//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/TargetTransformInfoImpl.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/Support/ErrorHandling.h" #include using namespace llvm; #define DEBUG_TYPE "tti" namespace { /// \brief No-op implementation of the TTI interface using the utility base /// classes. /// /// This is used when no target specific information is available. struct NoTTIImpl : TargetTransformInfoImplCRTPBase { explicit NoTTIImpl(const DataLayout &DL) : TargetTransformInfoImplCRTPBase(DL) {} }; } TargetTransformInfo::TargetTransformInfo(const DataLayout &DL) : TTIImpl(new Model(NoTTIImpl(DL))) {} TargetTransformInfo::~TargetTransformInfo() {} TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg) : TTIImpl(std::move(Arg.TTIImpl)) {} TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) { TTIImpl = std::move(RHS.TTIImpl); return *this; } int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) const { int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const { int Cost = TTIImpl->getCallCost(FTy, NumArgs); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getCallCost(const Function *F, ArrayRef Arguments) const { int Cost = TTIImpl->getCallCost(F, Arguments); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } unsigned TargetTransformInfo::getInliningThresholdMultiplier() const { return TTIImpl->getInliningThresholdMultiplier(); } int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef Operands) const { return TTIImpl->getGEPCost(PointeeType, Ptr, Operands); } int TargetTransformInfo::getIntrinsicCost( Intrinsic::ID IID, Type *RetTy, ArrayRef Arguments) const { int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize) const { return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize); } int TargetTransformInfo::getUserCost(const User *U) const { int Cost = TTIImpl->getUserCost(U); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } bool TargetTransformInfo::hasBranchDivergence() const { return TTIImpl->hasBranchDivergence(); } bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const { return TTIImpl->isSourceOfDivergence(V); } unsigned TargetTransformInfo::getFlatAddressSpace() const { return TTIImpl->getFlatAddressSpace(); } bool TargetTransformInfo::isLoweredToCall(const Function *F) const { return TTIImpl->isLoweredToCall(F); } void TargetTransformInfo::getUnrollingPreferences( Loop *L, UnrollingPreferences &UP) const { return TTIImpl->getUnrollingPreferences(L, UP); } bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const { return TTIImpl->isLegalAddImmediate(Imm); } bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const { return TTIImpl->isLegalICmpImmediate(Imm); } bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) const { return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace); } bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const { return TTIImpl->isLegalMaskedStore(DataType); } bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const { return TTIImpl->isLegalMaskedLoad(DataType); } bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const { return TTIImpl->isLegalMaskedGather(DataType); } bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const { return TTIImpl->isLegalMaskedGather(DataType); } int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) const { int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } bool TargetTransformInfo::isFoldableMemAccessOffset(Instruction *I, int64_t Offset) const { return TTIImpl->isFoldableMemAccessOffset(I, Offset); } bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const { return TTIImpl->isTruncateFree(Ty1, Ty2); } bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const { return TTIImpl->isProfitableToHoist(I); } bool TargetTransformInfo::isTypeLegal(Type *Ty) const { return TTIImpl->isTypeLegal(Ty); } unsigned TargetTransformInfo::getJumpBufAlignment() const { return TTIImpl->getJumpBufAlignment(); } unsigned TargetTransformInfo::getJumpBufSize() const { return TTIImpl->getJumpBufSize(); } bool TargetTransformInfo::shouldBuildLookupTables() const { return TTIImpl->shouldBuildLookupTables(); } bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const { return TTIImpl->shouldBuildLookupTablesForConstant(C); } unsigned TargetTransformInfo:: getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const { return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract); } unsigned TargetTransformInfo:: getOperandsScalarizationOverhead(ArrayRef Args, unsigned VF) const { return TTIImpl->getOperandsScalarizationOverhead(Args, VF); } bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const { return TTIImpl->supportsEfficientVectorElementLoadStore(); } bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const { return TTIImpl->enableAggressiveInterleaving(LoopHasReductions); } bool TargetTransformInfo::enableInterleavedAccessVectorization() const { return TTIImpl->enableInterleavedAccessVectorization(); } bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const { return TTIImpl->isFPVectorizationPotentiallyUnsafe(); } bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, unsigned Alignment, bool *Fast) const { return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, Alignment, Fast); } TargetTransformInfo::PopcntSupportKind TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const { return TTIImpl->getPopcntSupport(IntTyWidthInBit); } bool TargetTransformInfo::haveFastSqrt(Type *Ty) const { return TTIImpl->haveFastSqrt(Ty); } int TargetTransformInfo::getFPOpCost(Type *Ty) const { int Cost = TTIImpl->getFPOpCost(Ty); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) const { int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const { int Cost = TTIImpl->getIntImmCost(Imm, Ty); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) const { int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty) const { int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const { return TTIImpl->getNumberOfRegisters(Vector); } unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const { return TTIImpl->getRegisterBitWidth(Vector); } unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const { return TTIImpl->getMinVectorRegisterBitWidth(); } bool