//===-- llvm/CodeGen/DwarfExpression.cpp - Dwarf Debug Framework ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for writing dwarf debug info into asm files. // //===----------------------------------------------------------------------===// #include "DwarfExpression.h" #include "DwarfDebug.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/Support/Dwarf.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; void DwarfExpression::addReg(int DwarfReg, const char *Comment) { assert(DwarfReg >= 0 && "invalid negative dwarf register number"); assert((LocationKind == Unknown || LocationKind == Register) && "location description already locked down"); LocationKind = Register; if (DwarfReg < 32) { emitOp(dwarf::DW_OP_reg0 + DwarfReg, Comment); } else { emitOp(dwarf::DW_OP_regx, Comment); emitUnsigned(DwarfReg); } } void DwarfExpression::addBReg(int DwarfReg, int Offset) { assert(DwarfReg >= 0 && "invalid negative dwarf register number"); assert(LocationKind != Register && "location description already locked down"); if (DwarfReg < 32) { emitOp(dwarf::DW_OP_breg0 + DwarfReg); } else { emitOp(dwarf::DW_OP_bregx); emitUnsigned(DwarfReg); } emitSigned(Offset); } void DwarfExpression::addFBReg(int Offset) { emitOp(dwarf::DW_OP_fbreg); emitSigned(Offset); } void DwarfExpression::addOpPiece(unsigned SizeInBits, unsigned OffsetInBits) { if (!SizeInBits) return; const unsigned SizeOfByte = 8; if (OffsetInBits > 0 || SizeInBits % SizeOfByte) { emitOp(dwarf::DW_OP_bit_piece); emitUnsigned(SizeInBits); emitUnsigned(OffsetInBits); } else { emitOp(dwarf::DW_OP_piece); unsigned ByteSize = SizeInBits / SizeOfByte; emitUnsigned(ByteSize); } this->OffsetInBits += SizeInBits; } void DwarfExpression::addShr(unsigned ShiftBy) { emitOp(dwarf::DW_OP_constu); emitUnsigned(ShiftBy); emitOp(dwarf::DW_OP_shr); } void DwarfExpression::addAnd(unsigned Mask) { emitOp(dwarf::DW_OP_constu); emitUnsigned(Mask); emitOp(dwarf::DW_OP_and); } bool DwarfExpression::addMachineReg(const TargetRegisterInfo &TRI, unsigned MachineReg, unsigned MaxSize) { if (!TRI.isPhysicalRegister(MachineReg)) { if (isFrameRegister(TRI, MachineReg)) { DwarfRegs.push_back({-1, 0, nullptr}); return true; } return false; } int Reg = TRI.getDwarfRegNum(MachineReg, false); // If this is a valid register number, emit it. if (Reg >= 0) { DwarfRegs.push_back({Reg, 0, nullptr}); return true; } // Walk up the super-register chain until we find a valid number. // For example, EAX on x86_64 is a 32-bit fragment of RAX with offset 0. for (MCSuperRegIterator SR(MachineReg, &TRI); SR.isValid(); ++SR) { Reg = TRI.getDwarfRegNum(*SR, false); if (Reg >= 0) { unsigned Idx = TRI.getSubRegIndex(*SR, MachineReg); unsigned Size = TRI.getSubRegIdxSize(Idx); unsigned RegOffset = TRI.getSubRegIdxOffset(Idx); DwarfRegs.push_back({Reg, 0, "super-register"}); // Use a DW_OP_bit_piece to describe the sub-register. setSubRegisterPiece(Size, RegOffset); return true; } } // Otherwise, attempt to find a covering set of sub-register numbers. // For example, Q0 on ARM is a composition of D0+D1. unsigned CurPos = 0; // The size of the register in bits. const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(MachineReg); unsigned RegSize = TRI.getRegSizeInBits(*RC); // Keep track of the bits in the register we already emitted, so we // can avoid emitting redundant aliasing subregs. SmallBitVector Coverage(RegSize, false); for (MCSubRegIterator SR(MachineReg, &TRI); SR.isValid(); ++SR) { unsigned Idx = TRI.getSubRegIndex(MachineReg, *SR); unsigned Size = TRI.getSubRegIdxSize(Idx); unsigned Offset = TRI.getSubRegIdxOffset(Idx); Reg = TRI.getDwarfRegNum(*SR, false); // Intersection between the bits we already emitted and the bits // covered by this subregister. SmallBitVector Intersection(RegSize, false); Intersection.set(Offset, Offset + Size); Intersection ^= Coverage; // If this sub-register has a DWARF number and we haven't covered // its range, emit a DWARF piece for it. if (Reg >= 0 && Intersection.any()) { // Emit a piece for any gap in the coverage. if (Offset > CurPos) DwarfRegs.push_back({-1, Offset - CurPos, nullptr}); DwarfRegs.push_back( {Reg, std::min(Size, MaxSize - Offset), "sub-register"}); if (Offset >= MaxSize) break; // Mark it as emitted. Coverage.set(Offset, Offset + Size); CurPos = Offset + Size; } } return CurPos; } void DwarfExpression::addStackValue() { if (DwarfVersion >= 4) emitOp(dwarf::DW_OP_stack_value); } void DwarfExpression::addSignedConstant(int64_t Value) { assert(LocationKind == Implicit || LocationKind == Unknown); LocationKind = Implicit; emitOp(dwarf::DW_OP_consts); emitSigned(Value); } void DwarfExpression::addUnsignedConstant(uint64_t Value) { assert(LocationKind == Implicit || LocationKind == Unknown); LocationKind = Implicit; emitOp(dwarf::DW_OP_constu); emitUnsigned(Value); } void DwarfExpression::addUnsignedConstant(const APInt &Value) { assert(LocationKind == Implicit || LocationKind == Unknown); LocationKind = Implicit; unsigned Size = Value.getBitWidth(); const uint64_t *Data = Value.getRawData(); // Chop it up into 64-bit pieces, because that's the maximum that // addUnsignedConstant takes. unsigned Offset = 0; while (Offset < Size) { addUnsignedConstant(*Data++); if (Offset == 0 && Size <= 64) break; addStackValue(); addOpPiece(std::min(Size - Offset, 64u), Offset); Offset += 64; } } bool DwarfExpression::addMachineRegExpression(const TargetRegisterInfo &TRI, DIExpressionCursor &ExprCursor, unsigned MachineReg, unsigned FragmentOffsetInBits) { auto Fragment = ExprCursor.getFragmentInfo(); if (!addMachineReg(TRI, MachineReg, Fragment ? Fragment->SizeInBits : ~1U)) { LocationKind = Unknown; return false; } bool HasComplexExpression = false; auto Op = ExprCursor.peek(); if (Op && Op->getOp() != dwarf::DW_OP_LLVM_fragment) HasComplexExpression = true; // If the register can only be described by a complex expression (i.e., // multiple subregisters) it doesn't safely compose with another complex // expression. For example, it is not possible to apply a DW_OP_deref // operation to multiple DW_OP_pieces. if (HasComplexExpression && DwarfRegs.size() > 1) { DwarfRegs.clear(); LocationKind = Unknown; return false; } // Handle simple register locations. if (LocationKind != Memory && !HasComplexExpression) { for (auto &Reg : DwarfRegs) { if (Reg.DwarfRegNo >= 0) addReg(Reg.DwarfRegNo, Reg.Comment); addOpPiece(Reg.Size); } DwarfRegs.clear(); return true; } // Don't emit locations that cannot be expressed without DW_OP_stack_value. if (DwarfVersion < 4) if (std::any_of(ExprCursor.begin(), ExprCursor.end(), [](DIExpression::ExprOperand Op) -> bool { return Op.getOp() == dwarf::DW_OP_stack_value; })) { DwarfRegs.clear(); LocationKind = Unknown; return false; } assert(DwarfRegs.size() == 1); auto Reg = DwarfRegs[0]; bool FBReg = isFrameRegister(TRI, MachineReg); int SignedOffset = 0; assert(Reg.Size == 0 && "subregister has same size as superregister"); // Pattern-match combinations for which more efficient representations exist. // [Reg, Offset, DW_OP_plus] --> [DW_OP_breg, Offset]. // [Reg, Offset, DW_OP_minus] --> [DW_OP_breg, -Offset]. // If Reg is a subregister we need to mask it out before subtracting. if (Op && ((Op->getOp() == dwarf::DW_OP_plus) || (Op->getOp() == dwarf::DW_OP_minus && !SubRegisterSizeInBits))) { int Offset = Op->getArg(0); SignedOffset = (Op->getOp() == dwarf::DW_OP_plus) ? Offset : -Offset; ExprCursor.take(); } if (FBReg) addFBReg(SignedOffset); else addBReg(Reg.DwarfRegNo, SignedOffset); DwarfRegs.clear(); return true; } /// Assuming a well-formed expression, match "DW_OP_deref* DW_OP_LLVM_fragment?". static bool isMemoryLocation(DIExpressionCursor ExprCursor) { while (ExprCursor) { auto Op = ExprCursor.take(); switch (Op->getOp()) { case dwarf::DW_OP_deref: case dwarf::DW_OP_LLVM_fragment: break; default: return false; } } return true; } void DwarfExpression::addExpression(DIExpressionCursor &&ExprCursor, unsigned FragmentOffsetInBits) { // If we need to mask out a subregister, do it now, unless the next // operation would emit an OpPiece anyway. auto N = ExprCursor.peek(); if (SubRegisterSizeInBits && N && (N->getOp() != dwarf::DW_OP_LLVM_fragment)) maskSubRegister(); while (ExprCursor) { auto Op = ExprCursor.take(); switch (Op->getOp()) { case dwarf::DW_OP_LLVM_fragment: { unsigned SizeInBits = Op->getArg(1); unsigned FragmentOffset = Op->getArg(0); // The fragment offset must have already been adjusted by emitting an // empty DW_OP_piece / DW_OP_bit_piece before we emitted the base // location. assert(OffsetInBits >= FragmentOffset && "fragment offset not added?"); // If addMachineReg already emitted DW_OP_piece operations to represent // a super-register by splicing together sub-registers, subtract the size // of the pieces that was already emitted. SizeInBits -= OffsetInBits - FragmentOffset; // If addMachineReg requested a DW_OP_bit_piece to stencil out a // sub-register that is smaller than the current fragment's size, use it. if (SubRegisterSizeInBits) SizeInBits = std::min(SizeInBits, SubRegisterSizeInBits); // Emit a DW_OP_stack_value for implicit location descriptions. if (LocationKind == Implicit) addStackValue(); // Emit the DW_OP_piece. addOpPiece(SizeInBits, SubRegisterOffsetInBits); setSubRegisterPiece(0, 0); // Reset the location description kind. LocationKind = Unknown; return; } case dwarf::DW_OP_plus: assert(LocationKind != Register); emitOp(dwarf::DW_OP_plus_uconst); emitUnsigned(Op->getArg(0)); break; case dwarf::DW_OP_minus: assert(LocationKind != Register); // There is no DW_OP_minus_uconst. emitOp(dwarf::DW_OP_constu); emitUnsigned(Op->getArg(0)); emitOp(dwarf::DW_OP_minus); break; case dwarf::DW_OP_deref: { assert(LocationKind != Register); if (LocationKind != Memory && isMemoryLocation(ExprCursor)) // Turning this into a memory location description makes the deref // implicit. LocationKind = Memory; else emitOp(dwarf::DW_OP_deref); break; } case dwarf::DW_OP_constu: assert(LocationKind != Register); emitOp(dwarf::DW_OP_constu); emitUnsigned(Op->getArg(0)); break; case dwarf::DW_OP_stack_value: LocationKind = Implicit; break; case dwarf::DW_OP_swap: assert(LocationKind != Register); emitOp(dwarf::DW_OP_swap); break; case dwarf::DW_OP_xderef: assert(LocationKind != Register); emitOp(dwarf::DW_OP_xderef); break; default: llvm_unreachable("unhandled opcode found in expression"); } } if (LocationKind == Implicit) // Turn this into an implicit location description. addStackValue(); } /// add masking operations to stencil out a subregister. void DwarfExpression::maskSubRegister() { assert(SubRegisterSizeInBits && "no subregister was registered"); if (SubRegisterOffsetInBits > 0) addShr(SubRegisterOffsetInBits); uint64_t Mask = (1ULL << (uint64_t)SubRegisterSizeInBits) - 1ULL; addAnd(Mask); } void DwarfExpression::finalize() { assert(DwarfRegs.size() == 0 && "dwarf registers not emitted"); // Emit any outstanding DW_OP_piece operations to mask out subregisters. if (SubRegisterSizeInBits == 0) return; // Don't emit a DW_OP_piece for a subregister at offset 0. if (SubRegisterOffsetInBits == 0) return; addOpPiece(SubRegisterSizeInBits, SubRegisterOffsetInBits); } void DwarfExpression::addFragmentOffset(const DIExpression *Expr) { if (!Expr || !Expr->isFragment()) return; uint64_t FragmentOffset = Expr->getFragmentInfo()->OffsetInBits; assert(FragmentOffset >= OffsetInBits && "overlapping or duplicate fragments"); if (FragmentOffset > OffsetInBits) addOpPiece(FragmentOffset - OffsetInBits); OffsetInBits = FragmentOffset; }