiv.org/pdf/1604.02711.pdf /// //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H #include #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GenericDomTree.h" #define DEBUG_TYPE "dom-tree-builder" namespace llvm { namespace DomTreeBuilder { template struct ChildrenGetter { static auto Get(NodePtr N) -> decltype(reverse(children(N))) { return reverse(children(N)); } }; template struct ChildrenGetter { static auto Get(NodePtr N) -> decltype(inverse_children(N)) { return inverse_children(N); } }; template struct SemiNCAInfo { using NodePtr = typename DomTreeT::NodePtr; using NodeT = typename DomTreeT::NodeType; using TreeNodePtr = DomTreeNodeBase *; static constexpr bool IsPostDom = DomTreeT::IsPostDominator; // Information record used by Semi-NCA during tree construction. struct InfoRec { unsigned DFSNum = 0; unsigned Parent = 0; unsigned Semi = 0; NodePtr Label = nullptr; NodePtr IDom = nullptr; SmallVector ReverseChildren; }; // Number to node mapping is 1-based. Initialize the mapping to start with // a dummy element. std::vector NumToNode = {nullptr}; DenseMap NodeToInfo; void clear() { NumToNode = {nullptr}; // Restore to initial state with a dummy start node. NodeToInfo.clear(); } NodePtr getIDom(NodePtr BB) const { auto InfoIt = NodeToInfo.find(BB); if (InfoIt == NodeToInfo.end()) return nullptr; return InfoIt->second.IDom; } TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) { if (TreeNodePtr Node = DT.getNode(BB)) return Node; // Haven't calculated this node yet? Get or calculate the node for the // immediate dominator. NodePtr IDom = getIDom(BB); assert(IDom || DT.DomTreeNodes[nullptr]); TreeNodePtr IDomNode = getNodeForBlock(IDom, DT); // Add a new tree node for this NodeT, and link it as a child of // IDomNode return (DT.DomTreeNodes[BB] = IDomNode->addChild( llvm::make_unique>(BB, IDomNode))) .get(); } static bool AlwaysDescend(NodePtr, NodePtr) { return true; } struct BlockNamePrinter { NodePtr N; BlockNamePrinter(NodePtr Block) : N(Block) {} BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {} friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) { if (!BP.N) O << "nullptr"; else BP.N->printAsOperand(O, false); return O; } }; // Custom DFS implementation which can skip nodes based on a provided // predicate. It also collects ReverseChildren so that we don't have to spend // time getting predecessors in SemiNCA. template unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition, unsigned AttachToNum) { assert(V); SmallVector WorkList = {V}; if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum; while (!WorkList.empty()) { const NodePtr BB = WorkList.pop_back_val(); auto &BBInfo = NodeToInfo[BB]; // Visited nodes always have positive DFS numbers. if (BBInfo.DFSNum != 0) continue; BBInfo.DFSNum = BBInfo.Semi = ++LastNum; BBInfo.Label = BB; NumToNode.push_back(BB); for (const NodePtr Succ : ChildrenGetter::Get(BB)) { const auto SIT = NodeToInfo.find(Succ); // Don't visit nodes more than once but remember to collect // RerverseChildren. if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) { if (Succ != BB) SIT->second.ReverseChildren.push_back(BB); continue; } if (!Condition(BB, Succ)) continue; // It's fine to add Succ to the map, because we know that it will be // visited later. auto &SuccInfo = NodeToInfo[Succ]; WorkList.push_back(Succ); SuccInfo.Parent = LastNum; SuccInfo.ReverseChildren.push_back(BB); } } return LastNum; } NodePtr eval(NodePtr VIn, unsigned LastLinked) { auto &VInInfo = NodeToInfo[VIn]; if (VInInfo.DFSNum < LastLinked) return VIn; SmallVector Work; SmallPtrSet Visited; if (VInInfo.Parent >= LastLinked) Work.push_back(VIn); while (!Work.empty()) { NodePtr V = Work.back(); auto &VInfo = NodeToInfo[V]; NodePtr VAncestor = NumToNode[VInfo.Parent]; // Process Ancestor first if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) { Work.push_back(VAncestor); continue; } Work.pop_back(); // Update VInfo based on Ancestor info if (VInfo.Parent < LastLinked) continue; auto &VAInfo = NodeToInfo[VAncestor]; NodePtr VAncestorLabel = VAInfo.Label; NodePtr VLabel = VInfo.Label; if (NodeToInfo[VAncestorLabel].Semi < NodeToInfo[VLabel].Semi) VInfo.Label = VAncestorLabel; VInfo.Parent = VAInfo.Parent; } return VInInfo.Label; } // This function requires DFS to be run before calling it. void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) { const unsigned NextDFSNum(NumToNode.size()); // Initialize IDoms to spanning tree parents. for (unsigned i = 1; i < NextDFSNum; ++i) { const NodePtr V = NumToNode[i]; auto &VInfo = NodeToInfo[V]; VInfo.IDom = NumToNode[VInfo.Parent]; } // Step #1: Calculate the semidominators of all vertices. for (unsigned i = NextDFSNum - 1; i >= 2; --i) { NodePtr W = NumToNode[i]; auto &WInfo = NodeToInfo[W]; // Initialize the semi dominator to point to the parent node. WInfo.Semi = WInfo.Parent; for (const auto &N : WInfo.ReverseChildren) { if (NodeToInfo.count(N) == 0) // Skip unreachable predecessors. continue; const TreeNodePtr TN = DT.getNode(N); // Skip predecessors whose level is above the subtree we are processing. if (TN && TN->getLevel() < MinLevel) continue; unsigned SemiU = NodeToInfo[eval(N, i + 1)].Semi; if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; } } // Step #2: Explicitly define the immediate dominator of each vertex. // IDom[i] = NCA(SDom[i], SpanningTreeParent(i)). // Note that the parents were stored in IDoms and later got invalidated // during path compression in Eval. for (unsigned i = 2; i < NextDFSNum; ++i) { const NodePtr W = NumToNode[i]; auto &WInfo = NodeToInfo[W]; const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum; NodePtr WIDomCandidate = WInfo.IDom; while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum) WIDomCandidate = NodeToInfo[WIDomCandidate].IDom; WInfo.IDom = WIDomCandidate; } } template unsigned doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) { unsigned Num = 0; if (DT.Roots.size() > 1) { auto &BBInfo = NodeToInfo[nullptr]; BBInfo.DFSNum = BBInfo.Semi = ++Num; BBInfo.Label = nullptr; NumToNode.push_back(nullptr); // NumToNode[n] = V; } if (DT.isPostDominator()) { for (auto *Root : DT.Roots) Num = runDFS(Root, Num, DC, 1); } else { assert(DT.Roots.size() == 1); Num = runDFS(DT.Roots[0], Num, DC, Num); } return Num; } void calculateFromScratch(DomTreeT &DT, const unsigned NumBlocks) { // Step #0: Number blocks in depth-first order and initialize variables used // in later stages of the algorithm. const unsigned LastDFSNum = doFullDFSWalk(DT, AlwaysDescend); runSemiNCA(DT); if (DT.Roots.empty()) return; // Add a node for the root. This node might be the actual root, if there is // one exit block, or it may be the virtual exit (denoted by // (BasicBlock *)0) which postdominates all real exits if there are multiple // exit blocks, or an infinite loop. // It might be that some blocks did not get a DFS number (e.g., blocks of // infinite loops). In these cases an artificial exit node is required. const bool MultipleRoots = DT.Roots.size() > 1 || (DT.isPostDominator() && LastDFSNum != NumBlocks); NodePtr Root = !MultipleRoots ? DT.Roots[0] : nullptr; DT.RootNode = (DT.DomTreeNodes[Root] = llvm::make_unique>(Root, nullptr)) .get(); attachNewSubtree(DT, DT.RootNode); } void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) { // Attach the first unreachable block to AttachTo. NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock(); // Loop over all of the discovered blocks in the function... for (size_t i = 1, e = NumToNode.size(); i != e; ++i) { NodePtr W = NumToNode[i]; DEBUG(dbgs() << "\tdiscovered a new reachable node " << BlockNamePrinter(W) << "\n"); // Don't replace this with 'count', the insertion side effect is important if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet? NodePtr ImmDom = getIDom(W); // Get or calculate the node for the immediate dominator TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode DT.DomTreeNodes[W] = IDomNode->addChild( llvm::make_unique>(W, IDomNode)); } } void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) { NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock(); for (size_t i = 1, e = NumToNode.size(); i != e; ++i) { const NodePtr N = NumToNode[i]; const TreeNodePtr TN = DT.getNode(N); assert(TN); const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom); TN->setIDom(NewIDom); } } // Helper struct used during edge insertions. struct InsertionInfo { using BucketElementTy = std::pair; struct DecreasingLevel { bool operator()(const BucketElementTy &First, const BucketElementTy &Second) const { return First.first > Second.first; } }; std::priority_queue, DecreasingLevel> Bucket; // Queue of tree nodes sorted by level in descending order. SmallDenseSet Affected; SmallDenseSet Visited; SmallVector AffectedQueue; SmallVector VisitedNotAffectedQueue; }; static void InsertEdge(DomTreeT &DT, const NodePtr From, const NodePtr To) { assert(From && To && "Cannot connect nullptrs"); DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> " << BlockNamePrinter(To) << "\n"); const TreeNodePtr FromTN = DT.getNode(From); // Ignore edges from unreachable nodes. if (!FromTN) return; DT.DFSInfoValid = false; const TreeNodePtr ToTN = DT.getNode(To); if (!ToTN) InsertUnreachable(DT, FromTN, To); else InsertReachable(DT, FromTN, ToTN); } // Handles insertion to a node already in the dominator tree. static void InsertReachable(DomTreeT &DT, const TreeNodePtr From, const TreeNodePtr To) { DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock()) << " -> " << BlockNamePrinter(To->getBlock()) << "\n"); const NodePtr NCDBlock = DT.findNearestCommonDominator(From->getBlock(), To->getBlock()); assert(NCDBlock || DT.isPostDominator()); const TreeNodePtr NCD = DT.getNode(NCDBlock); assert(NCD); DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n"); const TreeNodePtr ToIDom = To->getIDom(); // Nothing affected -- NCA property holds. // (Based on the lemma 2.5 from the second paper.) if (NCD == To || NCD == ToIDom) return; // Identify and collect affected nodes. InsertionInfo II; DEBUG(dbgs() << "Marking " << BlockNamePrinter(To) << " as affected\n"); II.Affected.insert(To); const unsigned ToLevel = To->getLevel(); DEBUG(dbgs() << "Putting " << BlockNamePrinter(To) << " into a Bucket\n"); II.Bucket.push({ToLevel, To}); while (!II.Bucket.empty()) { const TreeNodePtr CurrentNode = II.Bucket.top().second; II.Bucket.pop(); DEBUG(dbgs() << "\tAdding to Visited and AffectedQueue: " << BlockNamePrinter(CurrentNode) << "\n"); II.Visited.insert(CurrentNode); II.AffectedQueue.push_back(CurrentNode); // Discover and collect affected successors of the current node. VisitInsertion(DT, CurrentNode, CurrentNode->getLevel(), NCD, II); } // Finish by updating immediate dominators and levels. UpdateInsertion(DT, NCD, II); } // Visits an affected node and collect its affected successors. static void VisitInsertion(DomTreeT &DT, const TreeNodePtr TN, const unsigned RootLevel, const TreeNodePtr NCD, InsertionInfo &II) { const unsigned NCDLevel = NCD->getLevel(); DEBUG(dbgs() << "Visiting " << BlockNamePrinter(TN) << "\n"); assert(TN->getBlock()); for (const NodePtr Succ : ChildrenGetter::Get(TN->getBlock())) { const TreeNodePtr SuccTN = DT.getNode(Succ); assert(SuccTN && "Unreachable successor found at reachable insertion"); const unsigned SuccLevel = SuccTN->getLevel(); DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ) << ", level = " << SuccLevel << "\n"); // Succ dominated by subtree From -- not affected. // (Based on the lemma 2.5 from the second paper.) if (SuccLevel > RootLevel) { DEBUG(dbgs() << "\t\tDominated by subtree From\n"); if (II.Visited.count(SuccTN) != 0) continue; DEBUG(dbgs() << "\t\tMarking visited not affected " << BlockNamePrinter(Succ) << "\n"); II.Visited.insert(SuccTN); II.VisitedNotAffectedQueue.push_back(SuccTN); VisitInsertion(DT, SuccTN, RootLevel, NCD, II); } else if ((SuccLevel > NCDLevel + 1) && II.Affected.count(SuccTN) == 0) { DEBUG(dbgs() << "\t\tMarking affected and adding " << BlockNamePrinter(Succ) << " to a Bucket\n"); II.Affected.insert(SuccTN); II.Bucket.push({SuccLevel, SuccTN}); } } } // Updates immediate dominators and levels after insertion. static void