TargetTransformInfo::shouldConsiderAddressTypePromotion( const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const { return TTIImpl->shouldConsiderAddressTypePromotion( I, AllowPromotionWithoutCommonHeader); } unsigned TargetTransformInfo::getCacheLineSize() const { return TTIImpl->getCacheLineSize(); } unsigned TargetTransformInfo::getPrefetchDistance() const { return TTIImpl->getPrefetchDistance(); } unsigned TargetTransformInfo::getMinPrefetchStride() const { return TTIImpl->getMinPrefetchStride(); } unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const { return TTIImpl->getMaxPrefetchIterationsAhead(); } unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const { return TTIImpl->getMaxInterleaveFactor(VF); } int TargetTransformInfo::getArithmeticInstrCost( unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo, ArrayRef Args) const { int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo, Args); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index, Type *SubTp) const { int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, const Instruction *I) const { assert ((I == nullptr || I->getOpcode() == Opcode) && "Opcode should reflect passed instruction."); int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const { int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const { int Cost = TTIImpl->getCFInstrCost(Opcode); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, const Instruction *I) const { assert ((I == nullptr || I->getOpcode() == Opcode) && "Opcode should reflect passed instruction."); int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const { int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace, const Instruction *I) const { assert ((I == nullptr || I->getOpcode() == Opcode) && "Opcode should reflect passed instruction."); int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) const { int Cost = TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr, bool VariableMask, unsigned Alignment) const { int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, Alignment); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getInterleavedMemoryOpCost( unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef Indices, unsigned Alignment, unsigned AddressSpace) const { int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, Alignment, AddressSpace); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef Tys, FastMathFlags FMF, unsigned ScalarizationCostPassed) const { int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF, ScalarizationCostPassed); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef Args, FastMathFlags FMF, unsigned VF) const { int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy, ArrayRef Tys) const { int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const { return TTIImpl->getNumberOfParts(Tp); } int TargetTransformInfo::getAddressComputationCost(Type *Tp, ScalarEvolution *SE, const SCEV *Ptr) const { int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } int TargetTransformInfo::getReductionCost(unsigned Opcode, Type *Ty, bool IsPairwiseForm) const { int Cost = TTIImpl->getReductionCost(Opcode, Ty, IsPairwiseForm); assert(Cost >= 0 && "TTI should not produce negative costs!"); return Cost; } unsigned TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef Tys) const { return TTIImpl->getCostOfKeepingLiveOverCall(Tys); } bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const { return TTIImpl->getTgtMemIntrinsic(Inst, Info); } Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic( IntrinsicInst *Inst, Type *ExpectedType) const { return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); } bool TargetTransformInfo::areInlineCompatible(const Function *Caller, const Function *Callee) const { return TTIImpl->areInlineCompatible(Caller, Callee); } unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const { return TTIImpl->getLoadStoreVecRegBitWidth(AS); } bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const { return TTIImpl->isLegalToVectorizeLoad(LI); } bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const { return TTIImpl->isLegalToVectorizeStore(SI); } bool TargetTransformInfo::isLegalToVectorizeLoadChain( unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, AddrSpace); } bool TargetTransformInfo::isLegalToVectorizeStoreChain( unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const { return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, AddrSpace); } unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const { return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); } unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const { return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); } bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty, ReductionFlags Flags) const { return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags); } bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const { return TTIImpl->shouldExpandReduction(II); } TargetTransformInfo::Concept::~Concept() {} TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {} TargetIRAnalysis::TargetIRAnalysis( std::function TTICallback) : TTICallback(std::move(TTICallback)) {} TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F, FunctionAnalysisManager &) { return TTICallback(F); } AnalysisKey TargetIRAnalysis::Key; TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) { return Result(F.getParent()->getDataLayout()); } // Register the basic pass. INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti", "Target Transform Information", false, true) char TargetTransformInfoWrapperPass::ID = 0; void TargetTransformInfoWrapperPass::anchor() {} TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass() : ImmutablePass(ID) { initializeTargetTransformInfoWrapperPassPass( *PassRegistry::getPassRegistry()); } TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass( TargetIRAnalysis TIRA) : ImmutablePass(ID), TIRA(std::move(TIRA)) { initializeTargetTransformInfoWrapperPassPass( *PassRegistry::getPassRegistry()); } TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) { FunctionAnalysisManager DummyFAM; TTI = TIRA.run(F, DummyFAM); return *TTI; } ImmutablePass * llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) { return new TargetTransformInfoWrapperPass(std::move(TIRA)); }