//===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// This pass implements a data flow analysis that propagates debug location /// information by inserting additional DBG_VALUE instructions into the machine /// instruction stream. The pass internally builds debug location liveness /// ranges to determine the points where additional DBG_VALUEs need to be /// inserted. /// /// This is a separate pass from DbgValueHistoryCalculator to facilitate /// testing and improve modularity. /// //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SparseBitVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/UniqueVector.h" #include "llvm/CodeGen/LexicalScopes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/IR/Module.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "livedebugvalues" STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); // If @MI is a DBG_VALUE with debug value described by a defined // register, returns the number of this register. In the other case, returns 0. static Register isDbgValueDescribedByReg(const MachineInstr &MI) { assert(MI.isDebugValue() && "expected a DBG_VALUE"); assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); // If location of variable is described using a register (directly // or indirectly), this register is always a first operand. return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : Register(); } namespace { class LiveDebugValues : public MachineFunctionPass { private: const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; const TargetFrameLowering *TFI; BitVector CalleeSavedRegs; LexicalScopes LS; enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; /// Keeps track of lexical scopes associated with a user value's source /// location. class UserValueScopes { DebugLoc DL; LexicalScopes &LS; SmallPtrSet LBlocks; public: UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(std::move(D)), LS(L) {} /// Return true if current scope dominates at least one machine /// instruction in a given machine basic block. bool dominates(MachineBasicBlock *MBB) { if (LBlocks.empty()) LS.getMachineBasicBlocks(DL, LBlocks); return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB); } }; using FragmentInfo = DIExpression::FragmentInfo; using OptFragmentInfo = Optional; /// Storage for identifying a potentially inlined instance of a variable, /// or a fragment thereof. class DebugVariable { const DILocalVariable *Variable; OptFragmentInfo Fragment; const DILocation *InlinedAt; /// Fragment that will overlap all other fragments. Used as default when /// caller demands a fragment. static const FragmentInfo DefaultFragment; public: DebugVariable(const DILocalVariable *Var, OptFragmentInfo &&FragmentInfo, const DILocation *InlinedAt) : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {} DebugVariable(const DILocalVariable *Var, OptFragmentInfo &FragmentInfo, const DILocation *InlinedAt) : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {} DebugVariable(const DILocalVariable *Var, const DIExpression *DIExpr, const DILocation *InlinedAt) : DebugVariable(Var, DIExpr->getFragmentInfo(), InlinedAt) {} DebugVariable(const MachineInstr &MI) : DebugVariable(MI.getDebugVariable(), MI.getDebugExpression()->getFragmentInfo(), MI.getDebugLoc()->getInlinedAt()) {} const DILocalVariable *getVar() const { return Variable; } const OptFragmentInfo &getFragment() const { return Fragment; } const DILocation *getInlinedAt() const { return InlinedAt; } const FragmentInfo getFragmentDefault() const { return Fragment.getValueOr(DefaultFragment); } static bool isFragmentDefault(FragmentInfo &F) { return F == DefaultFragment; } bool operator==(const DebugVariable &Other) const { return std::tie(Variable, Fragment, InlinedAt) == std::tie(Other.Variable, Other.Fragment, Other.InlinedAt); } bool operator<(const DebugVariable &Other) const { return std::tie(Variable, Fragment, InlinedAt) < std::tie(Other.Variable, Other.Fragment, Other.InlinedAt); } }; friend struct llvm::DenseMapInfo; /// A pair of debug variable and value location. struct VarLoc { // The location at which a spilled variable resides. It consists of a // register and an offset. struct SpillLoc { unsigned SpillBase; int SpillOffset; bool operator==(const SpillLoc &Other) const { return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; } }; const DebugVariable Var; const MachineInstr &MI; ///< Only used for cloning a new DBG_VALUE. mutable UserValueScopes UVS; enum VarLocKind { InvalidKind = 0, RegisterKind, SpillLocKind, ImmediateKind, EntryValueKind } Kind = InvalidKind; /// The value location. Stored separately to avoid repeatedly /// extracting it from MI. union { uint64_t RegNo; SpillLoc SpillLocation; uint64_t Hash; int64_t Immediate; const ConstantFP *FPImm; const ConstantInt *CImm; } Loc; VarLoc(const MachineInstr &MI, LexicalScopes &LS, VarLocKind K = InvalidKind) : Var(MI), MI(MI), UVS(MI.getDebugLoc(), LS){ static_assert((sizeof(Loc) == sizeof(uint64_t)), "hash does not cover all members of Loc"); assert(MI.isDebugValue() && "not a DBG_VALUE"); assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); if (int RegNo = isDbgValueDescribedByReg(MI)) { Kind = MI.isDebugEntryValue() ? EntryValueKind : RegisterKind; Loc.RegNo = RegNo; } else if (MI.getOperand(0).isImm()) { Kind = ImmediateKind; Loc.Immediate = MI.getOperand(0).getImm(); } else if (MI.getOperand(0).isFPImm()) { Kind = ImmediateKind; Loc.FPImm = MI.getOperand(0).getFPImm(); } else if (MI.getOperand(0).isCImm()) { Kind = ImmediateKind; Loc.CImm = MI.getOperand(0).getCImm(); } assert((Kind != ImmediateKind || !MI.isDebugEntryValue()) && "entry values must be register locations"); } /// The constructor for spill locations. VarLoc(const MachineInstr &MI, unsigned SpillBase, int SpillOffset, LexicalScopes &LS) : Var(MI), MI(MI), UVS(MI.getDebugLoc(), LS) { assert(MI.isDebugValue() && "not a DBG_VALUE"); assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); Kind = SpillLocKind; Loc.SpillLocation = {SpillBase, SpillOffset}; } // Is the Loc field a constant or constant object? bool isConstant() const { return Kind == ImmediateKind; } /// If this variable is described by a register, return it, /// otherwise return 0. unsigned isDescribedByReg() const { if (Kind == RegisterKind) return Loc.RegNo; return 0; } /// Determine whether the lexical scope of this value's debug location /// dominates MBB. bool dominates(MachineBasicBlock &MBB) const { return UVS.dominates(&MBB); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void dump() const { MI.dump(); } #endif bool operator==(const VarLoc &Other) const { return Kind == Other.Kind && Var == Other.Var && Loc.Hash == Other.Loc.Hash; } /// This operator guarantees that VarLocs are sorted by Variable first. bool operator<(const VarLoc &Other) const { return std::tie(Var, Kind, Loc.Hash) < std::tie(Other.Var, Other.Kind, Other.Loc.Hash); } }; using DebugParamMap = SmallDenseMap; using VarLocMap = UniqueVector; using VarLocSet = SparseBitVector<>; using VarLocInMBB = SmallDenseMap; struct TransferDebugPair { MachineInstr *TransferInst; MachineInstr *DebugInst; }; using TransferMap = SmallVector; // Types for recording sets of variable fragments that overlap. For a given // local variable, we record all other fragments of that variable that could // overlap it, to reduce search time. using FragmentOfVar = std::pair; using OverlapMap = DenseMap>; // Helper while building OverlapMap, a map of all fragments seen for a given // DILocalVariable. using VarToFragments = DenseMap>; /// This holds the working set of currently open ranges. For fast /// access, this is done both as a set of VarLocIDs, and a map of /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all /// previous open ranges for the same variable. class OpenRangesSet { VarLocSet VarLocs; SmallDenseMap Vars; OverlapMap &OverlappingFragments; public: OpenRangesSet(OverlapMap &_OLapMap) : OverlappingFragments(_OLapMap) {} const VarLocSet &getVarLocs() const { return VarLocs; } /// Terminate all open ranges for Var by removing it from the set. void erase(DebugVariable Var); /// Terminate all open ranges listed in \c KillSet by removing /// them from the set. void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs) { VarLocs.intersectWithComplement(KillSet); for (unsigned ID : KillSet) Vars.erase(VarLocIDs[ID].Var); } /// Insert a new range into the set. void insert(unsigned VarLocID, DebugVariable Var) { VarLocs.set(VarLocID); Vars.insert({Var, VarLocID}); } /// Empty the set. void clear() { VarLocs.clear(); Vars.clear(); } /// Return whether the set is empty or not. bool empty() const { assert(Vars.empty() == VarLocs.empty() && "open ranges are inconsistent"); return VarLocs.empty(); } }; bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF, unsigned &Reg); /// If a given instruction is identified as a spill, return the spill location /// and set \p Reg to the spilled register. Optional isRestoreInstruction(const MachineInstr &MI, MachineFunction *MF, unsigned &Reg); /// Given a spill instruction, extract the register and offset used to /// address the spill location in a target independent way. VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, VarLocMap &VarLocIDs, unsigned OldVarID, TransferKind Kind, unsigned NewReg = 0); void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers); void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers, DebugParamMap &DebugEntryVals, SparseBitVector<> &KillSet); void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers); void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers, DebugParamMap &DebugEntryVals); bool transferTerminatorInst(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); bool process(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocInMBB &OutLocs, VarLocMap &VarLocIDs, TransferMap &Transfers, DebugParamMap &DebugEntryVals, bool transferChanges, OverlapMap &OverlapFragments, VarToFragments &SeenFragments); void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, OverlapMap &OLapMap); bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, const VarLocMap &VarLocIDs, SmallPtrSet &Visited, SmallPtrSetImpl &ArtificialBlocks); bool ExtendRanges(MachineFunction &MF); public: static char ID; /// Default construct and initialize the pass. LiveDebugValues(); /// Tell the pass manager which passes we depend on