UpdateInsertion(DomTreeT &DT, const TreeNodePtr NCD, InsertionInfo &II) { DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n"); for (const TreeNodePtr TN : II.AffectedQueue) { DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN) << ") = " << BlockNamePrinter(NCD) << "\n"); TN->setIDom(NCD); } UpdateLevelsAfterInsertion(II); } static void UpdateLevelsAfterInsertion(InsertionInfo &II) { DEBUG(dbgs() << "Updating levels for visited but not affected nodes\n"); for (const TreeNodePtr TN : II.VisitedNotAffectedQueue) { DEBUG(dbgs() << "\tlevel(" << BlockNamePrinter(TN) << ") = (" << BlockNamePrinter(TN->getIDom()) << ") " << TN->getIDom()->getLevel() << " + 1\n"); TN->UpdateLevel(); } } // Handles insertion to previously unreachable nodes. static void InsertUnreachable(DomTreeT &DT, const TreeNodePtr From, const NodePtr To) { DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From) << " -> (unreachable) " << BlockNamePrinter(To) << "\n"); // Collect discovered edges to already reachable nodes. SmallVector, 8> DiscoveredEdgesToReachable; // Discover and connect nodes that became reachable with the insertion. ComputeUnreachableDominators(DT, To, From, DiscoveredEdgesToReachable); DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From) << " -> (prev unreachable) " << BlockNamePrinter(To) << "\n"); DEBUG(DT.print(dbgs())); // Used the discovered edges and inset discovered connecting (incoming) // edges. for (const auto &Edge : DiscoveredEdgesToReachable) { DEBUG(dbgs() << "\tInserting discovered connecting edge " << BlockNamePrinter(Edge.first) << " -> " << BlockNamePrinter(Edge.second) << "\n"); InsertReachable(DT, DT.getNode(Edge.first), Edge.second); } } // Connects nodes that become reachable with an insertion. static void ComputeUnreachableDominators( DomTreeT &DT, const NodePtr Root, const TreeNodePtr Incoming, SmallVectorImpl> &DiscoveredConnectingEdges) { assert(!DT.getNode(Root) && "Root must not be reachable"); // Visit only previously unreachable nodes. auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From, NodePtr To) { const TreeNodePtr ToTN = DT.getNode(To); if (!ToTN) return true; DiscoveredConnectingEdges.push_back({From, ToTN}); return false; }; SemiNCAInfo SNCA; SNCA.runDFS(Root, 0, UnreachableDescender, 0); SNCA.runSemiNCA(DT); SNCA.attachNewSubtree(DT, Incoming); DEBUG(dbgs() << "After adding unreachable nodes\n"); DEBUG(DT.print(dbgs())); } // Checks if the tree contains all reachable nodes in the input graph. bool verifyReachability(const DomTreeT &DT) { clear(); doFullDFSWalk(DT, AlwaysDescend); for (auto &NodeToTN : DT.DomTreeNodes) { const TreeNodePtr TN = NodeToTN.second.get(); const NodePtr BB = TN->getBlock(); // Virtual root has a corresponding virtual CFG node. if (DT.isVirtualRoot(TN)) continue; if (NodeToInfo.count(BB) == 0) { errs() << "DomTree node " << BlockNamePrinter(BB) << " not found by DFS walk!\n"; errs().flush(); return false; } } for (const NodePtr N : NumToNode) { if (N && !DT.getNode(N)) { errs() << "CFG node " << BlockNamePrinter(N) << " not found in the DomTree!\n"; errs().flush(); return false; } } return true; } static void DeleteEdge(DomTreeT &DT, const NodePtr From, const NodePtr To) { assert(From && To && "Cannot disconnect nullptrs"); DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> " << BlockNamePrinter(To) << "\n"); #ifndef NDEBUG // Ensure that the edge was in fact deleted from the CFG before informing // the DomTree about it. // The check is O(N), so run it only in debug configuration. auto IsSuccessor = [](const NodePtr SuccCandidate, const NodePtr Of) { auto Successors = ChildrenGetter::Get(Of); return llvm::find(Successors, SuccCandidate) != Successors.end(); }; (void)IsSuccessor; assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!"); #endif const TreeNodePtr FromTN = DT.getNode(From); // Deletion in an unreachable subtree -- nothing to do. if (!FromTN) return; const TreeNodePtr ToTN = DT.getNode(To); assert(ToTN && "To already unreachable -- there is no edge to delete"); const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To); const