//===- OptimizationDiagnosticInfo.cpp - Optimization Diagnostic -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Optimization diagnostic interfaces. It's packaged as an analysis pass so // that by using this service passes become dependent on BFI as well. BFI is // used to compute the "hotness" of the diagnostic message. //===----------------------------------------------------------------------===// #include "llvm/Analysis/OptimizationDiagnosticInfo.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/LazyBlockFrequencyInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/LLVMContext.h" using namespace llvm; OptimizationRemarkEmitter::OptimizationRemarkEmitter(Function *F) : F(F), BFI(nullptr) { if (!F->getContext().getDiagnosticHotnessRequested()) return; // First create a dominator tree. DominatorTree DT; DT.recalculate(*F); // Generate LoopInfo from it. LoopInfo LI; LI.analyze(DT); // Then compute BranchProbabilityInfo. BranchProbabilityInfo BPI; BPI.calculate(*F, LI); // Finally compute BFI. OwnedBFI = llvm::make_unique(*F, BPI, LI); BFI = OwnedBFI.get(); } Optional OptimizationRemarkEmitter::computeHotness(const Value *V) { if (!BFI) return None; return BFI->getBlockProfileCount(cast(V)); } namespace llvm { namespace yaml { template <> struct MappingTraits { static void mapping(IO &io, DiagnosticInfoOptimizationBase *&OptDiag) { assert(io.outputting() && "input not yet implemented"); if (io.mapTag("!Passed", OptDiag->getKind() == DK_OptimizationRemark)) ; else if (io.mapTag("!Missed", OptDiag->getKind() == DK_OptimizationRemarkMissed)) ; else if (io.mapTag("!Analysis", OptDiag->getKind() == DK_OptimizationRemarkAnalysis)) ; else if (io.mapTag("!AnalysisFPCommute", OptDiag->getKind() == DK_OptimizationRemarkAnalysisFPCommute)) ; else if (io.mapTag("!AnalysisAliasing", OptDiag->getKind() == DK_OptimizationRemarkAnalysisAliasing)) ; else llvm_unreachable("todo"); // These are read-only for now. DebugLoc DL = OptDiag->getDebugLoc(); StringRef FN = GlobalValue::getRealLinkageName( OptDiag->getFunction().getName()); StringRef PassName(OptDiag->PassName); io.mapRequired("Pass", PassName); io.mapRequired("Name", OptDiag->RemarkName); if (!io.outputting() || DL) io.mapOptional("DebugLoc", DL); io.mapRequired("Function", FN); io.mapOptional("Hotness", OptDiag->Hotness); io.mapOptional("Args", OptDiag->Args); } }; template <> struct MappingTraits { static void mapping(IO &io, DebugLoc &DL) { assert(io.outputting() && "input not yet implemented"); auto *Scope = cast(DL.getScope()); StringRef File = Scope->getFilename(); unsigned Line = DL.getLine(); unsigned Col = DL.getCol(); io.mapRequired("File", File); io.mapRequired("Line", Line); io.mapRequired("Column", Col); } static const bool flow = true; }; // Implement this as a mapping for now to get proper quotation for the value. template <> struct MappingTraits { static void mapping(IO &io, DiagnosticInfoOptimizationBase::Argument &A) { assert(io.outputting() && "input not yet implemented"); io.mapRequired(A.Key.data(), A.Val); if (A.DLoc) io.mapOptional("DebugLoc", A.DLoc); } }; } // end namespace yaml } // end namespace llvm LLVM_YAML_IS_SEQUENCE_VECTOR(DiagnosticInfoOptimizationBase::Argument) void OptimizationRemarkEmitter::computeHotness( DiagnosticInfoOptimizationBase &OptDiag) { Value *V = OptDiag.getCodeRegion(); if (V) OptDiag.setHotness(computeHotness(V)); } void OptimizationRemarkEmitter::emit(DiagnosticInfoOptimizationBase &OptDiag) { computeHotness(OptDiag); yaml::Output *Out = F->getContext().getDiagnosticsOutputFile(); if (Out) { auto *P = &const_cast(OptDiag); *Out << P; } // FIXME: now that IsVerbose is part of DI, filtering for this will be moved // from here to