//===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements the RegisterBankInfo class. //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/GlobalISel/RegisterBank.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetOpcodes.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include // For std::max. #define DEBUG_TYPE "registerbankinfo" using namespace llvm; STATISTIC(NumPartialMappingsCreated, "Number of partial mappings dynamically created"); STATISTIC(NumPartialMappingsAccessed, "Number of partial mappings dynamically accessed"); STATISTIC(NumValueMappingsCreated, "Number of value mappings dynamically created"); STATISTIC(NumValueMappingsAccessed, "Number of value mappings dynamically accessed"); STATISTIC(NumOperandsMappingsCreated, "Number of operands mappings dynamically created"); STATISTIC(NumOperandsMappingsAccessed, "Number of operands mappings dynamically accessed"); const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX; const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1; //------------------------------------------------------------------------------ // RegisterBankInfo implementation. //------------------------------------------------------------------------------ RegisterBankInfo::RegisterBankInfo(RegisterBank **RegBanks, unsigned NumRegBanks) : RegBanks(RegBanks), NumRegBanks(NumRegBanks) { DEBUG(for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) { assert(RegBanks[Idx] != nullptr && "Invalid RegisterBank"); assert(!RegBanks[Idx]->isValid() && "RegisterBank should be invalid before initialization"); }); } RegisterBankInfo::~RegisterBankInfo() { for (auto It : MapOfPartialMappings) delete It.second; for (auto It : MapOfValueMappings) delete It.second; } bool RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const { DEBUG(for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) { const RegisterBank &RegBank = getRegBank(Idx); assert(Idx == RegBank.getID() && "ID does not match the index in the array"); dbgs() << "Verify " << RegBank << '\n'; assert(RegBank.verify(TRI) && "RegBank is invalid"); }); return true; } void RegisterBankInfo::createRegisterBank(unsigned ID, const char *Name) { DEBUG(dbgs() << "Create register bank: " << ID << " with name \"" << Name << "\"\n"); RegisterBank &RegBank = getRegBank(ID); assert(RegBank.getID() == RegisterBank::InvalidID && "A register bank should be created only once"); RegBank.ID = ID; RegBank.Name = Name; } void RegisterBankInfo::addRegBankCoverage(unsigned ID, unsigned RCId, const TargetRegisterInfo &TRI) { RegisterBank &RB = getRegBank(ID); unsigned NbOfRegClasses = TRI.getNumRegClasses(); DEBUG(dbgs() << "Add coverage for: " << RB << '\n'); // Check if RB is underconstruction. if (!RB.isValid()) RB.ContainedRegClasses.resize(NbOfRegClasses); else if (RB.covers(*TRI.getRegClass(RCId))) // If RB already covers this register class, there is nothing // to do. return; BitVector &Covered = RB.ContainedRegClasses; SmallVector WorkList; WorkList.push_back(RCId); Covered.set(RCId); unsigned &MaxSize = RB.Size; do { unsigned RCId = WorkList.pop_back_val(); const TargetRegisterClass &CurRC = *TRI.getRegClass(RCId); DEBUG(dbgs() << "Examine: " << TRI.getRegClassName(&CurRC) << "(Size*8: " << (CurRC.getSize() * 8) << ")\n"); // Remember the biggest size in bits. MaxSize = std::max(MaxSize, CurRC.getSize() * 8); // Walk through all sub register classes and push them into the worklist. bool First = true; for (BitMaskClassIterator It(CurRC.getSubClassMask(), TRI); It.isValid(); ++It) { unsigned SubRCId = It.getID(); if (!Covered.test(SubRCId)) { if (First) DEBUG(dbgs() << " Enqueue sub-class: "); DEBUG(dbgs() << TRI.getRegClassName(TRI.getRegClass(SubRCId)) << ", "); WorkList.push_back(SubRCId); // Remember that we saw the sub class. Covered.set(SubRCId); First = false; } } if (!First) DEBUG(dbgs() << '\n'); // Push also all the register classes that can be accessed via a // subreg index, i.e., its subreg-class (which is different than // its subclass). // // Note: It would probably be faster to go the other way around // and have this method add only super classes, since