TreeNodePtr NCD = DT.getNode(NCDBlock); // To dominates From -- nothing to do. if (ToTN == NCD) return; const TreeNodePtr ToIDom = ToTN->getIDom(); DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom " << BlockNamePrinter(ToIDom) << "\n"); // To remains reachable after deletion. // (Based on the caption under Figure 4. from the second paper.) if (FromTN != ToIDom || HasProperSupport(DT, ToTN)) DeleteReachable(DT, FromTN, ToTN); else DeleteUnreachable(DT, ToTN); } // Handles deletions that leave destination nodes reachable. static void DeleteReachable(DomTreeT &DT, const TreeNodePtr FromTN, const TreeNodePtr ToTN) { DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN) << " -> " << BlockNamePrinter(ToTN) << "\n"); DEBUG(dbgs() << "\tRebuilding subtree\n"); // Find the top of the subtree that needs to be rebuilt. // (Based on the lemma 2.6 from the second paper.) const NodePtr ToIDom = DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock()); assert(ToIDom || DT.isPostDominator()); const TreeNodePtr ToIDomTN = DT.getNode(ToIDom); assert(ToIDomTN); const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom(); // Top of the subtree to rebuild is the root node. Rebuild the tree from // scratch. if (!PrevIDomSubTree) { DEBUG(dbgs() << "The entire tree needs to be rebuilt\n"); DT.recalculate(*DT.Parent); return; } // Only visit nodes in the subtree starting at To. const unsigned Level = ToIDomTN->getLevel(); auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) { return DT.getNode(To)->getLevel() > Level; }; DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN) << "\n"); SemiNCAInfo SNCA; SNCA.runDFS(ToIDom, 0, DescendBelow, 0); DEBUG(dbgs() << "\tRunning Semi-NCA\n"); SNCA.runSemiNCA(DT, Level); SNCA.reattachExistingSubtree(DT, PrevIDomSubTree); } // Checks if a node has proper support, as defined on the page 3 and later // explained on the page 7 of the second paper. static bool HasProperSupport(DomTreeT &DT, const TreeNodePtr TN) { DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN) << "\n"); for (const NodePtr Pred : ChildrenGetter::Get(TN->getBlock())) { DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n"); if (!DT.getNode(Pred)) continue; const NodePtr Support = DT.findNearestCommonDominator(TN->getBlock(), Pred); DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n"); if (Support != TN->getBlock()) { DEBUG(dbgs() << "\t" << BlockNamePrinter(TN) << " is reachable from support " << BlockNamePrinter(Support) << "\n"); return true; } } return false; } // Handle deletions that make destination node unreachable. // (Based on the lemma 2.7 from the second paper.) static void DeleteUnreachable(DomTreeT &DT, const TreeNodePtr ToTN) { DEBUG(dbgs() << "Deleting unreachable subtree " << BlockNamePrinter(ToTN) << "\n"); assert(ToTN); assert(ToTN->getBlock()); SmallVector AffectedQueue; const unsigned Level = ToTN->getLevel(); // Traverse destination node's descendants with greater level in the tree // and collect visited nodes. auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) { const TreeNodePtr TN = DT.getNode(To); assert(TN); if (TN->getLevel() > Level) return true; if (llvm::find(AffectedQueue, To) == AffectedQueue.end()) AffectedQueue.push_back(To); return false; }; SemiNCAInfo SNCA; unsigned LastDFSNum = SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0); TreeNodePtr MinNode = ToTN; // Identify the top of the subtree to rebuilt by finding the NCD of all // the affected nodes. for (const NodePtr N : AffectedQueue) { const TreeNodePtr TN = DT.getNode(N); const NodePtr NCDBlock = DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock()); assert(NCDBlock || DT.isPostDominator()); const TreeNodePtr NCD = DT.getNode(NCDBlock); assert(NCD); DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN) << " with NCD = " << BlockNamePrinter(NCD) << ", MinNode =" << BlockNamePrinter(MinNode) << "\n"); if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD; } // Root reached, rebuild the whole tree from scratch. if (!MinNode->getIDom()) { DEBUG(dbgs() << "The