//===- Transforms/Instrumentation.h - Instrumentation passes ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines constructor functions for instrumentation passes. // //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_INSTRUMENTATION_H #define LLVM_TRANSFORMS_INSTRUMENTATION_H #include "llvm/ADT/StringRef.h" #include "llvm/IR/BasicBlock.h" #include #if defined(__GNUC__) && defined(__linux__) && !defined(ANDROID) inline void *getDFSanArgTLSPtrForJIT() { extern __thread __attribute__((tls_model("initial-exec"))) void *__dfsan_arg_tls; return (void *)&__dfsan_arg_tls; } inline void *getDFSanRetValTLSPtrForJIT() { extern __thread __attribute__((tls_model("initial-exec"))) void *__dfsan_retval_tls; return (void *)&__dfsan_retval_tls; } #endif namespace llvm { class TargetMachine; /// Instrumentation passes often insert conditional checks into entry blocks. /// Call this function before splitting the entry block to move instructions /// that must remain in the entry block up before the split point. Static /// allocas and llvm.localescape calls, for example, must remain in the entry /// block. BasicBlock::iterator PrepareToSplitEntryBlock(BasicBlock &BB, BasicBlock::iterator IP); class ModulePass; class FunctionPass; // Insert GCOV profiling instrumentation struct GCOVOptions { static GCOVOptions getDefault(); // Specify whether to emit .gcno files. bool EmitNotes; // Specify whether to modify the program to emit .gcda files when run. bool EmitData; // A four-byte version string. The meaning of a version string is described in // gcc's gcov-io.h char Version[4]; // Emit a "cfg checksum" that follows the "line number checksum" of a // function. This affects both .gcno and .gcda files. bool UseCfgChecksum; // Add the 'noredzone' attribute to added runtime library calls. bool NoRedZone; // Emit the name of the function in the .gcda files. This is redundant, as // the function identifier can be used to find the name from the .gcno file. bool FunctionNamesInData; // Emit the exit block immediately after the start block, rather than after // all of the function body's blocks. bool ExitBlockBeforeBody; }; ModulePass *createGCOVProfilerPass(const GCOVOptions &Options = GCOVOptions::getDefault()); // PGO Instrumention ModulePass *createPGOInstrumentationGenLegacyPass(); ModulePass * createPGOInstrumentationUseLegacyPass(StringRef Filename = StringRef("")); ModulePass *createPGOIndirectCallPromotionLegacyPass(bool InLTO = false); /// Options for the frontend instrumentation based profiling pass. struct InstrProfOptions { InstrProfOptions() : NoRedZone(false) {} // Add the 'noredzone' attribute to added runtime library calls. bool NoRedZone; // Name of the profile file to use as output std::string InstrProfileOutput; }; /// Insert frontend instrumentation based profiling. ModulePass *createInstrProfilingLegacyPass( const InstrProfOptions &Options = InstrProfOptions()); // Insert AddressSanitizer (address sanity checking) instrumentation FunctionPass *createAddressSanitizerFunctionPass(bool CompileKernel = false, bool Recover = false, bool UseAfterScope = false); ModulePass *createAddressSanitizerModulePass(bool CompileKernel = false, bool Recover = false); // Insert MemorySanitizer instrumentation (detection of uninitialized reads) FunctionPass *createMemorySanitizerPass(int TrackOrigins = 0, bool Recover = false); // Insert ThreadSanitizer (race detection) instrumentation FunctionPass *createThreadSanitizerPass(); // Insert DataFlowSanitizer (dynamic data flow analysis) instrumentation ModulePass *createDataFlowSanitizerPass( const std::vector &ABIListFiles = std::vector(), void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr); // Options for EfficiencySanitizer sub-tools. struct EfficiencySanitizerOptions { EfficiencySanitizerOptions() : ToolType(ESAN_None) {} enum Type { ESAN_None = 0, ESAN_CacheFrag, ESAN_WorkingSet, } ToolType; }; // Insert EfficiencySanitizer instrumentation. ModulePass *createEfficiencySanitizerPass( const EfficiencySanitizerOptions &Options = EfficiencySanitizerOptions()); // Options for sanitizer coverage instrumentation. struct SanitizerCoverageOptions { SanitizerCoverageOptions() : CoverageType(SCK_None), IndirectCalls(false), TraceBB(false), TraceCmp(false), TraceDiv(false), TraceGep(false), Use8bitCounters(false), TracePC(false), TracePCGuard(false) {} enum Type { SCK_None = 0, SCK_Function, SCK_BB, SCK_Edge } CoverageType; bool IndirectCalls; bool TraceBB; bool TraceCmp; bool TraceDiv; bool TraceGep; bool Use8bitCounters; bool TracePC; bool TracePCGuard; }; // Insert SanitizerCoverage instrumentation. ModulePass *createSanitizerCoverageModulePass( const SanitizerCoverageOptions &Options = SanitizerCoverageOptions()); #if defined(__GNUC__) && defined(__linux__) && !defined(ANDROID) inline ModulePass *createDataFlowSanitizerPassForJIT( const std::vector &ABIListFiles = std::vector()) { return createDataFlowSanitizerPass(ABIListFiles, getDFSanArgTLSPtrForJIT, getDFSanRetValTLSPtrForJIT); } #endif // BoundsChecking - This pass instruments the code to perform run-time bounds // checking on loads, stores, and other memory intrinsics. FunctionPass *createBoundsCheckingPass(); /// \brief Calculate what to divide by to scale counts. /// /// Given the maximum count, calculate a divisor that will scale all the /// weights to strictly less than UINT32_MAX. static inline uint64_t calculateCountScale(uint64_t MaxCount) { return MaxCount < UINT32_MAX ? 1 : MaxCount / UINT32_MAX + 1; } /// \brief Scale an individual branch count. /// /// Scale a 64-bit weight down to 32-bits using \c Scale. /// static inline uint32_t scaleBranchCount(uint64_t Count, uint64_t Scale) { uint64_t Scaled = Count / Scale; assert(Scaled <= UINT32_MAX && "overflow 32-bits"); return Scaled; } } // End llvm namespace #endif