//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines vectorizer utilities. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/VectorUtils.h" /// \brief Identify if the intrinsic is trivially vectorizable. /// This method returns true if the intrinsic's argument types are all /// scalars for the scalar form of the intrinsic and all vectors for /// the vector form of the intrinsic. bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { switch (ID) { case Intrinsic::sqrt: case Intrinsic::sin: case Intrinsic::cos: case Intrinsic::exp: case Intrinsic::exp2: case Intrinsic::log: case Intrinsic::log10: case Intrinsic::log2: case Intrinsic::fabs: case Intrinsic::minnum: case Intrinsic::maxnum: case Intrinsic::copysign: case Intrinsic::floor: case Intrinsic::ceil: case Intrinsic::trunc: case Intrinsic::rint: case Intrinsic::nearbyint: case Intrinsic::round: case Intrinsic::bswap: case Intrinsic::ctpop: case Intrinsic::pow: case Intrinsic::fma: case Intrinsic::fmuladd: case Intrinsic::ctlz: case Intrinsic::cttz: case Intrinsic::powi: return true; default: return false; } } /// \brief Identifies if the intrinsic has a scalar operand. It check for /// ctlz,cttz and powi special intrinsics whose argument is scalar. bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, unsigned ScalarOpdIdx) { switch (ID) { case Intrinsic::ctlz: case Intrinsic::cttz: case Intrinsic::powi: return (ScalarOpdIdx == 1); default: return false; } } /// \brief Check call has a unary float signature /// It checks following: /// a) call should have a single argument /// b) argument type should be floating point type /// c) call instruction type and argument type should be same /// d) call should only reads memory. /// If all these condition is met then return ValidIntrinsicID /// else return not_intrinsic. llvm::Intrinsic::ID llvm::checkUnaryFloatSignature(const CallInst &I, Intrinsic::ID ValidIntrinsicID) { if (I.getNumArgOperands() != 1 || !I.getArgOperand(0)->getType()->isFloatingPointTy() || I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory()) return Intrinsic::not_intrinsic; return ValidIntrinsicID; } /// \brief Check call has a binary float signature /// It checks following: /// a) call should have 2 arguments. /// b) arguments type should be floating point type /// c) call instruction type and arguments type should be same /// d) call should only reads memory. /// If all these condition is met then return ValidIntrinsicID /// else return not_intrinsic. llvm::Intrinsic::ID llvm::checkBinaryFloatSignature(const CallInst &I, Intrinsic::ID ValidIntrinsicID) { if (I.getNumArgOperands() != 2 || !I.getArgOperand(0)->getType()->isFloatingPointTy() || !I.getArgOperand(1)->getType()->isFloatingPointTy() || I.getType() != I.getArgOperand(0)->getType() || I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory()) return Intrinsic::not_intrinsic; return ValidIntrinsicID; } /// \brief Returns intrinsic ID for call. /// For the input call instruction it finds mapping intrinsic and returns /// its ID, in case it does not found it return not_intrinsic. llvm::Intrinsic::ID llvm::getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) { // If we have an intrinsic call, check if it is trivially vectorizable. if (IntrinsicInst *II = dyn_cast(CI)) { Intrinsic::ID ID = II->getIntrinsicID(); if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || ID == Intrinsic::lifetime_end || ID == Intrinsic::assume) return ID; return Intrinsic::not_intrinsic; } if (!TLI) return Intrinsic::not_intrinsic; LibFunc::Func Func; Function *F = CI->getCalledFunction(); // We're going to make assumptions on the semantics of the functions, check // that the target knows that it's available in this environment and it does // not have local linkage. if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func)) return Intrinsic::not_intrinsic; // Otherwise check if we have a call to a function that can be turned into a // vector intrinsic. switch (Func) { default: break; case LibFunc::sin: case LibFunc::sinf: case LibFunc::sinl: return checkUnaryFloatSignature(*CI, Intrinsic::sin); case LibFunc::cos: case LibFunc::cosf: case LibFunc::cosl: return checkUnaryFloatSignature(*CI, Intrinsic::cos); case LibFunc::exp: case LibFunc::expf: case LibFunc::expl: return checkUnaryFloatSignature(*CI, Intrinsic::exp); case LibFunc::exp2: case LibFunc::exp2f: case LibFunc::exp2l: return checkUnaryFloatSignature(*CI, Intrinsic::exp2); case LibFunc::log: case LibFunc::logf: case LibFunc::logl: return checkUnaryFloatSignature(*CI, Intrinsic::log); case LibFunc::log10: case LibFunc::log10f: case LibFunc::log10l: return checkUnaryFloatSignature(*CI, Intrinsic::log10); case LibFunc::log2: case LibFunc::log2f: case LibFunc::log2l: return checkUnaryFloatSignature(*CI, Intrinsic::log2); case LibFunc::fabs: case LibFunc::fabsf: case LibFunc::fabsl: return checkUnaryFloatSignature(*CI, Intrinsic::fabs); case LibFunc::fmin: case LibFunc::fminf: case LibFunc::fminl: return checkBinaryFloatSignature(*CI, Intrinsic::minnum); case LibFunc::fmax: case LibFunc::fmaxf: case LibFunc::fmaxl: return checkBinaryFloatSignature(*CI, Intrinsic::maxnum); case LibFunc::copysign: case LibFunc::copysignf: case LibFunc::copysignl: return checkBinaryFloatSignature(*CI, Intrinsic::copysign); case LibFunc::floor: case LibFunc::floorf: case LibFunc::floorl: return checkUnaryFloatSignature(*CI, Intrinsic::floor); case LibFunc::ceil: case LibFunc::ceilf: case LibFunc::ceill: return checkUnaryFloatSignature(*CI, Intrinsic::ceil); case LibFunc::trunc: case LibFunc::truncf: case LibFunc::truncl: return checkUnaryFloatSignature(*CI, Intrinsic::trunc); case LibFunc::rint: case LibFunc::rintf: case LibFunc::rintl: return checkUnaryFloatSignature(*CI, Intrinsic::rint); case LibFunc::nearbyint: case LibFunc::nearbyintf: case LibFunc::nearbyintl: return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint); case LibFunc::round: case LibFunc::roundf: case LibFunc::roundl: return checkUnaryFloatSignature(*CI, Intrinsic::round); case LibFunc::pow: case LibFunc::powf: case LibFunc::powl: return checkBinaryFloatSignature(*CI, Intrinsic::pow); } return Intrinsic::not_intrinsic; }