and what /// information we preserve. void getAnalysisUsage(AnalysisUsage &AU) const override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } /// Print to ostream with a message. void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, const VarLocMap &VarLocIDs, const char *msg, raw_ostream &Out) const; /// Calculate the liveness information for the given machine function. bool runOnMachineFunction(MachineFunction &MF) override; }; } // end anonymous namespace namespace llvm { template <> struct DenseMapInfo { using DV = LiveDebugValues::DebugVariable; using OptFragmentInfo = LiveDebugValues::OptFragmentInfo; using FragmentInfo = LiveDebugValues::FragmentInfo; // Empty key: no key should be generated that has no DILocalVariable. static inline DV getEmptyKey() { return DV(nullptr, OptFragmentInfo(), nullptr); } // Difference in tombstone is that the Optional is meaningful static inline DV getTombstoneKey() { return DV(nullptr, OptFragmentInfo({0, 0}), nullptr); } static unsigned getHashValue(const DV &D) { unsigned HV = 0; const OptFragmentInfo &Fragment = D.getFragment(); if (Fragment) HV = DenseMapInfo::getHashValue(*Fragment); return hash_combine(D.getVar(), HV, D.getInlinedAt()); } static bool isEqual(const DV &A, const DV &B) { return A == B; } }; } // namespace llvm //===----------------------------------------------------------------------===// // Implementation //===----------------------------------------------------------------------===// const DIExpression::FragmentInfo LiveDebugValues::DebugVariable::DefaultFragment = { std::numeric_limits::max(), std::numeric_limits::min()}; char LiveDebugValues::ID = 0; char &llvm::LiveDebugValuesID = LiveDebugValues::ID; INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis", false, false) /// Default construct and initialize the pass. LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) { initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry()); } /// Tell the pass manager which passes we depend on and what information we /// preserve. void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } /// Erase a variable from the set of open ranges, and additionally erase any /// fragments that may overlap it. void LiveDebugValues::OpenRangesSet::erase(DebugVariable Var) { // Erasure helper. auto DoErase = [this](DebugVariable VarToErase) { auto It = Vars.find(VarToErase); if (It != Vars.end()) { unsigned ID = It->second; VarLocs.reset(ID); Vars.erase(It); } }; // Erase the variable/fragment that ends here. DoErase(Var); // Extract the fragment. Interpret an empty fragment as one that covers all // possible bits. FragmentInfo ThisFragment = Var.getFragmentDefault(); // There may be fragments that overlap the designated fragment. Look them up // in the pre-computed overlap map, and erase them too. auto MapIt = OverlappingFragments.find({Var.getVar(), ThisFragment}); if (MapIt != OverlappingFragments.end()) { for (auto Fragment : MapIt->second) { LiveDebugValues::OptFragmentInfo FragmentHolder; if (!DebugVariable::isFragmentDefault(Fragment)) FragmentHolder = LiveDebugValues::OptFragmentInfo(Fragment); DoErase({Var.getVar(), FragmentHolder, Var.getInlinedAt()}); } } } //===----------------------------------------------------------------------===// // Debug Range Extension Implementation //===----------------------------------------------------------------------===// #ifndef NDEBUG void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, const VarLocMap &VarLocIDs, const char *msg, raw_ostream &Out) const { Out << '\n' << msg << '\n'; for (const MachineBasicBlock &BB : MF) { const VarLocSet &L = V.lookup(&BB); if (L.empty()) continue; Out << "MBB: " << BB.getNumber() << ":\n"; for (unsigned VLL : L) { const VarLoc &VL = VarLocIDs[VLL]; Out << " Var: " << VL.Var.getVar()->getName(); Out << " MI: "; VL.dump(); } } Out << "\n"; } #endif LiveDebugValues::VarLoc::SpillLoc LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr &MI) { assert(MI.hasOneMemOperand() && "Spill instruction does not have exactly one memory operand?"); auto MMOI = MI.memoperands_begin(); const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); assert(PVal->kind() == PseudoSourceValue::FixedStack && "Inconsistent memory operand in spill instruction"); int FI = cast(PVal)->getFrameIndex(); const MachineBasicBlock *MBB = MI.getParent(); unsigned Reg; int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); return {Reg, Offset}; } /// End all previous ranges related to @MI and start a new range from @MI /// if it is a DBG_VALUE instr. void LiveDebugValues::transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs) { if (!MI.isDebugValue()) return; const DILocalVariable *Var = MI.getDebugVariable(); const DIExpression *Expr = MI.getDebugExpression(); const DILocation *DebugLoc = MI.getDebugLoc(); const DILocation *InlinedAt = DebugLoc->getInlinedAt(); assert(Var->isValidLocationForIntrinsic(DebugLoc) && "Expected inlined-at fields to agree"); // End all previous ranges of Var. DebugVariable V(Var, Expr, InlinedAt); OpenRanges.erase(V); // Add the VarLoc to OpenRanges from this DBG_VALUE. unsigned ID; if (isDbgValueDescribedByReg(MI) || MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || MI.getOperand(0).isCImm()) { // Use normal VarLoc constructor for registers and immediates. VarLoc VL(MI, LS); ID = VarLocIDs.insert(VL); OpenRanges.insert(ID, VL.Var); } else if (MI.hasOneMemOperand()) { // It's a stack spill -- fetch spill base and offset. VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); VarLoc VL(MI, SpillLocation.SpillBase, SpillLocation.SpillOffset, LS); ID = VarLocIDs.insert(VL); OpenRanges.insert(ID, VL.Var); } else { // This must be an undefined location. We should leave OpenRanges closed. assert(MI.getOperand(0).isReg() && MI.getOperand(0).getReg() == 0 && "Unexpected non-undef DBG_VALUE encountered"); } } void LiveDebugValues::emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers, DebugParamMap &DebugEntryVals, SparseBitVector<> &KillSet) { MachineFunction *MF = MI.getParent()->getParent(); for (unsigned ID : KillSet) { if (!VarLocIDs[ID].Var.getVar()->isParameter()) continue; const MachineInstr *CurrDebugInstr = &VarLocIDs[ID].MI; // If parameter's DBG_VALUE is not in the map that means we can't // generate parameter's entry value. if (!DebugEntryVals.count(CurrDebugInstr->getDebugVariable())) continue; auto ParamDebugInstr = DebugEntryVals[CurrDebugInstr->getDebugVariable()]; DIExpression *NewExpr = DIExpression::prepend( ParamDebugInstr->getDebugExpression(), DIExpression::EntryValue); MachineInstr *EntryValDbgMI = BuildMI(*MF, ParamDebugInstr->getDebugLoc(), ParamDebugInstr->getDesc(), ParamDebugInstr->isIndirectDebugValue(), ParamDebugInstr->getOperand(0).getReg(), ParamDebugInstr->getDebugVariable(), NewExpr); if (ParamDebugInstr->isIndirectDebugValue()) EntryValDbgMI->getOperand(1).setImm( ParamDebugInstr->getOperand(1).getImm()); Transfers.push_back({&MI, EntryValDbgMI}); VarLoc VL(*EntryValDbgMI, LS); unsigned EntryValLocID = VarLocIDs.insert(VL); OpenRanges.insert(EntryValLocID, VL.Var); } } /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc /// with \p OldVarID should be deleted form \p OpenRanges and replaced with /// new VarLoc. If \p NewReg is different than default zero value then the /// new location will be register location created by the copy like instruction, /// otherwise it is variable's location on the stack. void LiveDebugValues::insertTransferDebugPair( MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, VarLocMap &VarLocIDs, unsigned OldVarID, TransferKind Kind, unsigned NewReg) { const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI; MachineFunction *MF = MI.getParent()->getParent(); MachineInstr *NewDebugInstr; auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &DebugInstr, &VarLocIDs](VarLoc &VL, MachineInstr *NewDebugInstr) { unsigned LocId = VarLocIDs.insert(VL); // Close this variable's previous location range. DebugVariable V(*DebugInstr); OpenRanges.erase(V); OpenRanges.insert(LocId, VL.Var); // The newly created DBG_VALUE instruction NewDebugInstr must be inserted // after MI. Keep track of the pairing. TransferDebugPair MIP = {&MI, NewDebugInstr}; Transfers.push_back(MIP); }; // End all previous ranges of Var. OpenRanges.erase(VarLocIDs[OldVarID].Var); switch (Kind) { case TransferKind::TransferCopy: { assert(NewReg && "No register supplied when handling a copy of a debug value"); // Create a DBG_VALUE instruction to describe the Var in its new // register location. NewDebugInstr = BuildMI( *MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(), DebugInstr->isIndirectDebugValue(), NewReg, DebugInstr->getDebugVariable(), DebugInstr->getDebugExpression()); if (DebugInstr->isIndirectDebugValue()) NewDebugInstr->getOperand(1).setImm(DebugInstr->getOperand(1).getImm()); VarLoc VL(*NewDebugInstr, LS); ProcessVarLoc(VL, NewDebugInstr); LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register copy: "; NewDebugInstr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, /*SkipDebugLoc*/false, /*AddNewLine*/true, TII)); return; } case TransferKind::TransferSpill: { // Create a DBG_VALUE instruction to describe the Var in its spilled // location. VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); auto *SpillExpr = DIExpression::prepend(DebugInstr->getDebugExpression(), DIExpression::ApplyOffset, SpillLocation.SpillOffset); NewDebugInstr = BuildMI( *MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(), true, SpillLocation.SpillBase, DebugInstr->getDebugVariable(), SpillExpr); VarLoc VL(*NewDebugInstr, SpillLocation.SpillBase, SpillLocation.SpillOffset, LS); ProcessVarLoc(VL, NewDebugInstr); LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for spill: "; NewDebugInstr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, /*SkipDebugLoc*/false, /*AddNewLine*/true, TII)); return; } case TransferKind::TransferRestore: { assert(NewReg && "No register supplied when handling a restore of a debug value"); MachineFunction *MF = MI.getMF(); DIBuilder DIB(*const_cast(MF->getFunction()).getParent()); NewDebugInstr = BuildMI(*MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(), false, NewReg, DebugInstr->getDebugVariable(), DIB.createExpression()); VarLoc VL(*NewDebugInstr, LS); ProcessVarLoc(VL, NewDebugInstr); LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register