//===-- llvm/Support/PassManagerBuilder.h - Build Standard Pass -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PassManagerBuilder class, which is used to set up a // "standard" optimization sequence suitable for languages like C and C++. // // These are implemented as inline functions so that we do not have to worry // about link issues. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_PASSMANAGERBUILDER_H #define LLVM_SUPPORT_PASSMANAGERBUILDER_H #include "llvm/PassManager.h" #include "llvm/DefaultPasses.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/IPO.h" namespace llvm { /// PassManagerBuilder - This class is used to set up a standard optimization /// sequence for languages like C and C++, allowing some APIs to customize the /// pass sequence in various ways. A simple example of using it would be: /// /// PassManagerBuilder Builder; /// Builder.OptLevel = 2; /// Builder.populateFunctionPassManager(FPM); /// Builder.populateModulePassManager(MPM); /// /// In addition to setting up the basic passes, PassManagerBuilder allows /// frontends to vend a plugin API, where plugins are allowed to add extensions /// to the default pass manager. They do this by specifying where in the pass /// pipeline they want to be added, along with a callback function that adds /// the pass(es). For example, a plugin that wanted to add a loop optimization /// could do something like this: /// /// static void addMyLoopPass(const PMBuilder &Builder, PassManagerBase &PM) { /// if (Builder.getOptLevel() > 2 && Builder.getOptSizeLevel() == 0) /// PM.add(createMyAwesomePass()); /// } /// ... /// Builder.addExtension(PassManagerBuilder::EP_LoopOptimizerEnd, /// addMyLoopPass); /// ... class PassManagerBuilder { public: /// Extensions are passed the builder itself (so they can see how it is /// configured) as well as the pass manager to add stuff to. typedef void (*ExtensionFn)(const PassManagerBuilder &Builder, PassManagerBase &PM); enum ExtensionPointTy { /// EP_EarlyAsPossible - This extension point allows adding passes before /// any other transformations, allowing them to see the code as it is coming /// out of the frontend. EP_EarlyAsPossible, /// EP_LoopOptimizerEnd - This extension point allows adding loop passes to /// the end of the loop optimizer. EP_LoopOptimizerEnd, /// EP_ScalarOptimizerLate - This extension point allows adding optimization /// passes after most of the main optimizations, but before the last /// cleanup-ish optimizations. EP_ScalarOptimizerLate }; /// The Optimization Level - Specify the basic optimization level. /// 0 = -O0, 1 = -O1, 2 = -O2, 3 = -O3 unsigned OptLevel; /// SizeLevel - How much we're optimizing for size. /// 0 = none, 1 = -Os, 2 = -Oz unsigned SizeLevel; /// LibraryInfo - Specifies information about the runtime library for the /// optimizer. If this is non-null, it is added to both the function and /// per-module pass pipeline. TargetLibraryInfo *LibraryInfo; /// Inliner - Specifies the inliner to use. If this is non-null, it is /// added to the per-module passes. Pass *Inliner; bool DisableSimplifyLibCalls; bool DisableUnitAtATime; bool DisableUnrollLoops; private: /// ExtensionList - This is list of all of the extensions that are registered. std::vector > Extensions; public: PassManagerBuilder() { OptLevel = 2; SizeLevel = 0; LibraryInfo = 0; Inliner = 0; DisableSimplifyLibCalls = false; DisableUnitAtATime = false; DisableUnrollLoops = false; } ~PassManagerBuilder() { delete LibraryInfo; delete Inliner; } void addExtension(ExtensionPointTy Ty, ExtensionFn Fn) { Extensions.push_back(std::make_pair(Ty, Fn)); } private: void addExtensionsToPM(ExtensionPointTy ETy, PassManagerBase &PM) const { for (unsigned i = 0, e = Extensions.size(); i != e; ++i) if (Extensions[i].first == ETy) Extensions[i].second(*this, PM); } void addInitialAliasAnalysisPasses(PassManagerBase &PM) const { // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that // BasicAliasAnalysis wins if they disagree. This is intended to help // support "obvious" type-punning idioms. PM.add(createTypeBasedAliasAnalysisPass()); PM.add(createBasicAliasAnalysisPass()); } public: /// populateFunctionPassManager - This fills in the function pass manager, /// which is expected to be run on each function immediately as it is /// generated. The idea is to reduce the size of the IR in memory. void populateFunctionPassManager(FunctionPassManager &FPM) { addExtensionsToPM(EP_EarlyAsPossible, FPM); // Add LibraryInfo if we have some. if (LibraryInfo) FPM.add(new TargetLibraryInfo(*LibraryInfo)); if (OptLevel == 0) return; addInitialAliasAnalysisPasses(FPM); FPM.add(createCFGSimplificationPass()); FPM.add(createScalarReplAggregatesPass()); FPM.add(createEarlyCSEPass()); FPM.add(createLowerExpectIntrinsicPass()); } /// populateModulePassManager - This sets up the primary pass manager. void populateModulePassManager(PassManagerBase &MPM) { // If all optimizations are disabled, just run the always-inline pass. if (OptLevel == 0) { if (Inliner) { MPM.add(Inliner); Inliner = 0; } return; } // Add LibraryInfo if we have some. if (LibraryInfo) MPM.add(new TargetLibraryInfo(*LibraryInfo)); addInitialAliasAnalysisPasses(MPM); if (!DisableUnitAtATime) { MPM.add(createGlobalOptimizerPass()); // Optimize out global vars MPM.add(createIPSCCPPass()); // IP SCCP MPM.add(createDeadArgEliminationPass()); // Dead argument elimination