entire tree needs to be rebuilt\n"); DT.recalculate(*DT.Parent); return; } // Erase the unreachable subtree in reverse preorder to process all children // before deleting their parent. for (unsigned i = LastDFSNum; i > 0; --i) { const NodePtr N = SNCA.NumToNode[i]; const TreeNodePtr TN = DT.getNode(N); DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n"); EraseNode(DT, TN); } // The affected subtree start at the To node -- there's no extra work to do. if (MinNode == ToTN) return; DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = " << BlockNamePrinter(MinNode) << "\n"); const unsigned MinLevel = MinNode->getLevel(); const TreeNodePtr PrevIDom = MinNode->getIDom(); assert(PrevIDom); SNCA.clear(); // Identify nodes that remain in the affected subtree. auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) { const TreeNodePtr ToTN = DT.getNode(To); return ToTN && ToTN->getLevel() > MinLevel; }; SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0); DEBUG(dbgs() << "Previous IDom(MinNode) = " << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n"); // Rebuild the remaining part of affected subtree. SNCA.runSemiNCA(DT, MinLevel); SNCA.reattachExistingSubtree(DT, PrevIDom); } // Removes leaf tree nodes from the dominator tree. static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) { assert(TN); assert(TN->getNumChildren() == 0 && "Not a tree leaf"); const TreeNodePtr IDom = TN->getIDom(); assert(IDom); auto ChIt = llvm::find(IDom->Children, TN); assert(ChIt != IDom->Children.end()); std::swap(*ChIt, IDom->Children.back()); IDom->Children.pop_back(); DT.DomTreeNodes.erase(TN->getBlock()); } //~~ //===--------------- DomTree correctness verification ---------------------=== //~~ // Check if for every parent with a level L in the tree all of its children // have level L + 1. static bool VerifyLevels(const DomTreeT &DT) { for (auto &NodeToTN : DT.DomTreeNodes) { const TreeNodePtr TN = NodeToTN.second.get(); const NodePtr BB = TN->getBlock(); if (!BB) continue; const TreeNodePtr IDom = TN->getIDom(); if (!IDom && TN->getLevel() != 0) { errs() << "Node without an IDom " << BlockNamePrinter(BB) << " has a nonzero level " << TN->getLevel() << "!\n"; errs().flush(); return false; } if (IDom && TN->getLevel() != IDom->getLevel() + 1) { errs() << "Node " << BlockNamePrinter(BB) << " has level " << TN->getLevel() << " while its IDom " << BlockNamePrinter(IDom->getBlock()) << " has level " << IDom->getLevel() << "!\n"; errs().flush(); return false; } } return true; } // Checks if for every edge From -> To in the graph // NCD(From, To) == IDom(To) or To. bool verifyNCD(const DomTreeT &DT) { clear(); doFullDFSWalk(DT, AlwaysDescend); for (auto &BlockToInfo : NodeToInfo) { auto &Info = BlockToInfo.second; const NodePtr From = NumToNode[Info.Parent]; if (!From) continue; const NodePtr To = BlockToInfo.first; const TreeNodePtr ToTN = DT.getNode(To); assert(ToTN); const NodePtr NCD = DT.findNearestCommonDominator(From, To); const TreeNodePtr NCDTN = DT.getNode(NCD); const TreeNodePtr ToIDom = ToTN->getIDom(); if (NCDTN != ToTN && NCDTN != ToIDom) { errs() << "NearestCommonDominator verification failed:\n\tNCD(From:" << BlockNamePrinter(From) << ", To:" << BlockNamePrinter(To) << ") = " << BlockNamePrinter(NCD) << ",\t (should be To or IDom[To]: " << BlockNamePrinter(ToIDom) << ")\n"; errs().flush(); return false; } } return true; } // The below routines verify the correctness of the dominator tree relative to // the CFG it's coming from. A tree is a dominator tree iff it has two // properties, called the parent property and the sibling property. Tarjan // and Lengauer prove (but don't explicitly name) the properties as part of // the proofs in their 1972 paper, but the proofs are mostly part of proving // things about semidominators and idoms, and some of them are simply asserted // based on even earlier papers (see, e.g., lemma 2). Some papers refer to // these properties as "valid" and "co-valid". See, e.g., "Dominators, // directed bipolar orders, and independent spanning