//===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass builds a ModuleSummaryIndex object for the module, to be written // to bitcode or LLVM assembly. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/ModuleSummaryAnalysis.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BlockFrequencyInfoImpl.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/TypeMetadataUtils.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/ValueSymbolTable.h" #include "llvm/Object/ModuleSymbolTable.h" #include "llvm/Pass.h" using namespace llvm; #define DEBUG_TYPE "module-summary-analysis" // Walk through the operands of a given User via worklist iteration and populate // the set of GlobalValue references encountered. Invoked either on an // Instruction or a GlobalVariable (which walks its initializer). static void findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, SetVector &RefEdges, SmallPtrSet &Visited) { SmallVector Worklist; Worklist.push_back(CurUser); while (!Worklist.empty()) { const User *U = Worklist.pop_back_val(); if (!Visited.insert(U).second) continue; ImmutableCallSite CS(U); for (const auto &OI : U->operands()) { const User *Operand = dyn_cast(OI); if (!Operand) continue; if (isa(Operand)) continue; if (auto *GV = dyn_cast(Operand)) { // We have a reference to a global value. This should be added to // the reference set unless it is a callee. Callees are handled // specially by WriteFunction and are added to a separate list. if (!(CS && CS.isCallee(&OI))) RefEdges.insert(Index.getOrInsertValueInfo(GV)); continue; } Worklist.push_back(Operand); } } } static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, ProfileSummaryInfo *PSI) { if (!PSI) return CalleeInfo::HotnessType::Unknown; if (PSI->isHotCount(ProfileCount)) return CalleeInfo::HotnessType::Hot; if (PSI->isColdCount(ProfileCount)) return CalleeInfo::HotnessType::Cold; return CalleeInfo::HotnessType::None; } static bool isNonRenamableLocal(const GlobalValue &GV) { return GV.hasSection() && GV.hasLocalLinkage(); } /// Determine whether this call has all constant integer arguments (excluding /// "this") and summarize it to VCalls or ConstVCalls as appropriate. static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid, SetVector &VCalls, SetVector &ConstVCalls) { std::vector Args; // Start from the second argument to skip the "this" pointer. for (auto &Arg : make_range(Call.CS.arg_begin() + 1, Call.CS.arg_end())) { auto *CI = dyn_cast(Arg); if (!CI || CI->getBitWidth() > 64) { VCalls.insert({Guid, Call.Offset}); return; } Args.push_back(CI->getZExtValue()); } ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); } /// If this intrinsic call requires that we add information to the function /// summary, do so via the non-constant reference arguments. static void addIntrinsicToSummary( const CallInst *CI, SetVector &TypeTests, SetVector &TypeTestAssumeVCalls, SetVector &TypeCheckedLoadVCalls, SetVector &TypeTestAssumeConstVCalls, SetVector &TypeCheckedLoadConstVCalls) { switch (CI->getCalledFunction()->getIntrinsicID()) { case Intrinsic::type_test: { auto *TypeMDVal = cast(CI->getArgOperand(1)); auto *TypeId = dyn_cast(TypeMDVal->getMetadata()); if (!TypeId) break; GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); // Produce a summary from type.test intrinsics. We only summarize type.test // intrinsics that are used other than by an llvm.assume intrinsic. // Intrinsics that are assumed are relevant only to the devirtualization // pass, not the type test lowering pass. bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { auto *AssumeCI = dyn_cast(CIU.getUser()); if (!AssumeCI) return true; Function *F = AssumeCI->getCalledFunction(); return !F || F->getIntrinsicID() != Intrinsic::assume; }); if (HasNonAssumeUses) TypeTests.insert(Guid); SmallVector DevirtCalls; SmallVector Assumes; findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI); for (auto &Call : DevirtCalls) addVCallToSet(Call, Guid, TypeTestAssumeVCalls, TypeTestAssumeConstVCalls); break; } case