restore: "; NewDebugInstr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false, /*SkipDebugLoc*/false, /*AddNewLine*/true, TII)); return; } } llvm_unreachable("Invalid transfer kind"); } /// A definition of a register may mark the end of a range. void LiveDebugValues::transferRegisterDef( MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers, DebugParamMap &DebugEntryVals) { MachineFunction *MF = MI.getMF(); const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); SparseBitVector<> KillSet; for (const MachineOperand &MO : MI.operands()) { // Determine whether the operand is a register def. Assume that call // instructions never clobber SP, because some backends (e.g., AArch64) // never list SP in the regmask. if (MO.isReg() && MO.isDef() && MO.getReg() && TRI->isPhysicalRegister(MO.getReg()) && !(MI.isCall() && MO.getReg() == SP)) { // Remove ranges of all aliased registers. for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) for (unsigned ID : OpenRanges.getVarLocs()) if (VarLocIDs[ID].isDescribedByReg() == *RAI) KillSet.set(ID); } else if (MO.isRegMask()) { // Remove ranges of all clobbered registers. Register masks don't usually // list SP as preserved. While the debug info may be off for an // instruction or two around callee-cleanup calls, transferring the // DEBUG_VALUE across the call is still a better user experience. for (unsigned ID : OpenRanges.getVarLocs()) { unsigned Reg = VarLocIDs[ID].isDescribedByReg(); if (Reg && Reg != SP && MO.clobbersPhysReg(Reg)) KillSet.set(ID); } } } OpenRanges.erase(KillSet, VarLocIDs); if (auto *TPC = getAnalysisIfAvailable()) { auto &TM = TPC->getTM(); if (TM.Options.EnableDebugEntryValues) emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, DebugEntryVals, KillSet); } } /// Decide if @MI is a spill instruction and return true if it is. We use 2 /// criteria to make this decision: /// - Is this instruction a store to a spill slot? /// - Is there a register operand that is both used and killed? /// TODO: Store optimization can fold spills into other stores (including /// other spills). We do not handle this yet (more than one memory operand). bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI, MachineFunction *MF, unsigned &Reg) { SmallVector Accesses; // TODO: Handle multiple stores folded into one. if (!MI.hasOneMemOperand()) return false; if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) return false; // This is not a spill instruction, since no valid size was // returned from either function. auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) { if (!MO.isReg() || !MO.isUse()) { Reg = 0; return false; } Reg = MO.getReg(); return MO.isKill(); }; for (const MachineOperand &MO : MI.operands()) { // In a spill instruction generated by the InlineSpiller the spilled // register has its kill flag set. if (isKilledReg(MO, Reg)) return true; if (Reg != 0) { // Check whether next instruction kills the spilled register. // FIXME: Current solution does not cover search for killed register in // bundles and instructions further down the chain. auto NextI = std::next(MI.getIterator()); // Skip next instruction that points to basic block end iterator. if (MI.getParent()->end() == NextI) continue; unsigned RegNext; for (const MachineOperand &MONext : NextI->operands()) { // Return true if we came across the register from the // previous spill instruction that is killed in NextI. if (isKilledReg(MONext, RegNext) && RegNext == Reg) return true; } } } // Return false if we didn't find spilled register. return false; } Optional LiveDebugValues::isRestoreInstruction(const MachineInstr &MI, MachineFunction *MF, unsigned &Reg) { if (!MI.hasOneMemOperand()) return None; // FIXME: Handle folded restore instructions with more than one memory // operand. if (MI.getRestoreSize(TII)) { Reg = MI.getOperand(0).getReg(); return extractSpillBaseRegAndOffset(MI); } return None; } /// A spilled register may indicate that we have to end the current range of /// a variable and create a new one for the spill location. /// A restored register may indicate the reverse situation. /// We don't want to insert any instructions in process(), so we just create /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. /// It will be inserted into the BB when we're done iterating over the /// instructions. void LiveDebugValues::transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers) { MachineFunction *MF = MI.getMF(); TransferKind TKind; unsigned Reg; Optional Loc; LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); if (isSpillInstruction(MI, MF, Reg)) { TKind = TransferKind::TransferSpill; LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) << "\n"); } else { if (!