this // information is available in a more efficient way. However, it // feels less natural for the client of this APIs plus we will // TableGen the whole bitset at some point, so compile time for // the initialization is not very important. First = true; for (unsigned SubRCId = 0; SubRCId < NbOfRegClasses; ++SubRCId) { if (Covered.test(SubRCId)) continue; bool Pushed = false; const TargetRegisterClass *SubRC = TRI.getRegClass(SubRCId); for (SuperRegClassIterator SuperRCIt(SubRC, &TRI); SuperRCIt.isValid(); ++SuperRCIt) { if (Pushed) break; for (BitMaskClassIterator It(SuperRCIt.getMask(), TRI); It.isValid(); ++It) { unsigned SuperRCId = It.getID(); if (SuperRCId == RCId) { if (First) DEBUG(dbgs() << " Enqueue subreg-class: "); DEBUG(dbgs() << TRI.getRegClassName(SubRC) << ", "); WorkList.push_back(SubRCId); // Remember that we saw the sub class. Covered.set(SubRCId); Pushed = true; First = false; break; } } } } if (!First) DEBUG(dbgs() << '\n'); } while (!WorkList.empty()); } const RegisterBank * RegisterBankInfo::getRegBank(unsigned Reg, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI) const { if (TargetRegisterInfo::isPhysicalRegister(Reg)) return &getRegBankFromRegClass(*TRI.getMinimalPhysRegClass(Reg)); assert(Reg && "NoRegister does not have a register bank"); const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg); if (auto *RB = RegClassOrBank.dyn_cast()) return RB; if (auto *RC = RegClassOrBank.dyn_cast()) return &getRegBankFromRegClass(*RC); return nullptr; } const RegisterBank *RegisterBankInfo::getRegBankFromConstraints( const MachineInstr &MI, unsigned OpIdx, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) const { // The mapping of the registers may be available via the // register class constraints. const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, &TII, &TRI); if (!RC) return nullptr; const RegisterBank &RegBank = getRegBankFromRegClass(*RC); // Sanity check that the target properly implemented getRegBankFromRegClass. assert(RegBank.covers(*RC) && "The mapping of the register bank does not make sense"); return &RegBank; } const TargetRegisterClass *RegisterBankInfo::constrainGenericRegister( unsigned Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI) { // If the register already has a class, fallback to MRI::constrainRegClass. auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg); if (RegClassOrBank.is()) return MRI.constrainRegClass(Reg, &RC); const RegisterBank *RB = RegClassOrBank.get(); // Otherwise, all we can do is ensure the bank covers the class, and set it. if (RB && !RB->covers(RC)) return nullptr; // If nothing was set or the class is simply compatible, set it. MRI.setRegClass(Reg, &RC); return &RC; } RegisterBankInfo::InstructionMapping RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const { // For copies we want to walk over the operands and try to find one // that has a register bank since the instruction itself will not get // us any constraint. bool isCopyLike = MI.isCopy() || MI.isPHI(); // For copy like instruction, only the mapping of the definition // is important. The rest is not constrained. unsigned NumOperandsForMapping = isCopyLike ? 1 : MI.getNumOperands(); RegisterBankInfo::InstructionMapping Mapping(DefaultMappingID, /*Cost*/ 1, /*OperandsMapping*/ nullptr, NumOperandsForMapping); const MachineFunction &MF = *MI.getParent()->getParent(); const TargetSubtargetInfo &STI = MF.getSubtarget(); const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); const MachineRegisterInfo &MRI = MF.getRegInfo(); // We may need to query the instruction encoding to guess the mapping. const TargetInstrInfo &TII = *STI.getInstrInfo(); // Before doing anything complicated check if the mapping is not // directly available. bool CompleteMapping = true; SmallVector OperandsMapping(NumOperandsForMapping); for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx; ++OpIdx) { const MachineOperand &MO = MI.getOperand(OpIdx); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; // The register bank of Reg is just a side effect of the current // excution and in particular, there is no reason to believe this // is the best default mapping for the current instruction. Keep // it as an alternative register bank if we cannot figure out // something. const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI); // For copy-like instruction, we want to reuse the register bank // that is already set on Reg, if any, since those instructions do // not have any constraints. const RegisterBank *CurRegBank = isCopyLike ? AltRegBank : nullptr; if (!CurRegBank) { // If this is a target specific instruction, we can deduce // the register bank from the encoding constraints. CurRegBank = getRegBankFromConstraints(MI, OpIdx, TII, TRI); if (!CurRegBank) { // All our attempts failed, give up. CompleteMapping = false; if (!isCopyLike) // MI does not carry enough information to guess the mapping. return InstructionMapping(); continue; } } const ValueMapping *ValMapping = &getValueMapping(0, getSizeInBits(Reg, MRI, TRI), *CurRegBank); if (isCopyLike) { OperandsMapping[0] = ValMapping; CompleteMapping = true; break; } OperandsMapping[OpIdx] = ValMapping; } if (isCopyLike && !CompleteMapping) // No way to deduce the type from what we have. return InstructionMapping(); assert(CompleteMapping && "Setting an uncomplete mapping"); Mapping.setOperandsMapping(getOperandsMapping(OperandsMapping)); return Mapping; } /// Hashing function for PartialMapping. static hash_code hashPartialMapping(unsigned StartIdx, unsigned Length, const RegisterBank *RegBank) { return hash_combine(StartIdx, Length, RegBank ? RegBank->getID() : 0); } /// Overloaded version of hash_value for a PartialMapping. hash_code llvm::hash_value(const RegisterBankInfo::PartialMapping &PartMapping) { return hashPartialMapping(PartMapping.StartIdx, PartMapping.Length, PartMapping.RegBank); } const RegisterBankInfo::PartialMapping & RegisterBankInfo::getPartialMapping(unsigned StartIdx, unsigned Length, const RegisterBank &RegBank) const { ++NumPartialMappingsAccessed; hash_code Hash = hashPartialMapping(StartIdx, Length, &RegBank); const auto &It = MapOfPartialMappings.find(Hash); if (It != MapOfPartialMappings.end()) return *It->second; ++NumPartialMappingsCreated; const PartialMapping *&PartMapping = MapOfPartialMappings[Hash]; PartMapping = new PartialMapping{StartIdx, Length, RegBank}; return *PartMapping; } const RegisterBankInfo::ValueMapping & RegisterBankInfo::getValueMapping(unsigned StartIdx, unsigned Length, const RegisterBank &RegBank) const { return getValueMapping(&getPartialMapping(StartIdx, Length, RegBank), 1); } static hash_code hashValueMapping(const RegisterBankInfo::PartialMapping *BreakDown, unsigned NumBreakDowns) { if (LLVM_LIKELY(NumBreakDowns == 1)) return hash_value(*BreakDown); SmallVector Hashes(NumBreakDowns); for (unsigned Idx = 0; Idx != NumBreakDowns; ++Idx) Hashes.push_back(hash_value(BreakDown[Idx])); return hash_combine_range(Hashes.begin(), Hashes.end()); } const RegisterBankInfo::ValueMapping & RegisterBankInfo::getValueMapping(const PartialMapping *BreakDown, unsigned NumBreakDowns) const { ++NumValueMappingsAccessed; hash_code Hash = hashValueMapping(BreakDown, NumBreakDowns); const auto &It = MapOfValueMappings.find(Hash); if (It != MapOfValueMappings.end()) return *It->second; ++NumValueMappingsCreated; const ValueMapping *&ValMapping = MapOfValueMappings[Hash]; ValMapping = new ValueMapping{BreakDown, NumBreakDowns}; return *ValMapping; } template const RegisterBankInfo::ValueMapping * RegisterBankInfo::getOperandsMapping(Iterator Begin, Iterator End) const { ++NumOperandsMappingsAccessed; // The addresses of the value mapping are unique. // Therefore, we can use them directly to hash the operand mapping. hash_code Hash = hash_combine_range(Begin, End); const auto &It = MapOfOperandsMappings.find(Hash); if (It != MapOfOperandsMappings.end()) return It->second; ++NumOperandsMappingsCreated; // Create the array of ValueMapping. // Note: this array will not hash to this instance of operands // mapping, because we use the pointer of the ValueMapping // to hash and we expect them to uniquely identify an instance // of value mapping. ValueMapping *&Res = MapOfOperandsMappings[Hash]; Res = new ValueMapping[std::distance(Begin, End)]; unsigned Idx = 0; for (Iterator It = Begin; It != End; ++It, ++Idx) { const ValueMapping *ValMap = *It; if (!ValMap) continue; Res[Idx] = *ValMap; } return Res; } const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping( const SmallVectorImpl &OpdsMapping) const { return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end()); } const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping( std::initializer_list OpdsMapping) const { return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end()); } RegisterBankInfo::InstructionMapping RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const { RegisterBankInfo::InstructionMapping Mapping = getInstrMappingImpl(MI); if (Mapping.isValid()) return Mapping; llvm_unreachable("The target must implement this"); } RegisterBankInfo::InstructionMappings RegisterBankInfo::getInstrPossibleMappings(const MachineInstr &MI) const { InstructionMappings PossibleMappings; // Put the default mapping first. PossibleMappings.push_back(getInstrMapping(MI)); // Then the alternative mapping, if any. InstructionMappings AltMappings = getInstrAlternativeMappings(MI); for (InstructionMapping &AltMapping : AltMappings) PossibleMappings.emplace_back(std::move(AltMapping)); #ifndef NDEBUG for (const InstructionMapping &Mapping : PossibleMappings) assert(Mapping.verify(MI) && "Mapping is invalid"); #endif return PossibleMappings; } RegisterBankInfo::InstructionMappings RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const { // No alternative for MI. return InstructionMappings(); } void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) { MachineInstr &MI = OpdMapper.getMI(); DEBUG(dbgs() << "Applying default-like mapping\n"); for (unsigned OpIdx = 0, EndIdx = OpdMapper.getInstrMapping().getNumOperands(); OpIdx != EndIdx; ++OpIdx) { DEBUG(dbgs() << "OpIdx " << OpIdx); MachineOperand &MO = MI.getOperand(OpIdx); if (!MO.isReg()) { DEBUG(dbgs() << " is not a register, nothing to be done\n"); continue; } assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns == 1 && "This mapping is too complex for this function"); iterator_range::const_iterator> NewRegs = OpdMapper.getVRegs(OpIdx); if (NewRegs.begin() == NewRegs.end()) { DEBUG(dbgs() << " has not been repaired, nothing to be done\n"); continue; } DEBUG(dbgs() << " changed, replace " << MO.getReg()); MO.setReg(*NewRegs.begin()); DEBUG(dbgs() << " with " << MO.getReg()); } } unsigned RegisterBankInfo::getSizeInBits(unsigned Reg, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI) { const TargetRegisterClass *RC = nullptr; if (TargetRegisterInfo::isPhysicalRegister(Reg)) { // The size is not directly available for physical registers. // Instead, we need to access a register class that contains Reg and // get the size of that register class. RC = TRI.getMinimalPhysRegClass(Reg); } else { LLT Ty = MRI.getType(Reg); unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0; // If Reg is not a generic register, query the register class to // get its size. if (RegSize) return RegSize; // Since Reg is not a generic register, it must have a register class. RC = MRI.getRegClass(Reg); } assert(RC && "Unable to deduce the register class"); return RC->getSize() * 8; } //------------------------------------------------------------------------------ // Helper classes implementation. //------------------------------------------------------------------------------ LLVM_DUMP_METHOD void RegisterBankInfo::PartialMapping::dump() const { print(dbgs()); dbgs() << '\n'; } bool RegisterBankInfo::PartialMapping::verify() const { assert(RegBank && "Register bank not set"); assert(Length && "Empty mapping"); assert((StartIdx <= getHighBitIdx()) && "Overflow, switch to APInt?"); // Check if the minimum width fits into RegBank. assert(RegBank->getSize() >= Length && "Register bank too small for Mask"); return true; } void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const { OS << "[" << StartIdx << ", " << getHighBitIdx() << "], RegBank = "; if (RegBank) OS << *RegBank; else OS << "nullptr"; } bool