//===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/CGSCCPassManager.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/InstIterator.h" using namespace llvm; // Explicit template instantiations and specialization defininitions for core // template typedefs. namespace llvm { // Explicit instantiations for the core proxy templates. template class AllAnalysesOn; template class AnalysisManager; template class PassManager; template class InnerAnalysisManagerProxy; template class OuterAnalysisManagerProxy; template class OuterAnalysisManagerProxy; /// Explicitly specialize the pass manager run method to handle call graph /// updates. template <> PreservedAnalyses PassManager::run(LazyCallGraph::SCC &InitialC, CGSCCAnalysisManager &AM, LazyCallGraph &G, CGSCCUpdateResult &UR) { PreservedAnalyses PA = PreservedAnalyses::all(); if (DebugLogging) dbgs() << "Starting CGSCC pass manager run.\n"; // The SCC may be refined while we are running passes over it, so set up // a pointer that we can update. LazyCallGraph::SCC *C = &InitialC; for (auto &Pass : Passes) { if (DebugLogging) dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); // Update the SCC if necessary. C = UR.UpdatedC ? UR.UpdatedC : C; // Check that we didn't miss any update scenario. assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!"); assert(C->begin() != C->end() && "Cannot have an empty SCC!"); // Update the analysis manager as each pass runs and potentially // invalidates analyses. AM.invalidate(*C, PassPA); // Finally, we intersect the final preserved analyses to compute the // aggregate preserved set for this pass manager. PA.intersect(std::move(PassPA)); // FIXME: Historically, the pass managers all called the LLVM context's // yield function here. We don't have a generic way to acquire the // context and it isn't yet clear what the right pattern is for yielding // in the new pass manager so it is currently omitted. // ...getContext().yield(); } // Invaliadtion was handled after each pass in the above loop for the current // SCC. Therefore, the remaining analysis results in the AnalysisManager are // preserved. We mark this with a set so that we don't need to inspect each // one individually. PA.preserveSet>(); if (DebugLogging) dbgs() << "Finished CGSCC pass manager run.\n"; return PA; } bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( Module &M, const PreservedAnalyses &PA, ModuleAnalysisManager::Invalidator &Inv) { // If literally everything is preserved, we're done. if (PA.areAllPreserved()) return false; // This is still a valid proxy. // If this proxy or the call graph is going to be invalidated, we also need // to clear all the keys coming from that analysis. // // We also directly invalidate the FAM's module proxy if necessary, and if // that proxy isn't preserved we can't preserve this proxy either. We rely on // it to handle module -> function analysis invalidation in the face of // structural changes and so if it's unavailable we conservatively clear the // entire SCC layer as well rather than trying to do invalidation ourselves. auto PAC = PA.getChecker(); if (!(PAC.preserved() || PAC.preservedSet>()) || Inv.invalidate(M, PA) || Inv.invalidate(M, PA)) { InnerAM->clear(); // And the proxy itself should be marked as invalid so that we can observe // the new call graph. This isn't strictly necessary because we cheat // above, but is still useful. return true; } // Directly check if the relevant set is preserved so we can short circuit // invalidating SCCs below. bool AreSCCAnalysesPreserved = PA.allAnalysesInSetPreserved>(); // Ok, we have a graph, so we can propagate the invalidation down into it. for (auto &RC : G->postorder_ref_sccs()) for (auto &C : RC) { Optional InnerPA; // Check to see whether the preserved set needs to be adjusted based on // module-level analysis invalidation triggering deferred invalidation // for this SCC. if (auto *OuterProxy = InnerAM->getCachedResult(C)) for (const auto &OuterInvalidationPair : OuterProxy->getOuterInvalidations()) { AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; const auto &InnerAnalysisIDs = OuterInvalidationPair.second; if (Inv.invalidate(OuterAnalysisID, M, PA)) { if (!InnerPA) InnerPA = PA; for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) InnerPA->abandon(InnerAnalysisID); } } // Check if we needed a custom PA