(Loc = isRestoreInstruction(MI, MF, Reg))) return; TKind = TransferKind::TransferRestore; LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) << "\n"); } // Check if the register or spill location is the location of a debug value. for (unsigned ID : OpenRanges.getVarLocs()) { if (TKind == TransferKind::TransferSpill && VarLocIDs[ID].isDescribedByReg() == Reg) { LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' << VarLocIDs[ID].Var.getVar()->getName() << ")\n"); } else if (TKind == TransferKind::TransferRestore && VarLocIDs[ID].Loc.SpillLocation == *Loc) { LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' << VarLocIDs[ID].Var.getVar()->getName() << ")\n"); } else continue; insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID, TKind, Reg); return; } } /// If \p MI is a register copy instruction, that copies a previously tracked /// value from one register to another register that is callee saved, we /// create new DBG_VALUE instruction described with copy destination register. void LiveDebugValues::transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, TransferMap &Transfers) { const MachineOperand *SrcRegOp, *DestRegOp; if (!TII->isCopyInstr(MI, SrcRegOp, DestRegOp) || !SrcRegOp->isKill() || !DestRegOp->isDef()) return; auto isCalleSavedReg = [&](unsigned Reg) { for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) if (CalleeSavedRegs.test(*RAI)) return true; return false; }; unsigned SrcReg = SrcRegOp->getReg(); unsigned DestReg = DestRegOp->getReg(); // We want to recognize instructions where destination register is callee // saved register. If register that could be clobbered by the call is // included, there would be a great chance that it is going to be clobbered // soon. It is more likely that previous register location, which is callee // saved, is going to stay unclobbered longer, even if it is killed. if (!isCalleSavedReg(DestReg)) return; for (unsigned ID : OpenRanges.getVarLocs()) { if (VarLocIDs[ID].isDescribedByReg() == SrcReg) { insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID, TransferKind::TransferCopy, DestReg); return; } } } /// Terminate all open ranges at the end of the current basic block. bool LiveDebugValues::transferTerminatorInst(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs) { bool Changed = false; const MachineBasicBlock *CurMBB = MI.getParent(); if (!(MI.isTerminator() || (&MI == &CurMBB->back()))) return false; if (OpenRanges.empty()) return false; LLVM_DEBUG(for (unsigned ID : OpenRanges.getVarLocs()) { // Copy OpenRanges to OutLocs, if not already present. dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; VarLocIDs[ID].dump(); }); VarLocSet &VLS = OutLocs[CurMBB]; Changed = VLS |= OpenRanges.getVarLocs(); // New OutLocs set may be different due to spill, restore or register // copy instruction processing. if (Changed) VLS = OpenRanges.getVarLocs(); OpenRanges.clear(); return Changed; } /// Accumulate a mapping between each DILocalVariable fragment and other /// fragments of that DILocalVariable which overlap. This reduces work during /// the data-flow stage from "Find any overlapping fragments" to "Check if the /// known-to-overlap fragments are present". /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for /// fragment usage. /// \param SeenFragments Map from DILocalVariable to all fragments of that /// Variable which are known to exist. /// \param OverlappingFragments The overlap map being constructed, from one /// Var/Fragment pair to a vector of fragments known to overlap. void LiveDebugValues::accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, OverlapMap &OverlappingFragments) { DebugVariable MIVar(MI); FragmentInfo ThisFragment = MIVar.getFragmentDefault(); // If this is the first sighting of this variable, then we are guaranteed // there are currently no overlapping fragments either. Initialize the set // of seen fragments, record no overlaps for the current one, and return. auto SeenIt = SeenFragments.find(MIVar.getVar()); if (SeenIt == SeenFragments.end()) { SmallSet OneFragment; OneFragment.insert(ThisFragment); SeenFragments.insert({MIVar.getVar(), OneFragment}); OverlappingFragments.insert({{MIVar.getVar(), ThisFragment}, {}}); return; } // If this particular Variable/Fragment pair already exists in the overlap // map, it has already been accounted for. auto IsInOLapMap = OverlappingFragments.insert({{MIVar.getVar(), ThisFragment}, {}}); if (!IsInOLapMap.second) return; auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; auto &AllSeenFragments = SeenIt->second; // Otherwise, examine all other seen fragments for this variable, with "this" // fragment being a previously unseen fragment. Record any pair of // overlapping fragments. for (auto &ASeenFragment : AllSeenFragments) { // Does this previously seen fragment overlap? if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { // Yes: Mark the current fragment as being overlapped. ThisFragmentsOverlaps.push_back(ASeenFragment); // Mark the previously seen fragment as being overlapped by the current // one. auto ASeenFragmentsOverlaps = OverlappingFragments.find({MIVar.getVar(), ASeenFragment}); assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && "Previously seen var fragment has no vector of overlaps"); ASeenFragmentsOverlaps->second.push_back(ThisFragment); } } AllSeenFragments.insert(ThisFragment); } /// This routine creates OpenRanges and OutLocs. bool LiveDebugValues::process(MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocInMBB &OutLocs, VarLocMap &VarLocIDs, TransferMap &Transfers, DebugParamMap &DebugEntryVals, bool