Intrinsic::type_checked_load: { auto *TypeMDVal = cast(CI->getArgOperand(2)); auto *TypeId = dyn_cast(TypeMDVal->getMetadata()); if (!TypeId) break; GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); SmallVector DevirtCalls; SmallVector LoadedPtrs; SmallVector Preds; bool HasNonCallUses = false; findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, HasNonCallUses, CI); // Any non-call uses of the result of llvm.type.checked.load will // prevent us from optimizing away the llvm.type.test. if (HasNonCallUses) TypeTests.insert(Guid); for (auto &Call : DevirtCalls) addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, TypeCheckedLoadConstVCalls); break; } default: break; } } static void computeFunctionSummary(ModuleSummaryIndex &Index, const Module &M, const Function &F, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, bool HasLocalsInUsed, DenseSet &CantBePromoted) { // Summary not currently supported for anonymous functions, they should // have been named. assert(F.hasName()); unsigned NumInsts = 0; // Map from callee ValueId to profile count. Used to accumulate profile // counts for all static calls to a given callee. MapVector CallGraphEdges; SetVector RefEdges; SetVector TypeTests; SetVector TypeTestAssumeVCalls, TypeCheckedLoadVCalls; SetVector TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls; ICallPromotionAnalysis ICallAnalysis; bool HasInlineAsmMaybeReferencingInternal = false; SmallPtrSet Visited; for (const BasicBlock &BB : F) for (const Instruction &I : BB) { if (isa(I)) continue; ++NumInsts; findRefEdges(Index, &I, RefEdges, Visited); auto CS = ImmutableCallSite(&I); if (!CS) continue; const auto *CI = dyn_cast(&I); // Since we don't know exactly which local values are referenced in inline // assembly, conservatively mark the function as possibly referencing // a local value from inline assembly to ensure we don't export a // reference (which would require renaming and promotion of the // referenced value). if (HasLocalsInUsed && CI && CI->isInlineAsm()) HasInlineAsmMaybeReferencingInternal = true; auto *CalledValue = CS.getCalledValue(); auto *CalledFunction = CS.getCalledFunction(); // Check if this is an alias to a function. If so, get the // called aliasee for the checks below. if (auto *GA = dyn_cast(CalledValue)) { assert(!CalledFunction && "Expected null called function in callsite for alias"); CalledFunction = dyn_cast(GA->getBaseObject()); } // Check if this is a direct call to a known function or a known // intrinsic, or an indirect call with profile data. if (CalledFunction) { if (CI && CalledFunction->isIntrinsic()) { addIntrinsicToSummary( CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls); continue; } // We should have named any anonymous globals assert(CalledFunction->hasName()); auto ScaledCount = PSI->getProfileCount(&I, BFI); auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI) : CalleeInfo::HotnessType::Unknown; // Use the original CalledValue, in case it was an alias. We want // to record the call edge to the alias in that case. Eventually // an alias summary will be created to associate the alias and // aliasee. CallGraphEdges[Index.getOrInsertValueInfo( cast(CalledValue))] .updateHotness(Hotness); } else { // Skip inline assembly calls. if (CI && CI->isInlineAsm()) continue; // Skip direct calls. if (!CS.getCalledValue() || isa(CS.getCalledValue())) continue; uint32_t NumVals, NumCandidates; uint64_t TotalCount; auto CandidateProfileData = ICallAnalysis.getPromotionCandidatesForInstruction( &I, NumVals, TotalCount, NumCandidates); for (auto &Candidate : CandidateProfileData) CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] .updateHotness(getHotness(Candidate.Count, PSI)); } } // Explicit add hot edges to enforce importing for designated GUIDs for // sample PGO, to enable the same inlines as the profiled optimized binary. for (auto &I : F.getImportGUIDs()) CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( CalleeInfo::HotnessType::Hot); bool NonRenamableLocal = isNonRenamableLocal(F); bool