set. If so we'll need to run the inner // invalidation. if (InnerPA) { InnerAM->invalidate(C, *InnerPA); continue; } // Otherwise we only need to do invalidation if the original PA set didn't // preserve all SCC analyses. if (!AreSCCAnalysesPreserved) InnerAM->invalidate(C, PA); } // Return false to indicate that this result is still a valid proxy. return false; } template <> CGSCCAnalysisManagerModuleProxy::Result CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { // Force the Function analysis manager to also be available so that it can // be accessed in an SCC analysis and proxied onward to function passes. // FIXME: It is pretty awkward to just drop the result here and assert that // we can find it again later. (void)AM.getResult(M); return Result(*InnerAM, AM.getResult(M)); } AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; FunctionAnalysisManagerCGSCCProxy::Result FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG) { // Collect the FunctionAnalysisManager from the Module layer and use that to // build the proxy result. // // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to // invalidate the function analyses. auto &MAM = AM.getResult(C, CG).getManager(); Module &M = *C.begin()->getFunction().getParent(); auto *FAMProxy = MAM.getCachedResult(M); assert(FAMProxy && "The CGSCC pass manager requires that the FAM module " "proxy is run on the module prior to entering the CGSCC " "walk."); // Note that we special-case invalidation handling of this proxy in the CGSCC // analysis manager's Module proxy. This avoids the need to do anything // special here to recompute all of this if ever the FAM's module proxy goes // away. return Result(FAMProxy->getManager()); } bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( LazyCallGraph::SCC &C, const PreservedAnalyses &PA, CGSCCAnalysisManager::Invalidator &Inv) { for (LazyCallGraph::Node &N : C) FAM->invalidate(N.getFunction(), PA); // This proxy doesn't need to handle invalidation itself. Instead, the // module-level CGSCC proxy handles it above by ensuring that if the // module-level FAM proxy becomes invalid the entire SCC layer, which // includes this proxy, is cleared. return false; } } // End llvm namespace namespace { /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly /// added SCCs. /// /// The range of new SCCs must be in postorder already. The SCC they were split /// out of must be provided as \p C. The current node being mutated and /// triggering updates must be passed as \p N. /// /// This function returns the SCC containing \p N. This will be either \p C if /// no new SCCs have been split out, or it will be the new SCC containing \p N. template LazyCallGraph::SCC * incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, LazyCallGraph::Node &N, LazyCallGraph::SCC *C, CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool DebugLogging = false) { typedef LazyCallGraph::SCC SCC; if (NewSCCRange.begin() == NewSCCRange.end()) return C; // Add the current SCC to the worklist as its shape has changed. UR.CWorklist.insert(C); if (DebugLogging) dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n"; SCC *OldC = C; (void)OldC; // Update the current SCC. Note that if we have new SCCs, this must actually // change the SCC. assert(C != &*NewSCCRange.begin() && "Cannot insert new SCCs without changing current SCC!"); C = &*NewSCCRange.begin(); assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); for (SCC &NewC : reverse(make_range(std::next(NewSCCRange.begin()), NewSCCRange.end()))) { assert(C != &NewC && "No need to re-visit the current SCC!"); assert(OldC != &NewC && "Already handled the original SCC!"); UR.CWorklist.insert(&NewC); if (DebugLogging) dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"; } return C; } } LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool DebugLogging) { typedef LazyCallGraph::Node Node; typedef LazyCallGraph::Edge Edge; typedef LazyCallGraph::SCC SCC; typedef LazyCallGraph::RefSCC RefSCC; RefSCC &InitialRC = InitialC.getOuterRefSCC(); SCC *C = &InitialC; RefSCC *RC = &InitialRC; Function &F = N.getFunction(); // Walk the function body and build up the set of retained, promoted, and // demoted edges. SmallVector Worklist; SmallPtrSet Visited; SmallPtrSet RetainedEdges; SmallSetVector PromotedRefTargets; SmallSetVector DemotedCallTargets; // First walk