transferChanges, OverlapMap &OverlapFragments, VarToFragments &SeenFragments) { bool Changed = false; transferDebugValue(MI, OpenRanges, VarLocIDs); transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers, DebugEntryVals); if (transferChanges) { transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); } else { // Build up a map of overlapping fragments on the first run through. if (MI.isDebugValue()) accumulateFragmentMap(MI, SeenFragments, OverlapFragments); } Changed = transferTerminatorInst(MI, OpenRanges, OutLocs, VarLocIDs); return Changed; } /// This routine joins the analysis results of all incoming edges in @MBB by /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same /// source variable in all the predecessors of @MBB reside in the same location. bool LiveDebugValues::join( MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, const VarLocMap &VarLocIDs, SmallPtrSet &Visited, SmallPtrSetImpl &ArtificialBlocks) { LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); bool Changed = false; VarLocSet InLocsT; // Temporary incoming locations. // For all predecessors of this MBB, find the set of VarLocs that // can be joined. int NumVisited = 0; for (auto p : MBB.predecessors()) { // Ignore unvisited predecessor blocks. As we are processing // the blocks in reverse post-order any unvisited block can // be considered to not remove any incoming values. if (!Visited.count(p)) { LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() << "\n"); continue; } auto OL = OutLocs.find(p); // Join is null in case of empty OutLocs from any of the pred. if (OL == OutLocs.end()) return false; // Just copy over the Out locs to incoming locs for the first visited // predecessor, and for all other predecessors join the Out locs. if (!NumVisited) InLocsT = OL->second; else InLocsT &= OL->second; LLVM_DEBUG({ if (!InLocsT.empty()) { for (auto ID : InLocsT) dbgs() << " gathered candidate incoming var: " << VarLocIDs[ID].Var.getVar()->getName() << "\n"; } }); NumVisited++; } // Filter out DBG_VALUES that are out of scope. VarLocSet KillSet; bool IsArtificial = ArtificialBlocks.count(&MBB); if (!IsArtificial) { for (auto ID : InLocsT) { if (!VarLocIDs[ID].dominates(MBB)) { KillSet.set(ID); LLVM_DEBUG({ auto Name = VarLocIDs[ID].Var.getVar()->getName(); dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; }); } } } InLocsT.intersectWithComplement(KillSet); // As we are processing blocks in reverse post-order we // should have processed at least one predecessor, unless it // is the entry block which has no predecessor. assert((NumVisited || MBB.pred_empty()) && "Should have processed at least one predecessor"); if (InLocsT.empty()) return false; VarLocSet &ILS = InLocs[&MBB]; // Insert DBG_VALUE instructions, if not already inserted. VarLocSet Diff = InLocsT; Diff.intersectWithComplement(ILS); for (auto ID : Diff) { // This VarLoc is not found in InLocs i.e. it is not yet inserted. So, a // new range is started for the var from the mbb's beginning by inserting // a new DBG_VALUE. process() will end this range however appropriate. const VarLoc &DiffIt = VarLocIDs[ID]; const MachineInstr *DebugInstr = &DiffIt.MI; MachineInstr *MI = nullptr; if (DiffIt.isConstant()) { MachineOperand MO(DebugInstr->getOperand(0)); MI = BuildMI(MBB, MBB.instr_begin(), DebugInstr->getDebugLoc(), DebugInstr->getDesc(), false, MO, DebugInstr->getDebugVariable(), DebugInstr->getDebugExpression()); } else { MI = BuildMI(MBB, MBB.instr_begin(), DebugInstr->getDebugLoc(), DebugInstr->getDesc(), DebugInstr->isIndirectDebugValue(), DebugInstr->getOperand(0).getReg(), DebugInstr->getDebugVariable(), DebugInstr->getDebugExpression()); if (DebugInstr->isIndirectDebugValue()) MI->getOperand(1).setImm(DebugInstr->getOperand(1).getImm()); } LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); ILS.set(ID); ++NumInserted; Changed = true; } return Changed; } /// Calculate the liveness information for the given machine function and /// extend ranges across basic blocks. bool LiveDebugValues::ExtendRanges(MachineFunction &MF) { LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); bool Changed = false; bool OLChanged = false; bool MBBJoined = false; VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. OverlapMap OverlapFragments; // Map of overlapping variable fragments OpenRangesSet OpenRanges(OverlapFragments); // Ranges that are open until end of bb. VarLocInMBB OutLocs; // Ranges that exist beyond bb. VarLocInMBB InLocs; // Ranges that are incoming after joining. TransferMap Transfers; // DBG_VALUEs associated with spills. VarToFragments SeenFragments; // Blocks which are artificial, i.e. blocks which exclusively contain // instructions without locations, or with line 0 locations. SmallPtrSet ArtificialBlocks; DenseMap OrderToBB; DenseMap BBToOrder; std::priority_queue, std::greater> Worklist; std::priority_queue, std::greater> Pending; enum : bool { dontTransferChanges = false, transferChanges = true }; // Besides parameter's modification, check whether a DBG_VALUE is inlined // in order to deduce whether the variable that it tracks comes from // a different function. If that is the case we can't track its entry