//===- MIParser.cpp - Machine instructions parser implementation ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the parsing of machine instructions. // //===----------------------------------------------------------------------===// #include "MIParser.h" #include "MILexer.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include "llvm/AsmParser/Parser.h" #include "llvm/AsmParser/SlotMapping.h" #include "llvm/CodeGen/MIRPrinter.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/ModuleSlotTracker.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueSymbolTable.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LowLevelTypeImpl.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/SMLoc.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetIntrinsicInfo.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include #include #include #include #include using namespace llvm; PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, SourceMgr &SM, const SlotMapping &IRSlots, const Name2RegClassMap &Names2RegClasses, const Name2RegBankMap &Names2RegBanks) : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), Names2RegBanks(Names2RegBanks) { } VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); if (I.second) { MachineRegisterInfo &MRI = MF.getRegInfo(); VRegInfo *Info = new (Allocator) VRegInfo; Info->VReg = MRI.createIncompleteVirtualRegister(); I.first->second = Info; } return *I.first->second; } namespace { /// A wrapper struct around the 'MachineOperand' struct that includes a source /// range and other attributes. struct ParsedMachineOperand { MachineOperand Operand; StringRef::iterator Begin; StringRef::iterator End; Optional TiedDefIdx; ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, StringRef::iterator End, Optional &TiedDefIdx) : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { if (TiedDefIdx) assert(Operand.isReg() && Operand.isUse() && "Only used register operands can be tied"); } }; class MIParser { MachineFunction &MF; SMDiagnostic &Error; StringRef Source, CurrentSource; MIToken Token; PerFunctionMIParsingState &PFS; /// Maps from instruction names to op codes. StringMap Names2InstrOpCodes; /// Maps from register names to registers. StringMap Names2Regs; /// Maps from register mask names to register masks. StringMap Names2RegMasks; /// Maps from subregister names to subregister indices. StringMap Names2SubRegIndices; /// Maps from slot numbers to function's unnamed basic blocks. DenseMap Slots2BasicBlocks; /// Maps from slot numbers to function's unnamed values. DenseMap Slots2Values; /// Maps from target index names to target indices. StringMap Names2TargetIndices; /// Maps from direct target flag names to the direct target flag values. StringMap Names2DirectTargetFlags; /// Maps from direct target flag names to the bitmask target flag values. StringMap Names2BitmaskTargetFlags; /// Maps from MMO target flag names to MMO target flag values. StringMap Names2MMOTargetFlags; public: MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, StringRef Source); /// \p SkipChar gives the number of characters to skip before looking /// for the next token. void lex(unsigned SkipChar = 0); /// Report an error at the current location with the given message. /// /// This function always return true. bool error(const Twine &Msg); /// Report an error at the given location with the given message. /// /// This function always return true. bool error(StringRef::iterator Loc, const Twine &Msg); bool parseBasicBlockDefinitions(DenseMap &MBBSlots); bool parseBasicBlocks(); bool parse(MachineInstr *&MI); bool parseStandaloneMBB(MachineBasicBlock *&MBB); bool parseStandaloneNamedRegister(unsigned &Reg); bool parseStandaloneVirtualRegister(VRegInfo *&Info); bool parseStandaloneRegister(unsigned &Reg); bool parseStandaloneStackObject(int &FI); bool parseStandaloneMDNode(MDNode *&Node); bool parseBasicBlockDefinition(DenseMap &MBBSlots); bool parseBasicBlock(MachineBasicBlock &MBB, MachineBasicBlock *&AddFalthroughFrom); bool parseBasicBlockLiveins(MachineBasicBlock &MBB); bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); bool parseNamedRegister(unsigned &Reg); bool parseVirtualRegister(VRegInfo *&Info); bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); bool parseRegisterFlag(unsigned &Flags); bool parseRegisterClassOrBank(VRegInfo &RegInfo); bool parseSubRegisterIndex(unsigned &SubReg); bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); bool parseRegisterOperand(MachineOperand &Dest, Optional &TiedDefIdx, bool IsDef = false); bool parseImmediateOperand(MachineOperand &Dest); bool parseIRConstant(StringRef::iterator Loc, StringRef Source, const Constant *&C); bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); bool parseTypedImmediateOperand(MachineOperand &Dest); bool parseFPImmediateOperand(MachineOperand &Dest); bool parseMBBReference(MachineBasicBlock *&MBB); bool parseMBBOperand(MachineOperand &Dest); bool parseStackFrameIndex(int &FI); bool parseStackObjectOperand(MachineOperand &Dest); bool parseFixedStackFrameIndex(int &FI); bool parseFixedStackObjectOperand(MachineOperand &Dest); bool parseGlobalValue(GlobalValue *&GV); bool parseGlobalAddressOperand(MachineOperand &Dest); bool parseConstantPoolIndexOperand(MachineOperand &Dest); bool parseSubRegisterIndexOperand(MachineOperand &Dest); bool parseJumpTableIndexOperand(MachineOperand &Dest); bool parseExternalSymbolOperand(MachineOperand &Dest); bool parseMDNode(MDNode *&Node); bool parseDIExpression(MDNode *&Node); bool parseMetadataOperand(MachineOperand &Dest); bool parseCFIOffset(int &Offset); bool parseCFIRegister(unsigned &Reg); bool parseCFIEscapeValues(std::string& Values); bool parseCFIOperand(MachineOperand &Dest); bool parseIRBlock(BasicBlock *&BB, const Function &F); bool parseBlockAddressOperand(MachineOperand &Dest); bool parseIntrinsicOperand(MachineOperand &Dest); bool parsePredicateOperand(MachineOperand &Dest); bool parseTargetIndexOperand(MachineOperand &Dest); bool parseCustomRegisterMaskOperand(MachineOperand &Dest); bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); bool parseMachineOperand(MachineOperand &Dest, Optional &TiedDefIdx); bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, Optional &TiedDefIdx); bool parseOffset(int64_t &Offset); bool parseAlignment(unsigned &Alignment); bool parseOperandsOffset(MachineOperand &Op); bool parseIRValue(const Value *&V); bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); bool parseMachinePointerInfo(MachinePointerInfo &Dest); bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); bool parseOptionalAtomicOrdering(AtomicOrdering &Order); bool parseMachineMemoryOperand(MachineMemOperand *&Dest); private: /// Convert the integer literal in the current token into an unsigned integer. /// /// Return true if an error occurred. bool getUnsigned(unsigned &Result); /// Convert the integer literal in the current token into an uint64. /// /// Return true if an error occurred. bool getUint64(uint64_t &Result); /// Convert the hexadecimal literal in the current token into an unsigned /// APInt with a minimum bitwidth required to represent the value. /// /// Return true if the literal does not represent an integer value. bool getHexUint(APInt &Result); /// If the current token is of the given kind, consume it and return false. /// Otherwise report an error and return true. bool expectAndConsume(MIToken::TokenKind TokenKind); /// If the current token is of the given kind, consume it and return true. /// Otherwise return false. bool consumeIfPresent(MIToken::TokenKind TokenKind); void initNames2InstrOpCodes(); /// Try to convert an instruction name to an opcode. Return true if the /// instruction name is invalid. bool parseInstrName(StringRef InstrName, unsigned &OpCode); bool parseInstruction(unsigned &OpCode, unsigned &Flags); bool assignRegisterTies(MachineInstr &MI, ArrayRef Operands); bool verifyImplicitOperands(ArrayRef Operands, const MCInstrDesc &MCID); void initNames2Regs(); /// Try to convert a register name to a register number. Return true if the /// register name is invalid. bool getRegisterByName(StringRef RegName, unsigned &Reg); void initNames2RegMasks(); /// Check if the given identifier is a name of a register mask. /// /// Return null if the identifier isn't a register mask. const uint32_t *getRegMask(StringRef Identifier); void initNames2SubRegIndices(); /// Check if the given identifier is a name of a subregister index. /// /// Return 0 if the name isn't a subregister index class. unsigned getSubRegIndex(StringRef Name); const BasicBlock *getIRBlock(unsigned Slot); const BasicBlock *getIRBlock(unsigned Slot, const Function &F); const Value *getIRValue(unsigned Slot); void initNames2TargetIndices(); /// Try to convert a name of target index to the corresponding target index. /// /// Return true if the name isn't a name of a target index. bool getTargetIndex(StringRef Name, int &Index); void initNames2DirectTargetFlags(); /// Try to convert a name of a direct target flag to the corresponding /// target flag. /// /// Return true if the name isn't a name of a direct flag. bool getDirectTargetFlag(StringRef Name, unsigned &Flag); void initNames2BitmaskTargetFlags(); /// Try to convert a name of a bitmask target flag to the corresponding /// target flag. /// /// Return true if the name isn't a name of a bitmask target