NotEligibleForImport = NonRenamableLocal || HasInlineAsmMaybeReferencingInternal || // Inliner doesn't handle variadic functions. // FIXME: refactor this to use the same code that inliner is using. F.isVarArg(); GlobalValueSummary::GVFlags Flags(F.getLinkage(), NotEligibleForImport, /* LiveRoot = */ false); auto FuncSummary = llvm::make_unique( Flags, NumInsts, RefEdges.takeVector(), CallGraphEdges.takeVector(), TypeTests.takeVector(), TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), TypeTestAssumeConstVCalls.takeVector(), TypeCheckedLoadConstVCalls.takeVector()); if (NonRenamableLocal) CantBePromoted.insert(F.getGUID()); Index.addGlobalValueSummary(F.getName(), std::move(FuncSummary)); } static void computeVariableSummary(ModuleSummaryIndex &Index, const GlobalVariable &V, DenseSet &CantBePromoted) { SetVector RefEdges; SmallPtrSet Visited; findRefEdges(Index, &V, RefEdges, Visited); bool NonRenamableLocal = isNonRenamableLocal(V); GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal, /* LiveRoot = */ false); auto GVarSummary = llvm::make_unique(Flags, RefEdges.takeVector()); if (NonRenamableLocal) CantBePromoted.insert(V.getGUID()); Index.addGlobalValueSummary(V.getName(), std::move(GVarSummary)); } static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, DenseSet &CantBePromoted) { bool NonRenamableLocal = isNonRenamableLocal(A); GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal, /* LiveRoot = */ false); auto AS = llvm::make_unique(Flags, ArrayRef{}); auto *Aliasee = A.getBaseObject(); auto *AliaseeSummary = Index.getGlobalValueSummary(*Aliasee); assert(AliaseeSummary && "Alias expects aliasee summary to be parsed"); AS->setAliasee(AliaseeSummary); if (NonRenamableLocal) CantBePromoted.insert(A.getGUID()); Index.addGlobalValueSummary(A.getName(), std::move(AS)); } // Set LiveRoot flag on entries matching the given value name. static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) for (auto &Summary : VI.getSummaryList()) Summary->setLiveRoot(); } ModuleSummaryIndex llvm::buildModuleSummaryIndex( const Module &M, std::function GetBFICallback, ProfileSummaryInfo *PSI) { assert(PSI); ModuleSummaryIndex Index; // Identify the local values in the llvm.used and llvm.compiler.used sets, // which should not be exported as they would then require renaming and // promotion, but we may have opaque uses e.g. in inline asm. We collect them // here because we use this information to mark functions containing inline // assembly calls as not importable. SmallPtrSet LocalsUsed; SmallPtrSet Used; // First collect those in the llvm.used set. collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false); // Next collect those in the llvm.compiler.used set. collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ true); DenseSet CantBePromoted; for (auto *V : Used) { if (V->hasLocalLinkage()) { LocalsUsed.insert(V); CantBePromoted.insert(V->getGUID()); } } // Compute summaries for all functions defined in module, and save in the // index. for (auto &F : M) { if (F.isDeclaration()) continue; BlockFrequencyInfo *BFI = nullptr; std::unique_ptr BFIPtr; if (GetBFICallback) BFI = GetBFICallback(F); else if (F.getEntryCount().hasValue()) { LoopInfo LI{DominatorTree(const_cast(F))}; BranchProbabilityInfo BPI{F, LI}; BFIPtr = llvm::make_unique(F, BPI, LI); BFI = BFIPtr.get(); } computeFunctionSummary(Index, M, F, BFI, PSI, !LocalsUsed.empty(), CantBePromoted); } // Compute summaries for all variables defined in module, and save in the // index. for (const GlobalVariable &G : M.globals()) { if (G.isDeclaration()) continue; computeVariableSummary(Index, G, CantBePromoted); } // Compute summaries for all aliases defined in module, and save in the // index. for (const GlobalAlias &A : M.aliases()) computeAliasSummary(Index, A, CantBePromoted); for (auto *V : LocalsUsed) { auto *Summary = Index.getGlobalValueSummary(*V); assert(Summary && "Missing summary for global value"); Summary->setNotEligibleToImport(); } // The linker doesn't know about