trees" by Loukas // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification // and Vertex-Disjoint Paths " by the same authors. // A very simple and direct explanation of these properties can be found in // "An Experimental Study of Dynamic Dominators", found at // https://arxiv.org/abs/1604.02711 // The easiest way to think of the parent property is that it's a requirement // of being a dominator. Let's just take immediate dominators. For PARENT to // be an immediate dominator of CHILD, all paths in the CFG must go through // PARENT before they hit CHILD. This implies that if you were to cut PARENT // out of the CFG, there should be no paths to CHILD that are reachable. If // there are, then you now have a path from PARENT to CHILD that goes around // PARENT and still reaches CHILD, which by definition, means PARENT can't be // a dominator of CHILD (let alone an immediate one). // The sibling property is similar. It says that for each pair of sibling // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each // other. If sibling LEFT dominated sibling RIGHT, it means there are no // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of // RIGHT, not a sibling. // It is possible to verify the parent and sibling properties in // linear time, but the algorithms are complex. Instead, we do it in a // straightforward N^2 and N^3 way below, using direct path reachability. // Checks if the tree has the parent property: if for all edges from V to W in // the input graph, such that V is reachable, the parent of W in the tree is // an ancestor of V in the tree. // // This means that if a node gets disconnected from the graph, then all of // the nodes it dominated previously will now become unreachable. bool verifyParentProperty(const DomTreeT &DT) { for (auto &NodeToTN : DT.DomTreeNodes) { const TreeNodePtr TN = NodeToTN.second.get(); const NodePtr BB = TN->getBlock(); if (!BB || TN->getChildren().empty()) continue; clear(); doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) { return From != BB && To != BB; }); for (TreeNodePtr Child : TN->getChildren()) if (NodeToInfo.count(Child->getBlock()) != 0) { errs() << "Child " << BlockNamePrinter(Child) << " reachable after its parent " << BlockNamePrinter(BB) << " is removed!\n"; errs().flush(); return false; } } return true; } // Check if the tree has sibling property: if a node V does not dominate a // node W for all siblings V and W in the tree. // // This means that if a node gets disconnected from the graph, then all of its // siblings will now still be reachable. bool verifySiblingProperty(const DomTreeT &DT) { for (auto &NodeToTN : DT.DomTreeNodes) { const TreeNodePtr TN = NodeToTN.second.get(); const NodePtr BB = TN->getBlock(); if (!BB || TN->getChildren().empty()) continue; const auto &Siblings = TN->getChildren(); for (const TreeNodePtr N : Siblings) { clear(); NodePtr BBN = N->getBlock(); doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) { return From != BBN && To != BBN; }); for (const TreeNodePtr S : Siblings) { if (S == N) continue; if (NodeToInfo.count(S->getBlock()) == 0) { errs() << "Node " << BlockNamePrinter(S) << " not reachable when its sibling " << BlockNamePrinter(N) << " is removed!\n"; errs().flush(); return false; } } } } return true; } }; template void Calculate(DomTreeT &DT, FuncT &F) { SemiNCAInfo SNCA; SNCA.calculateFromScratch(DT, GraphTraits::size(&F)); } template void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, typename DomTreeT::NodePtr To) { if (DT.isPostDominator()) std::swap(From, To); SemiNCAInfo::InsertEdge(DT, From, To); } template void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, typename DomTreeT::NodePtr To) { if (DT.isPostDominator()) std::swap(From, To); SemiNCAInfo::DeleteEdge(DT, From, To); } template bool Verify(const DomTreeT &DT) { SemiNCAInfo SNCA; return SNCA.verifyReachability(DT) && SNCA.VerifyLevels(DT) && SNCA.verifyNCD(DT) && SNCA.verifyParentProperty(DT) && SNCA.verifySiblingProperty(DT); } } // namespace DomTreeBuilder } // namespace llvm #undef DEBUG_TYPE #endif