the function and handle all called functions. We do this first // because if there is a single call edge, whether there are ref edges is // irrelevant. for (Instruction &I : instructions(F)) if (auto CS = CallSite(&I)) if (Function *Callee = CS.getCalledFunction()) if (Visited.insert(Callee).second && !Callee->isDeclaration()) { const Edge *E = N.lookup(*Callee); // FIXME: We should really handle adding new calls. While it will // make downstream usage more complex, there is no fundamental // limitation and it will allow passes within the CGSCC to be a bit // more flexible in what transforms they can do. Until then, we // verify that new calls haven't been introduced. assert(E && "No function transformations should introduce *new* " "call edges! Any new calls should be modeled as " "promoted existing ref edges!"); RetainedEdges.insert(Callee); if (!E->isCall()) PromotedRefTargets.insert(Callee); } // Now walk all references. for (Instruction &I : instructions(F)) for (Value *Op : I.operand_values()) if (Constant *C = dyn_cast(Op)) if (Visited.insert(C).second) Worklist.push_back(C); LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &Referee) { const Edge *E = N.lookup(Referee); // FIXME: Similarly to new calls, we also currently preclude // introducing new references. See above for details. assert(E && "No function transformations should introduce *new* ref " "edges! Any new ref edges would require IPO which " "function passes aren't allowed to do!"); RetainedEdges.insert(&Referee); if (E->isCall()) DemotedCallTargets.insert(&Referee); }); // First remove all of the edges that are no longer present in this function. // We have to build a list of dead targets first and then remove them as the // data structures will all be invalidated by removing them. SmallVector, 4> DeadTargets; for (Edge &E : N) if (!RetainedEdges.count(&E.getFunction())) DeadTargets.push_back({E.getNode(), E.getKind()}); for (auto DeadTarget : DeadTargets) { Node &TargetN = *DeadTarget.getPointer(); bool IsCall = DeadTarget.getInt() == Edge::Call; SCC &TargetC = *G.lookupSCC(TargetN); RefSCC &TargetRC = TargetC.getOuterRefSCC(); if (&TargetRC != RC) { RC->removeOutgoingEdge(N, TargetN); if (DebugLogging) dbgs() << "Deleting outgoing edge from '" << N << "' to '" << TargetN << "'\n"; continue; } if (DebugLogging) dbgs() << "Deleting internal " << (IsCall ? "call" : "ref") << " edge from '" << N << "' to '" << TargetN << "'\n"; if (IsCall) { if (C != &TargetC) { // For separate SCCs this is trivial. RC->switchTrivialInternalEdgeToRef(N, TargetN); } else { // Otherwise we may end up re-structuring the call graph. First, // invalidate any SCC analyses. We have to do this before we split // functions into new SCCs and lose track of where their analyses are // cached. // FIXME: We should accept a more precise preserved set here. For // example, it might be possible to preserve some function analyses // even as the SCC structure is changed. AM.invalidate(*C, PreservedAnalyses::none()); // Now update the call graph. C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, N, C, AM, UR, DebugLogging); } } auto NewRefSCCs = RC->removeInternalRefEdge(N, TargetN); if (!NewRefSCCs.empty()) { // Note that we don't bother to invalidate analyses as ref-edge // connectivity is not really observable in any way and is intended // exclusively to be used for ordering of transforms rather than for // analysis conclusions. // The RC worklist is in reverse postorder, so we first enqueue the // current RefSCC as it will remain the parent of all split RefSCCs, then // we enqueue the new ones in RPO except for the one which contains the // source node as that is the "bottom" we will continue processing in the // bottom-up walk. UR.RCWorklist.insert(RC); if (DebugLogging) dbgs() << "Enqueuing the existing RefSCC in the update worklist: " << *RC << "\n"; // Update the RC to the "bottom". assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); RC = &C->getOuterRefSCC(); assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); assert(NewRefSCCs.front() == RC && "New current RefSCC not first in the returned list!"); for (RefSCC *NewRC : reverse( make_range(std::next(NewRefSCCs.begin()), NewRefSCCs.end()))) { assert(NewRC != RC && "Should not encounter the current RefSCC further " "in the postorder list of new RefSCCs."); UR.RCWorklist.insert(NewRC); if (DebugLogging) dbgs() << "Enqueuing a new RefSCC in the update worklist: " << *NewRC << "\n"; } } } // Next demote all the call edges that are now ref edges. This helps make // the SCCs small which should minimize the work below as we don't want to // form cycles that this would break. for (Function *RefTarget : DemotedCallTargets) { Node &TargetN = *G.lookup(*RefTarget); SCC &TargetC = *G.lookupSCC(TargetN); RefSCC &TargetRC = TargetC.getOuterRefSCC(); // The easy case is when the target RefSCC is not this RefSCC. This is // only supported when the target RefSCC is a child of this RefSCC. if (&TargetRC != RC) { assert(RC->isAncestorOf(TargetRC) && "Cannot potentially form RefSCC cycles here!"); RC->switchOutgoingEdgeToRef(N, TargetN); if (DebugLogging) dbgs() << "Switch outgoing call edge to a ref edge from '" << N << "' to '" << TargetN << "'\n"; continue; } // We are switching an internal call edge to a ref edge. This may split up // some SCCs. if (C != &TargetC) { // For separate SCCs this is trivial. RC->switchTrivialInternalEdgeToRef(N, TargetN); continue; } // Otherwise we may end up re-structuring the call graph. First, invalidate // any SCC analyses. We have to do this before we split functions into new // SCCs and lose track of where their analyses are cached. // FIXME: We should accept a more precise preserved set here. For example, // it might be possible to preserve some function analyses even as the SCC // structure is changed. AM.invalidate(*C, PreservedAnalyses::none()); // Now update the call graph. C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, N, C, AM, UR, DebugLogging); } // Now promote ref edges into call edges. for (Function *CallTarget : PromotedRefTargets) { Node &TargetN = *G.lookup(*CallTarget); SCC &TargetC = *G.lookupSCC(TargetN); RefSCC &TargetRC = TargetC.getOuterRefSCC(); // The easy case is when the target RefSCC is not this RefSCC. This is // only supported when the target RefSCC is a child of this RefSCC. if (&TargetRC != RC) { assert(RC->isAncestorOf(TargetRC) && "Cannot potentially form RefSCC cycles here!"); RC->switchOutgoingEdgeToCall(N, TargetN); if (DebugLogging) dbgs() << "Switch outgoing ref edge to a call edge from '" << N << "' to '" << TargetN << "'\n"; continue; } if (DebugLogging) dbgs() << "Switch an internal ref edge to a call edge from '" << N << "' to '" << TargetN << "'\n"; // Otherwise we are switching an internal ref edge to a call edge. This // may merge away some SCCs, and we add those to the UpdateResult. We also // need to make sure to update the worklist in the event SCCs have moved // before the current one in the post-order sequence. auto InitialSCCIndex = RC->find(*C) - RC->begin(); auto InvalidatedSCCs = RC->switchInternalEdgeToCall(N, TargetN); if (!InvalidatedSCCs.empty()) { C = &TargetC; assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); // Any analyses cached for this SCC are no longer precise as the shape // has changed by introducing this cycle. AM.invalidate(*C, PreservedAnalyses::none()); for (SCC *InvalidatedC : InvalidatedSCCs) { assert(InvalidatedC != C && "Cannot invalidate the current SCC!"); UR.InvalidatedSCCs.insert(InvalidatedC); // Also clear any cached analyses for the SCCs that are dead. This // isn't really necessary for correctness but can release memory. AM.clear(*InvalidatedC); } } auto NewSCCIndex = RC->find(*C) - RC->begin(); if (InitialSCCIndex < NewSCCIndex) { // Put our current SCC back onto the worklist as we'll visit other SCCs // that are now definitively ordered prior to the current one in the // post-order sequence, and may end up observing more precise context to // optimize the current SCC. UR.CWorklist.insert(C); if (DebugLogging) dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n"; // Enqueue in reverse order as we pop off the back of the worklist. for (SCC &MovedC : reverse(make_range(RC->begin() + InitialSCCIndex, RC->begin() + NewSCCIndex))) { UR.CWorklist.insert(&MovedC); if (DebugLogging) dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC << "\n"; } } } assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); // Record the current RefSCC and SCC for higher layers of the CGSCC pass // manager now that all the updates have been applied. if (RC != &InitialRC) UR.UpdatedRC = RC; if (C != &InitialC) UR.UpdatedC = C; return *C; }