clang. if (!OptDiag.isVerbose() || shouldEmitVerbose()) F->getContext().diagnose(OptDiag); } void OptimizationRemarkEmitter::emitOptimizationRemark(const char *PassName, const DebugLoc &DLoc, const Value *V, const Twine &Msg) { LLVMContext &Ctx = F->getContext(); Ctx.diagnose(OptimizationRemark(PassName, *F, DLoc, Msg, computeHotness(V))); } void OptimizationRemarkEmitter::emitOptimizationRemark(const char *PassName, Loop *L, const Twine &Msg) { emitOptimizationRemark(PassName, L->getStartLoc(), L->getHeader(), Msg); } void OptimizationRemarkEmitter::emitOptimizationRemarkMissed( const char *PassName, const DebugLoc &DLoc, const Value *V, const Twine &Msg, bool IsVerbose) { LLVMContext &Ctx = F->getContext(); if (!IsVerbose || shouldEmitVerbose()) Ctx.diagnose( OptimizationRemarkMissed(PassName, *F, DLoc, Msg, computeHotness(V))); } void OptimizationRemarkEmitter::emitOptimizationRemarkMissed( const char *PassName, Loop *L, const Twine &Msg, bool IsVerbose) { emitOptimizationRemarkMissed(PassName, L->getStartLoc(), L->getHeader(), Msg, IsVerbose); } void OptimizationRemarkEmitter::emitOptimizationRemarkAnalysis( const char *PassName, const DebugLoc &DLoc, const Value *V, const Twine &Msg, bool IsVerbose) { LLVMContext &Ctx = F->getContext(); if (!IsVerbose || shouldEmitVerbose()) Ctx.diagnose( OptimizationRemarkAnalysis(PassName, *F, DLoc, Msg, computeHotness(V))); } void OptimizationRemarkEmitter::emitOptimizationRemarkAnalysis( const char *PassName, Loop *L, const Twine &Msg, bool IsVerbose) { emitOptimizationRemarkAnalysis(PassName, L->getStartLoc(), L->getHeader(), Msg, IsVerbose); } void OptimizationRemarkEmitter::emitOptimizationRemarkAnalysisFPCommute( const char *PassName, const DebugLoc &DLoc, const Value *V, const Twine &Msg) { LLVMContext &Ctx = F->getContext(); Ctx.diagnose(OptimizationRemarkAnalysisFPCommute(PassName, *F, DLoc, Msg, computeHotness(V))); } void OptimizationRemarkEmitter::emitOptimizationRemarkAnalysisAliasing( const char *PassName, const DebugLoc &DLoc, const Value *V, const Twine &Msg) { LLVMContext &Ctx = F->getContext(); Ctx.diagnose(OptimizationRemarkAnalysisAliasing(PassName, *F, DLoc, Msg, computeHotness(V))); } void OptimizationRemarkEmitter::emitOptimizationRemarkAnalysisAliasing( const char *PassName, Loop *L, const Twine &Msg) { emitOptimizationRemarkAnalysisAliasing(PassName, L->getStartLoc(), L->getHeader(), Msg); } OptimizationRemarkEmitterWrapperPass::OptimizationRemarkEmitterWrapperPass() : FunctionPass(ID) { initializeOptimizationRemarkEmitterWrapperPassPass( *PassRegistry::getPassRegistry()); } bool OptimizationRemarkEmitterWrapperPass::runOnFunction(Function &Fn) { BlockFrequencyInfo *BFI; if (Fn.getContext().getDiagnosticHotnessRequested()) BFI = &getAnalysis().getBFI(); else BFI = nullptr; ORE = llvm::make_unique(&Fn, BFI); return false; } void OptimizationRemarkEmitterWrapperPass::getAnalysisUsage( AnalysisUsage &AU) const { LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); AU.setPreservesAll(); } AnalysisKey OptimizationRemarkEmitterAnalysis::Key; OptimizationRemarkEmitter OptimizationRemarkEmitterAnalysis::run(Function &F, FunctionAnalysisManager &AM) { BlockFrequencyInfo *BFI; if (F.getContext().getDiagnosticHotnessRequested()) BFI = &AM.getResult(F); else BFI = nullptr; return OptimizationRemarkEmitter(&F, BFI); } char OptimizationRemarkEmitterWrapperPass::ID = 0; static const char ore_name[] = "Optimization Remark Emitter"; #define ORE_NAME "opt-remark-emitter" INITIALIZE_PASS_BEGIN(OptimizationRemarkEmitterWrapperPass, ORE_NAME, ore_name, false, true) INITIALIZE_PASS_DEPENDENCY(LazyBFIPass) INITIALIZE_PASS_END(OptimizationRemarkEmitterWrapperPass, ORE_NAME, ore_name, false, true)