//===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------===// // // This file implements the MemorySSAUpdater class. // //===----------------------------------------------------------------===// #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FormattedStream.h" #include #define DEBUG_TYPE "memoryssa" using namespace llvm; // This is the marker algorithm from "Simple and Efficient Construction of // Static Single Assignment Form" // The simple, non-marker algorithm places phi nodes at any join // Here, we place markers, and only place phi nodes if they end up necessary. // They are only necessary if they break a cycle (IE we recursively visit // ourselves again), or we discover, while getting the value of the operands, // that there are two or more definitions needing to be merged. // This still will leave non-minimal form in the case of irreducible control // flow, where phi nodes may be in cycles with themselves, but unnecessary. MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( BasicBlock *BB, DenseMap> &CachedPreviousDef) { // First, do a cache lookup. Without this cache, certain CFG structures // (like a series of if statements) take exponential time to visit. auto Cached = CachedPreviousDef.find(BB); if (Cached != CachedPreviousDef.end()) { return Cached->second; } if (BasicBlock *Pred = BB->getSinglePredecessor()) { // Single predecessor case, just recurse, we can only have one definition. MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); CachedPreviousDef.insert({BB, Result}); return Result; } if (VisitedBlocks.count(BB)) { // We hit our node again, meaning we had a cycle, we must insert a phi // node to break it so we have an operand. The only case this will // insert useless phis is if we have irreducible control flow. MemoryAccess *Result = MSSA->createMemoryPhi(BB); CachedPreviousDef.insert({BB, Result}); return Result; } if (VisitedBlocks.insert(BB).second) { // Mark us visited so we can detect a cycle SmallVector, 8> PhiOps; // Recurse to get the values in our predecessors for placement of a // potential phi node. This will insert phi nodes if we cycle in order to // break the cycle and have an operand. for (auto *Pred : predecessors(BB)) PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef)); // Now try to simplify the ops to avoid placing a phi. // This may return null if we never created a phi yet, that's okay MemoryPhi *Phi = dyn_cast_or_null(MSSA->getMemoryAccess(BB)); // See if we can avoid the phi by simplifying it. auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); // If we couldn't simplify, we may have to create a phi if (Result == Phi) { if (!Phi) Phi = MSSA->createMemoryPhi(BB); // See if the existing phi operands match what we need. // Unlike normal SSA, we only allow one phi node per block, so we can't just // create a new one. if (Phi->getNumOperands() != 0) { // FIXME: Figure out whether this is dead code and if so remove it. if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { // These will have been filled in by the recursive read we did above. std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin()); std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); } } else { unsigned i = 0; for (auto *Pred : predecessors(BB)) Phi->addIncoming(&*PhiOps[i++], Pred); InsertedPHIs.push_back(Phi); } Result = Phi; } // Set ourselves up for the next variable by resetting visited state. VisitedBlocks.erase(BB); CachedPreviousDef.insert({BB, Result}); return Result; } llvm_unreachable("Should have hit one of the three cases above"); } // This starts at the memory access, and goes backwards in the block to find the // previous definition. If a definition is not found the block of the access, // it continues globally, creating phi nodes to ensure we have a single // definition. MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { if (auto *LocalResult = getPreviousDefInBlock(MA)) return LocalResult; DenseMap> CachedPreviousDef; return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); } // This starts at the memory access, and goes backwards in the block to the find // the previous definition. If the definition is not found in the block of the // access, it returns nullptr. MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); // It's possible there are no defs, or we got handed the first def to start. if (Defs) { // If this is a def, we can just use the def iterators. if (!isa(MA)) { auto Iter = MA->getReverseDefsIterator(); ++Iter; if (Iter != Defs->rend()) return &*Iter; } else { // Otherwise, have to walk the all access iterator. auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); for (auto &U : make_range(++MA->getReverseIterator(), End)) if (!isa(U)) return cast(&U); // Note that if MA comes before Defs->begin(), we won't hit a def. return nullptr; } } return nullptr; } // This starts at the end of block MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( BasicBlock *BB, DenseMap> &CachedPreviousDef) { auto *Defs = MSSA->getWritableBlockDefs(BB); if (Defs) return &*Defs->rbegin(); return getPreviousDefRecursive(BB, CachedPreviousDef); } // Recurse over a set of phi uses to eliminate the trivial ones MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { if (!Phi) return nullptr; TrackingVH Res(Phi); SmallVector, 8> Uses; std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); for (auto &U : Uses) { if (MemoryPhi *UsePhi = dyn_cast(&*U)) { auto OperRange = UsePhi->operands(); tryRemoveTrivialPhi(UsePhi, OperRange); } } return Res; } // Eliminate trivial phis // Phis are trivial if they are defined either by themselves, or all the same // argument. // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) // We recursively try to remove them. template MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, RangeType &Operands) { // Bail out on non-opt Phis. if (NonOptPhis.count(Phi)) return Phi; // Detect equal or self arguments MemoryAccess *Same = nullptr; for (auto &Op : Operands) { // If the same or self, good so far if (Op == Phi || Op == Same) continue; // not the same, return the phi since it's not eliminatable by us if (Same) return Phi; Same = cast(&*Op); } // Never found a non-self reference, the phi is undef if (Same == nullptr) return MSSA->getLiveOnEntryDef(); if (Phi) { Phi->replaceAllUsesWith(Same); removeMemoryAccess(Phi); } // We should only end up recursing in case we replaced something, in which // case, we may have made other Phis trivial. return recursePhi(Same); } void MemorySSAUpdater::insertUse(MemoryUse *MU) { InsertedPHIs.clear(); MU->setDefiningAccess(getPreviousDef(MU)); // Unlike for defs, there is no extra work to do. Because uses do not create // new may-defs, there are only two cases: // // 1. There was a def already below us, and therefore, we should not have // created a phi node because it was already needed for the def. // // 2. There is no def below us, and therefore, there is no extra renaming work // to do. } // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, MemoryAccess *NewDef) { // Replace any operand with us an incoming block with the new defining // access. int i = MP->getBasicBlockIndex(BB); assert(i != -1 && "Should have found the basic block in the phi"); // We can't just compare i against getNumOperands since one is signed and the // other not. So use it to index into the block iterator. for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); ++BBIter) { if (*BBIter != BB) break; MP->setIncomingValue(i, NewDef); ++i; } } // A brief description of the algorithm: // First, we compute what should define the new def, using the SSA // construction algorithm. // Then, we update the defs below us (and any new phi nodes) in the graph to // point to the correct new defs, to ensure we only have one variable, and no // disconnected stores. void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { InsertedPHIs.clear(); // See if we had a local def, and if not, go hunting. MemoryAccess *DefBefore = getPreviousDef(MD); bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock(); // There is a def before us, which means we can replace any store/phi uses // of that thing with us, since we are in the way of whatever was there // before. // We now define that def's memorydefs and memoryphis if (DefBeforeSameBlock) { for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); UI != UE;) { Use &U = *UI++; // Leave the uses alone if (isa(U.getUser())) continue; U.set(MD); } } // and that def is now our defining access. // We change them in this order otherwise we will appear in the use list // above and reset ourselves. MD->setDefiningAccess(DefBefore); SmallVector FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); if (!DefBeforeSameBlock) { // If there was a local def before us, we must have the same effect it // did. Because every may-def is the same, any phis/etc we would create, it // would also have created. If there was no local def before us, we // performed a global update, and have to search all successors and make // sure we update the first def in each of them (following all paths until // we hit the first def along each path). This may also insert phi nodes. // TODO: There are other cases we can skip this work, such as when we have a // single successor, and only used a straight line of single pred blocks // backwards to find the def. To make that work, we'd have to track whether // getDefRecursive only ever used the single predecessor case. These types // of paths also only exist in between CFG simplifications. FixupList.push_back(MD); } while (!FixupList.empty()) { unsigned StartingPHISize = InsertedPHIs.size(); fixupDefs(FixupList); FixupList.clear(); // Put any new phis on the fixup list, and process them FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); } // Now that all fixups are done, rename all uses if we are asked. if (RenameUses) { SmallPtrSet Visited; BasicBlock *StartBlock = MD->getBlock(); // We are guaranteed there is a def in the block, because we just got it // handed to us in this function. MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); // Convert to incoming value if it's a memorydef. A phi *is* already an // incoming value. if (auto *MD = dyn_cast(FirstDef)) FirstDef = MD->getDefiningAccess(); MSSA->renamePass(MD->getBlock(), FirstDef, Visited); // We just inserted a phi into this block, so the incoming value will become // the phi anyway, so it does not matter what we pass. for (auto &MP : InsertedPHIs) { MemoryPhi *Phi = dyn_cast_or_null(MP); if (Phi) MSSA->renamePass(Phi->getBlock(), nullptr, Visited); } } } void MemorySSAUpdater::fixupDefs(const SmallVectorImpl &Vars) { SmallPtrSet Seen; SmallVector Worklist; for (auto &Var : Vars) { MemoryAccess *NewDef = dyn_cast_or_null(Var); if (!NewDef) continue; // First, see if there is a local def after the operand. auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); auto DefIter = NewDef->getDefsIterator(); // The temporary Phi is being fixed, unmark it for not to optimize. if (MemoryPhi *Phi = dyn_cast(NewDef)) NonOptPhis.erase(Phi); // If there is a local def after us, we only have to rename that. if (++DefIter != Defs->end()) { cast(DefIter)->setDefiningAccess(NewDef); continue; } // Otherwise, we need to search down through the CFG. // For each of our successors, handle it directly if their is a phi, or // place on the fixup worklist. for (const auto *S : successors(NewDef->getBlock())) { if (auto *MP = MSSA->getMemoryAccess(S)) setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); else Worklist.push_back(S); } while (!Worklist.empty()) { const BasicBlock *FixupBlock = Worklist.back(); Worklist.pop_back(); // Get the first def in the block that isn't a phi node. if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { auto *FirstDef = &*Defs->begin(); // The loop above and below should have taken care of phi nodes assert(!isa(FirstDef) && "Should have already handled phi nodes!"); // We are now this def's defining access, make sure we actually dominate // it assert(MSSA->dominates(NewDef, FirstDef) && "Should have dominated the new access"); // This may insert new phi nodes, because we are not guaranteed the // block we are processing has a single pred, and depending where the // store was inserted, it may require phi nodes below it. cast(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); return; } // We didn't find a def, so we must continue. for (const auto *S : successors(FixupBlock)) { // If there is a phi node, handle it. // Otherwise, put the block on the worklist if (auto *MP = MSSA->getMemoryAccess(S)) setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); else { // If we cycle, we should have ended up at a phi node that we already // processed. FIXME: Double check this if (!Seen.insert(S).second) continue; Worklist.push_back(S); } } } } } // Move What before Where in the MemorySSA IR. template void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, WhereType Where) { // Mark MemoryPhi users of What not to be optimized. for (auto *U : What->users()) if (MemoryPhi *PhiUser = dyn_cast(U)) NonOptPhis.insert(PhiUser); // Replace all our users with our defining access. What->replaceAllUsesWith(What->getDefiningAccess()); // Let MemorySSA take care of moving it around in the lists. MSSA->moveTo(What, BB, Where); // Now reinsert it into the IR and do whatever fixups needed. if (auto *MD = dyn_cast(What)) insertDef(MD); else insertUse(cast(What)); // Clear dangling pointers. We added all MemoryPhi users, but not all // of them are removed by fixupDefs(). NonOptPhis.clear(); } // Move What before Where in the MemorySSA IR. void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { moveTo(What, Where->getBlock(), Where->getIterator()); } // Move What after Where in the MemorySSA IR. void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { moveTo(What, Where->getBlock(), ++Where->getIterator()); } void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, MemorySSA::InsertionPlace Where) { return moveTo(What, BB, Where); } // All accesses in To used to be in From. Move to end and update access lists. void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, Instruction *Start) { MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); if (!Accs) return; MemoryAccess *FirstInNew = nullptr; for (Instruction &I : make_range(Start->getIterator(), To->end())) if ((FirstInNew = MSSA->getMemoryAccess(&I))) break; if (!FirstInNew) return; auto *MUD = cast(FirstInNew); do { auto NextIt = ++MUD->getIterator(); MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) ? nullptr : cast(&*NextIt); MSSA->moveTo(MUD, To, MemorySSA::End); // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to // retrieve it again. Accs = MSSA->getWritableBlockAccesses(From); MUD = NextMUD; } while (MUD); } void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To, Instruction *Start) { assert(MSSA->getBlockAccesses(To) == nullptr && "To block is expected to be free of MemoryAccesses."); moveAllAccesses(From, To, Start); for (BasicBlock *Succ : successors(To)) if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); } void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, Instruction *Start) { assert(From->getSinglePredecessor() == To && "From block is expected to have a single predecessor (To)."); moveAllAccesses(From, To, Start); for (BasicBlock *Succ : successors(From)) if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); } /// If all arguments of a MemoryPHI are defined by the same incoming /// argument, return that argument. static MemoryAccess *onlySingleValue(MemoryPhi *MP) { MemoryAccess *MA = nullptr; for (auto &Arg : MP->operands()) { if (!MA) MA = cast(Arg); else if (MA != Arg) return nullptr; } return MA; } void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( BasicBlock *Old, BasicBlock *New, ArrayRef Preds) { assert(!MSSA->getWritableBlockAccesses(New) && "Access list should be null for a new block."); MemoryPhi *Phi = MSSA->getMemoryAccess(Old); if (!Phi) return; if (pred_size(Old) == 1) { assert(pred_size(New) == Preds.size() && "Should have moved all predecessors."); MSSA->moveTo(Phi, New, MemorySSA::Beginning); } else { assert(!Preds.empty() && "Must be moving at least one predecessor to the " "new immediate predecessor."); MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); SmallPtrSet PredsSet(Preds.begin(), Preds.end()); Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { if (PredsSet.count(B)) { NewPhi->addIncoming(MA, B); return true; } return false; }); Phi->addIncoming(NewPhi, New); if (onlySingleValue(NewPhi)) removeMemoryAccess(NewPhi); } } void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA) { assert(!MSSA->isLiveOnEntryDef(MA) && "Trying to remove the live on entry def"); // We can only delete phi nodes if they have no uses, or we can replace all // uses with a single definition. MemoryAccess *NewDefTarget = nullptr; if (MemoryPhi *MP = dyn_cast(MA)) { // Note that it is sufficient to know that all edges of the phi node have // the same argument. If they do, by the definition of dominance frontiers // (which we used to place this phi), that argument must dominate this phi, // and thus, must dominate the phi's uses, and so we will not hit the assert // below. NewDefTarget = onlySingleValue(MP); assert((NewDefTarget || MP->use_empty()) && "We can't delete this memory phi"); } else { NewDefTarget = cast(MA)->getDefiningAccess(); } // Re-point the uses at our defining access if (!isa(MA) && !MA->use_empty()) { // Reset optimized on users of this store, and reset the uses. // A few notes: // 1. This is a slightly modified version of RAUW to avoid walking the // uses twice here. // 2. If we wanted to be complete, we would have to reset the optimized // flags on users of phi nodes if doing the below makes a phi node have all // the same arguments. Instead, we prefer users to removeMemoryAccess those // phi nodes, because doing it here would be N^3. if (MA->hasValueHandle()) ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); // Note: We assume MemorySSA is not used in metadata since it's not really // part of the IR. while (!MA->use_empty()) { Use &U = *MA->use_begin(); if (auto *MUD = dyn_cast(U.getUser())) MUD->resetOptimized(); U.set(NewDefTarget); } } // The call below to erase will destroy MA, so we can't change the order we // are doing things here MSSA->removeFromLookups(MA); MSSA->removeFromLists(MA); } void MemorySSAUpdater::removeBlocks( const SmallPtrSetImpl &DeadBlocks) { // First delete all uses of BB in MemoryPhis. for (BasicBlock *BB : DeadBlocks) { TerminatorInst *TI = BB->getTerminator(); assert(TI && "Basic block expected to have a terminator instruction"); for (BasicBlock *Succ : TI->successors()) if (!DeadBlocks.count(Succ)) if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { MP->unorderedDeleteIncomingBlock(BB); if (MP->getNumIncomingValues() == 1) removeMemoryAccess(MP); } // Drop all references of all accesses in BB if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) for (MemoryAccess &MA : *Acc) MA.dropAllReferences(); } // Next, delete all memory accesses in each block for (BasicBlock *BB : DeadBlocks) { MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); if (!Acc) continue; for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) { MemoryAccess *MA = &*AB; ++AB; MSSA->removeFromLookups(MA); MSSA->removeFromLists(MA); } } } MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, MemorySSA::InsertionPlace Point) { MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); MSSA->insertIntoListsForBlock(NewAccess, BB, Point); return NewAccess; } MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { assert(I->getParent() == InsertPt->getBlock() && "New and old access must be in the same block"); MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), InsertPt->getIterator()); return NewAccess; } MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { assert(I->getParent() == InsertPt->getBlock() && "New and old access must be in the same block"); MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), ++InsertPt->getIterator()); return NewAccess; }