these LLVM produced values, so we need // to flag them as live in the index to ensure index-based dead value // analysis treats them as live roots of the analysis. setLiveRoot(Index, "llvm.used"); setLiveRoot(Index, "llvm.compiler.used"); setLiveRoot(Index, "llvm.global_ctors"); setLiveRoot(Index, "llvm.global_dtors"); setLiveRoot(Index, "llvm.global.annotations"); if (!M.getModuleInlineAsm().empty()) { // Collect the local values defined by module level asm, and set up // summaries for these symbols so that they can be marked as NoRename, // to prevent export of any use of them in regular IR that would require // renaming within the module level asm. Note we don't need to create a // summary for weak or global defs, as they don't need to be flagged as // NoRename, and defs in module level asm can't be imported anyway. // Also, any values used but not defined within module level asm should // be listed on the llvm.used or llvm.compiler.used global and marked as // referenced from there. ModuleSymbolTable::CollectAsmSymbols( M, [&M, &Index, &CantBePromoted](StringRef Name, object::BasicSymbolRef::Flags Flags) { // Symbols not marked as Weak or Global are local definitions. if (Flags & (object::BasicSymbolRef::SF_Weak | object::BasicSymbolRef::SF_Global)) return; GlobalValue *GV = M.getNamedValue(Name); if (!GV) return; assert(GV->isDeclaration() && "Def in module asm already has definition"); GlobalValueSummary::GVFlags GVFlags(GlobalValue::InternalLinkage, /* NotEligibleToImport */ true, /* LiveRoot */ true); CantBePromoted.insert(GlobalValue::getGUID(Name)); // Create the appropriate summary type. if (isa(GV)) { std::unique_ptr Summary = llvm::make_unique( GVFlags, 0, ArrayRef{}, ArrayRef{}, ArrayRef{}, ArrayRef{}, ArrayRef{}, ArrayRef{}, ArrayRef{}); Index.addGlobalValueSummary(Name, std::move(Summary)); } else { std::unique_ptr Summary = llvm::make_unique(GVFlags, ArrayRef{}); Index.addGlobalValueSummary(Name, std::move(Summary)); } }); } for (auto &GlobalList : Index) { // Ignore entries for references that are undefined in the current module. if (GlobalList.second.SummaryList.empty()) continue; assert(GlobalList.second.SummaryList.size() == 1 && "Expected module's index to have one summary per GUID"); auto &Summary = GlobalList.second.SummaryList[0]; bool AllRefsCanBeExternallyReferenced = llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { return !CantBePromoted.count(VI.getGUID()); }); if (!AllRefsCanBeExternallyReferenced) { Summary->setNotEligibleToImport(); continue; } if (auto *FuncSummary = dyn_cast(Summary.get())) { bool AllCallsCanBeExternallyReferenced = llvm::all_of( FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { return !CantBePromoted.count(Edge.first.getGUID()); }); if (!AllCallsCanBeExternallyReferenced) Summary->setNotEligibleToImport(); } } return Index; } AnalysisKey ModuleSummaryIndexAnalysis::Key; ModuleSummaryIndex ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { ProfileSummaryInfo &PSI = AM.getResult(M); auto &FAM = AM.getResult(M).getManager(); return buildModuleSummaryIndex( M, [&FAM](const Function &F) { return &FAM.getResult( *const_cast(&F)); }, &PSI); } char ModuleSummaryIndexWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", "Module Summary Analysis", false, true) INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", "Module Summary Analysis", false, true) ModulePass *llvm::createModuleSummaryIndexWrapperPass() { return new ModuleSummaryIndexWrapperPass(); } ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() : ModulePass(ID) { initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); } bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { auto &PSI = *getAnalysis().getPSI(); Index = buildModuleSummaryIndex( M, [this](const Function &F) { return &(this->getAnalysis( *const_cast(&F)) .getBFI()); }, &PSI); return false; } bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { Index.reset(); return false; } void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); AU.addRequired(); }