RegisterBankInfo::ValueMapping::verify(unsigned MeaningfulBitWidth) const { assert(NumBreakDowns && "Value mapped nowhere?!"); unsigned OrigValueBitWidth = 0; for (const RegisterBankInfo::PartialMapping &PartMap : *this) { // Check that each register bank is big enough to hold the partial value: // this check is done by PartialMapping::verify assert(PartMap.verify() && "Partial mapping is invalid"); // The original value should completely be mapped. // Thus the maximum accessed index + 1 is the size of the original value. OrigValueBitWidth = std::max(OrigValueBitWidth, PartMap.getHighBitIdx() + 1); } assert(OrigValueBitWidth >= MeaningfulBitWidth && "Meaningful bits not covered by the mapping"); APInt ValueMask(OrigValueBitWidth, 0); for (const RegisterBankInfo::PartialMapping &PartMap : *this) { // Check that the union of the partial mappings covers the whole value, // without overlaps. // The high bit is exclusive in the APInt API, thus getHighBitIdx + 1. APInt PartMapMask = APInt::getBitsSet(OrigValueBitWidth, PartMap.StartIdx, PartMap.getHighBitIdx() + 1); ValueMask ^= PartMapMask; assert((ValueMask & PartMapMask) == PartMapMask && "Some partial mappings overlap"); } assert(ValueMask.isAllOnesValue() && "Value is not fully mapped"); return true; } LLVM_DUMP_METHOD void RegisterBankInfo::ValueMapping::dump() const { print(dbgs()); dbgs() << '\n'; } void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const { OS << "#BreakDown: " << NumBreakDowns << " "; bool IsFirst = true; for (const PartialMapping &PartMap : *this) { if (!IsFirst) OS << ", "; OS << '[' << PartMap << ']'; IsFirst = false; } } bool RegisterBankInfo::InstructionMapping::verify( const MachineInstr &MI) const { // Check that all the register operands are properly mapped. // Check the constructor invariant. // For PHI, we only care about mapping the definition. assert(NumOperands == ((MI.isCopy() || MI.isPHI()) ? 1 : MI.getNumOperands()) && "NumOperands must match, see constructor"); assert(MI.getParent() && MI.getParent()->getParent() && "MI must be connected to a MachineFunction"); const MachineFunction &MF = *MI.getParent()->getParent(); (void)MF; for (unsigned Idx = 0; Idx < NumOperands; ++Idx) { const MachineOperand &MO = MI.getOperand(Idx); if (!MO.isReg()) { assert(!getOperandMapping(Idx).isValid() && "We should not care about non-reg mapping"); continue; } unsigned Reg = MO.getReg(); if (!Reg) continue; assert(getOperandMapping(Idx).isValid() && "We must have a mapping for reg operands"); const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx); (void)MOMapping; // Register size in bits. // This size must match what the mapping expects. assert(MOMapping.verify(getSizeInBits( Reg, MF.getRegInfo(), *MF.getSubtarget().getRegisterInfo())) && "Value mapping is invalid"); } return true; } LLVM_DUMP_METHOD void RegisterBankInfo::InstructionMapping::dump() const { print(dbgs()); dbgs() << '\n'; } void RegisterBankInfo::InstructionMapping::print(raw_ostream &OS) const { OS << "ID: " << getID() << " Cost: " << getCost() << " Mapping: "; for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { const ValueMapping &ValMapping = getOperandMapping(OpIdx); if (OpIdx) OS << ", "; OS << "{ Idx: " << OpIdx << " Map: " << ValMapping << '}'; } } const int RegisterBankInfo::OperandsMapper::DontKnowIdx = -1; RegisterBankInfo::OperandsMapper::OperandsMapper( MachineInstr &MI, const InstructionMapping &InstrMapping, MachineRegisterInfo &MRI) : MRI(MRI), MI(MI), InstrMapping(InstrMapping) { unsigned NumOpds = InstrMapping.getNumOperands(); OpToNewVRegIdx.resize(NumOpds, OperandsMapper::DontKnowIdx); assert(InstrMapping.verify(MI) && "Invalid mapping for MI"); } iterator_range::iterator> RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx) { assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access"); unsigned NumPartialVal = getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns; int StartIdx = OpToNewVRegIdx[OpIdx]; if (StartIdx == OperandsMapper::DontKnowIdx) { // This is the first time we try to access OpIdx. // Create the cells that will hold all the partial values