value. auto IsUnmodifiedFuncParam = [&](const MachineInstr &MI) { auto *DIVar = MI.getDebugVariable(); return DIVar->isParameter() && DIVar->isNotModified() && !MI.getDebugLoc()->getInlinedAt(); }; const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); unsigned FP = TRI->getFrameRegister(MF); auto IsRegOtherThanSPAndFP = [&](const MachineOperand &Op) -> bool { return Op.isReg() && Op.getReg() != SP && Op.getReg() != FP; }; // Working set of currently collected debug variables mapped to DBG_VALUEs // representing candidates for production of debug entry values. DebugParamMap DebugEntryVals; MachineBasicBlock &First_MBB = *(MF.begin()); // Only in the case of entry MBB collect DBG_VALUEs representing // function parameters in order to generate debug entry values for them. // Currently, we generate debug entry values only for parameters that are // unmodified throughout the function and located in a register. // TODO: Add support for parameters that are described as fragments. // TODO: Add support for modified arguments that can be expressed // by using its entry value. // TODO: Add support for local variables that are expressed in terms of // parameters entry values. for (auto &MI : First_MBB) if (MI.isDebugValue() && IsUnmodifiedFuncParam(MI) && !MI.isIndirectDebugValue() && IsRegOtherThanSPAndFP(MI.getOperand(0)) && !DebugEntryVals.count(MI.getDebugVariable()) && !MI.getDebugExpression()->isFragment()) DebugEntryVals[MI.getDebugVariable()] = &MI; // Initialize every mbb with OutLocs. // We are not looking at any spill instructions during the initial pass // over the BBs. The LiveDebugVariables pass has already created DBG_VALUE // instructions for spills of registers that are known to be user variables // within the BB in which the spill occurs. for (auto &MBB : MF) { for (auto &MI : MBB) { process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers, DebugEntryVals, dontTransferChanges, OverlapFragments, SeenFragments); } // Add any entry DBG_VALUE instructions necessitated by parameter // clobbering. for (auto &TR : Transfers) { MBB.insertAfter(MachineBasicBlock::iterator(*TR.TransferInst), TR.DebugInst); } Transfers.clear(); } auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { if (const DebugLoc &DL = MI.getDebugLoc()) return DL.getLine() != 0; return false; }; for (auto &MBB : MF) if (none_of(MBB.instrs(), hasNonArtificialLocation)) ArtificialBlocks.insert(&MBB); LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "OutLocs after initialization", dbgs())); ReversePostOrderTraversal RPOT(&MF); unsigned int RPONumber = 0; for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { OrderToBB[RPONumber] = *RI; BBToOrder[*RI] = RPONumber; Worklist.push(RPONumber); ++RPONumber; } // This is a standard "union of predecessor outs" dataflow problem. // To solve it, we perform join() and process() using the two worklist method // until the ranges converge. // Ranges have converged when both worklists are empty. SmallPtrSet Visited; while (!Worklist.empty() || !Pending.empty()) { // We track what is on the pending worklist to avoid inserting the same // thing twice. We could avoid this with a custom priority queue, but this // is probably not worth it. SmallPtrSet OnPending; LLVM_DEBUG(dbgs() << "Processing Worklist\n"); while (!Worklist.empty()) { MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; Worklist.pop(); MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, ArtificialBlocks); Visited.insert(MBB); if (MBBJoined) { MBBJoined = false; Changed = true; // Now that we have started to extend ranges across BBs we need to // examine spill instructions to see whether they spill registers that // correspond to user variables. for (auto &MI : *MBB) OLChanged |= process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers, DebugEntryVals, transferChanges, OverlapFragments, SeenFragments); // Add any DBG_VALUE instructions necessitated by spills. for (auto &TR : Transfers) MBB->insertAfter(MachineBasicBlock::iterator(*TR.TransferInst), TR.DebugInst); Transfers.clear(); LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "OutLocs after propagating", dbgs())); LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "InLocs after propagating", dbgs())); if (OLChanged) { OLChanged = false; for (auto s : MBB->successors()) if (OnPending.insert(s).second) { Pending.push(BBToOrder[s]); } } } } Worklist.swap(Pending); // At this point, pending must be empty, since it was just the empty // worklist assert(Pending.empty() && "Pending should be empty"); } LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); return Changed; } bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) { if (!MF.getFunction().getSubprogram()) // LiveDebugValues will already have removed all DBG_VALUEs. return false; // Skip functions from NoDebug compilation units. if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) return false; TRI = MF.getSubtarget().getRegisterInfo(); TII = MF.getSubtarget().getInstrInfo(); TFI = MF.getSubtarget().getFrameLowering(); TFI->determineCalleeSaves(MF, CalleeSavedRegs, make_unique().get()); LS.initialize(MF); bool Changed = ExtendRanges(MF); return Changed; }