MPM.add(createInstructionCombiningPass());// Clean up after IPCP & DAE MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE } // Start of CallGraph SCC passes. if (!DisableUnitAtATime) MPM.add(createPruneEHPass()); // Remove dead EH info if (Inliner) { MPM.add(Inliner); Inliner = 0; } if (!DisableUnitAtATime) MPM.add(createFunctionAttrsPass()); // Set readonly/readnone attrs if (OptLevel > 2) MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args // Start of function pass. // Break up aggregate allocas, using SSAUpdater. MPM.add(createScalarReplAggregatesPass(-1, false)); MPM.add(createEarlyCSEPass()); // Catch trivial redundancies if (!DisableSimplifyLibCalls) MPM.add(createSimplifyLibCallsPass()); // Library Call Optimizations MPM.add(createJumpThreadingPass()); // Thread jumps. MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createInstructionCombiningPass()); // Combine silly seq's MPM.add(createTailCallEliminationPass()); // Eliminate tail calls MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createReassociatePass()); // Reassociate expressions MPM.add(createLoopRotatePass()); // Rotate Loop MPM.add(createLICMPass()); // Hoist loop invariants MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3)); MPM.add(createInstructionCombiningPass()); MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. MPM.add(createLoopDeletionPass()); // Delete dead loops if (!DisableUnrollLoops) MPM.add(createLoopUnrollPass()); // Unroll small loops addExtensionsToPM(EP_LoopOptimizerEnd, MPM); if (OptLevel > 1) MPM.add(createGVNPass()); // Remove redundancies MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset MPM.add(createSCCPPass()); // Constant prop with SCCP // Run instcombine after redundancy elimination to exploit opportunities // opened up by them. MPM.add(createInstructionCombiningPass()); MPM.add(createJumpThreadingPass()); // Thread jumps MPM.add(createCorrelatedValuePropagationPass()); MPM.add(createDeadStoreEliminationPass()); // Delete dead stores addExtensionsToPM(EP_ScalarOptimizerLate, MPM); MPM.add(createAggressiveDCEPass()); // Delete dead instructions MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createInstructionCombiningPass()); // Clean up after everything. if (!DisableUnitAtATime) { // FIXME: We shouldn't bother with this anymore. MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes // GlobalOpt already deletes dead functions and globals, at -O3 try a // late pass of GlobalDCE. It is capable of deleting dead cycles. if (OptLevel > 2) MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. if (OptLevel > 1) MPM.add(createConstantMergePass()); // Merge dup global constants } } void populateLTOPassManager(PassManagerBase &PM, bool Internalize, bool RunInliner) { // Provide AliasAnalysis services for optimizations. addInitialAliasAnalysisPasses(PM); // Now that composite has been compiled, scan through the module, looking // for a main function. If main is defined, mark all other functions // internal. if (Internalize) PM.add(createInternalizePass(true)); // Propagate constants at call sites into the functions they call. This // opens opportunities for globalopt (and inlining) by substituting function // pointers passed as arguments to direct uses of functions. PM.add(createIPSCCPPass()); // Now that we internalized some globals, see if we can hack on them! PM.add(createGlobalOptimizerPass()); // Linking modules together can lead to duplicated global constants, only // keep one copy of each constant. PM.add(createConstantMergePass()); // Remove unused arguments from functions. PM.add(createDeadArgEliminationPass()); // Reduce the code after globalopt and ipsccp. Both can open up significant // simplification opportunities, and both can propagate functions through // function pointers. When this happens, we often have to resolve varargs // calls, etc, so let instcombine do this. PM.add(createInstructionCombiningPass()); // Inline small functions if (RunInliner) PM.add(createFunctionInliningPass()); PM.add(createPruneEHPass()); // Remove dead EH info. // Optimize globals again if we ran the inliner. if (RunInliner) PM.add(createGlobalOptimizerPass()); PM.add(createGlobalDCEPass()); // Remove dead functions. // If we didn't decide to inline a function, check to see if we can // transform it to pass arguments by value instead of by reference. PM.add(createArgumentPromotionPass()); // The IPO passes may leave cruft around. Clean up after them. PM.add(createInstructionCombiningPass()); PM.add(createJumpThreadingPass()); // Break up allocas PM.add(createScalarReplAggregatesPass()); // Run a few AA driven optimizations here and now, to cleanup the code. PM.add(createFunctionAttrsPass()); // Add nocapture. PM.add(createGlobalsModRefPass()); // IP alias analysis. PM.add(createLICMPass()); // Hoist loop invariants. PM.add(createGVNPass()); // Remove redundancies. PM.add(createMemCpyOptPass()); // Remove dead memcpys. // Nuke dead stores. PM.add(createDeadStoreEliminationPass()); // Cleanup and simplify the code after the scalar optimizations. PM.add(createInstructionCombiningPass()); PM.add(createJumpThreadingPass()); // Delete basic blocks, which optimization passes may have killed. PM.add(createCFGSimplificationPass()); // Now that we have optimized the program, discard unreachable functions. PM.add(createGlobalDCEPass()); } }; } // end namespace llvm #endif