at the // end of the list of NewVReg. StartIdx = NewVRegs.size(); OpToNewVRegIdx[OpIdx] = StartIdx; for (unsigned i = 0; i < NumPartialVal; ++i) NewVRegs.push_back(0); } SmallVectorImpl::iterator End = getNewVRegsEnd(StartIdx, NumPartialVal); return make_range(&NewVRegs[StartIdx], End); } SmallVectorImpl::const_iterator RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx, unsigned NumVal) const { return const_cast(this)->getNewVRegsEnd(StartIdx, NumVal); } SmallVectorImpl::iterator RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx, unsigned NumVal) { assert((NewVRegs.size() == StartIdx + NumVal || NewVRegs.size() > StartIdx + NumVal) && "NewVRegs too small to contain all the partial mapping"); return NewVRegs.size() <= StartIdx + NumVal ? NewVRegs.end() : &NewVRegs[StartIdx + NumVal]; } void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) { assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access"); iterator_range::iterator> NewVRegsForOpIdx = getVRegsMem(OpIdx); const ValueMapping &ValMapping = getInstrMapping().getOperandMapping(OpIdx); const PartialMapping *PartMap = ValMapping.begin(); for (unsigned &NewVReg : NewVRegsForOpIdx) { assert(PartMap != ValMapping.end() && "Out-of-bound access"); assert(NewVReg == 0 && "Register has already been created"); NewVReg = MRI.createGenericVirtualRegister(LLT::scalar(PartMap->Length)); MRI.setRegBank(NewVReg, *PartMap->RegBank); ++PartMap; } } void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx, unsigned PartialMapIdx, unsigned NewVReg) { assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access"); assert(getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns > PartialMapIdx && "Out-of-bound access for partial mapping"); // Make sure the memory is initialized for that operand. (void)getVRegsMem(OpIdx); assert(NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] == 0 && "This value is already set"); NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] = NewVReg; } iterator_range::const_iterator> RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx, bool ForDebug) const { (void)ForDebug; assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access"); int StartIdx = OpToNewVRegIdx[OpIdx]; if (StartIdx == OperandsMapper::DontKnowIdx) return make_range(NewVRegs.end(), NewVRegs.end()); unsigned PartMapSize = getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns; SmallVectorImpl::const_iterator End = getNewVRegsEnd(StartIdx, PartMapSize); iterator_range::const_iterator> Res = make_range(&NewVRegs[StartIdx], End); #ifndef NDEBUG for (unsigned VReg : Res) assert((VReg || ForDebug) && "Some registers are uninitialized"); #endif return Res; } LLVM_DUMP_METHOD void RegisterBankInfo::OperandsMapper::dump() const { print(dbgs(), true); dbgs() << '\n'; } void RegisterBankInfo::OperandsMapper::print(raw_ostream &OS, bool ForDebug) const { unsigned NumOpds = getInstrMapping().getNumOperands(); if (ForDebug) { OS << "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n'; // Print out the internal state of the index table. OS << "Populated indices (CellNumber, IndexInNewVRegs): "; bool IsFirst = true; for (unsigned Idx = 0; Idx != NumOpds; ++Idx) { if (OpToNewVRegIdx[Idx] != DontKnowIdx) { if (!IsFirst) OS << ", "; OS << '(' << Idx << ", " << OpToNewVRegIdx[Idx] << ')'; IsFirst = false; } } OS << '\n'; } else OS << "Mapping ID: " << getInstrMapping().getID() << ' '; OS << "Operand Mapping: "; // If we have a function, we can pretty print the name of the registers. // Otherwise we will print the raw numbers. const TargetRegisterInfo *TRI = getMI().getParent() && getMI().getParent()->getParent() ? getMI().getParent()->getParent()->getSubtarget().getRegisterInfo() : nullptr; bool IsFirst = true; for (unsigned Idx = 0; Idx != NumOpds; ++Idx) { if (OpToNewVRegIdx[Idx] == DontKnowIdx) continue; if (!IsFirst) OS << ", "; IsFirst = false; OS << '(' << PrintReg(getMI().getOperand(Idx).getReg(), TRI) << ", ["; bool IsFirstNewVReg = true; for (unsigned VReg : getVRegs(Idx)) { if (!IsFirstNewVReg) OS << ", "; IsFirstNewVReg = false; OS << PrintReg(VReg, TRI); } OS << "])"; } }