flag. bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); void initNames2MMOTargetFlags(); /// Try to convert a name of a MachineMemOperand target flag to the /// corresponding target flag. /// /// Return true if the name isn't a name of a target MMO flag. bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); /// parseStringConstant /// ::= StringConstant bool parseStringConstant(std::string &Result); }; } // end anonymous namespace MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, StringRef Source) : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) {} void MIParser::lex(unsigned SkipChar) { CurrentSource = lexMIToken( CurrentSource.data() + SkipChar, Token, [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); } bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { const SourceMgr &SM = *PFS.SM; assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { // Create an ordinary diagnostic when the source manager's buffer is the // source string. Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); return true; } // Create a diagnostic for a YAML string literal. Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), Source, None, None); return true; } static const char *toString(MIToken::TokenKind TokenKind) { switch (TokenKind) { case MIToken::comma: return "','"; case MIToken::equal: return "'='"; case MIToken::colon: return "':'"; case MIToken::lparen: return "'('"; case MIToken::rparen: return "')'"; default: return ""; } } bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { if (Token.isNot(TokenKind)) return error(Twine("expected ") + toString(TokenKind)); lex(); return false; } bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { if (Token.isNot(TokenKind)) return false; lex(); return true; } bool MIParser::parseBasicBlockDefinition( DenseMap &MBBSlots) { assert(Token.is(MIToken::MachineBasicBlockLabel)); unsigned ID = 0; if (getUnsigned(ID)) return true; auto Loc = Token.location(); auto Name = Token.stringValue(); lex(); bool HasAddressTaken = false; bool IsLandingPad = false; unsigned Alignment = 0; BasicBlock *BB = nullptr; if (consumeIfPresent(MIToken::lparen)) { do { // TODO: Report an error when multiple same attributes are specified. switch (Token.kind()) { case MIToken::kw_address_taken: HasAddressTaken = true; lex(); break; case MIToken::kw_landing_pad: IsLandingPad = true; lex(); break; case MIToken::kw_align: if (parseAlignment(Alignment)) return true; break; case MIToken::IRBlock: // TODO: Report an error when both name and ir block are specified. if (parseIRBlock(BB, MF.getFunction())) return true; lex(); break; default: break; } } while (consumeIfPresent(MIToken::comma)); if (expectAndConsume(MIToken::rparen)) return true; } if (expectAndConsume(MIToken::colon)) return true; if (!Name.empty()) { BB = dyn_cast_or_null( MF.getFunction().getValueSymbolTable()->lookup(Name)); if (!BB) return error(Loc, Twine("basic block '") + Name + "' is not defined in the function '" + MF.getName() + "'"); } auto *MBB = MF.CreateMachineBasicBlock(BB); MF.insert(MF.end(), MBB); bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; if (!WasInserted) return error(Loc, Twine("redefinition of machine basic block with id #") + Twine(ID)); if (Alignment) MBB->setAlignment(Alignment); if (HasAddressTaken) MBB->setHasAddressTaken(); MBB->setIsEHPad(IsLandingPad); return false; } bool MIParser::parseBasicBlockDefinitions( DenseMap &MBBSlots) { lex(); // Skip until the first machine basic block. while (Token.is(MIToken::Newline)) lex(); if (Token.isErrorOrEOF()) return Token.isError(); if (Token.isNot(MIToken::MachineBasicBlockLabel)) return error("expected a basic block definition before instructions"); unsigned BraceDepth = 0; do { if (parseBasicBlockDefinition(MBBSlots)) return true; bool IsAfterNewline = false; // Skip until the next machine basic block. while (true) { if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || Token.isErrorOrEOF()) break; else if (Token.is(MIToken::MachineBasicBlockLabel)) return error("basic block definition should be located at the start of " "the line"); else if (consumeIfPresent(MIToken::Newline)) { IsAfterNewline = true; continue; } IsAfterNewline = false; if (Token.is(MIToken::lbrace)) ++BraceDepth; if (Token.is(MIToken::rbrace)) { if (!BraceDepth) return error("extraneous closing brace ('}')"); --BraceDepth; } lex(); } // Verify that we closed all of the '{' at the end of a file or a block. if (!Token.isError() && BraceDepth) return error("expected '}'"); // FIXME: Report a note that shows '{'. } while (!Token.isErrorOrEOF()); return Token.isError(); } bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { assert(Token.is(MIToken::kw_liveins)); lex(); if (expectAndConsume(MIToken::colon)) return true; if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. return false; do { if (Token.isNot(MIToken::NamedRegister)) return error("expected a named register"); unsigned Reg = 0; if (parseNamedRegister(Reg)) return true; lex(); LaneBitmask Mask = LaneBitmask::getAll(); if (consumeIfPresent(MIToken::colon)) { // Parse lane mask. if (Token.isNot(MIToken::IntegerLiteral) && Token.isNot(MIToken::HexLiteral)) return error("expected a lane mask"); static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), "Use correct get-function for lane mask"); LaneBitmask::Type V; if (getUnsigned(V)) return error("invalid lane mask value"); Mask = LaneBitmask(V); lex(); } MBB.addLiveIn(Reg, Mask); } while (consumeIfPresent(MIToken::comma)); return false; } bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { assert(Token.is(MIToken::kw_successors)); lex(); if (expectAndConsume(MIToken::colon)) return true; if (Token.isNewlineOrEOF()) // Allow an empty list of successors. return false; do { if (Token.isNot(MIToken::MachineBasicBlock)) return error("expected a machine basic block reference"); MachineBasicBlock *SuccMBB = nullptr; if (parseMBBReference(SuccMBB)) return true; lex(); unsigned Weight = 0; if (consumeIfPresent(MIToken::lparen)) { if (Token.isNot(MIToken::IntegerLiteral) && Token.isNot(MIToken::HexLiteral)) return error("expected an integer literal after '('"); if (getUnsigned(Weight)) return true; lex(); if (expectAndConsume(MIToken::rparen)) return true; } MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); } while (consumeIfPresent(MIToken::comma)); MBB.normalizeSuccProbs(); return false; } bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, MachineBasicBlock *&AddFalthroughFrom) { // Skip the definition. assert(Token.is(MIToken::MachineBasicBlockLabel)); lex(); if (consumeIfPresent(MIToken::lparen)) { while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) lex(); consumeIfPresent(MIToken::rparen); } consumeIfPresent(MIToken::colon); // Parse the liveins and successors. // N.B: Multiple lists of successors and liveins are allowed and they're // merged into one. // Example: // liveins: %edi // liveins: %esi // // is equivalent to // liveins: %edi, %esi bool ExplicitSuccessors = false; while (true) { if (Token.is(MIToken::kw_successors)) { if (parseBasicBlockSuccessors(MBB)) return true; ExplicitSuccessors = true; } else if (Token.is(MIToken::kw_liveins)) { if (parseBasicBlockLiveins(MBB)) return true; } else if (consumeIfPresent(MIToken::Newline)) { continue; } else break; if (!Token.isNewlineOrEOF()) return error("expected line break at the end of a list"); lex(); } // Parse the instructions. bool IsInBundle = false; MachineInstr *PrevMI = nullptr; while (!Token.is(MIToken::MachineBasicBlockLabel) && !Token.is(MIToken::Eof)) { if (consumeIfPresent(MIToken::Newline)) continue; if (consumeIfPresent(MIToken::rbrace)) { // The first parsing pass should verify that all closing '}' have an // opening '{'. assert(IsInBundle); IsInBundle = false; continue; } MachineInstr *MI = nullptr; if (parse(MI)) return true; MBB.insert(MBB.end(), MI); if (IsInBundle) { PrevMI->setFlag(MachineInstr::BundledSucc); MI->setFlag(MachineInstr::BundledPred); } PrevMI = MI; if (Token.is(MIToken::lbrace)) { if (IsInBundle) return error("nested instruction bundles are not allowed"); lex(); // This instruction is the start of the bundle. MI->setFlag(MachineInstr::BundledSucc); IsInBundle = true; if (!Token.is(MIToken::Newline)) // The next instruction can be on the same line. continue; } assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); lex(); } // Construct successor list by searching for basic block machine operands. if (!ExplicitSuccessors) { SmallVector Successors; bool IsFallthrough; guessSuccessors(MBB, Successors, IsFallthrough); for (MachineBasicBlock *Succ : Successors) MBB.addSuccessor(Succ); if (IsFallthrough) { AddFalthroughFrom = &MBB; } else { MBB.normalizeSuccProbs(); } } return false; } bool MIParser::parseBasicBlocks() { lex(); // Skip until the first machine basic block. while (Token.is(MIToken::Newline)) lex(); if (Token.isErrorOrEOF()) return Token.isError(); // The first parsing pass should have verified that this token is a MBB label // in the 'parseBasicBlockDefinitions' method. assert(Token.is(MIToken::MachineBasicBlockLabel)); MachineBasicBlock *AddFalthroughFrom = nullptr; do { MachineBasicBlock *MBB = nullptr; if (parseMBBReference(MBB)) return true; if (AddFalthroughFrom) { if (!AddFalthroughFrom->isSuccessor(MBB)) AddFalthroughFrom->addSuccessor(MBB); AddFalthroughFrom->normalizeSuccProbs(); AddFalthroughFrom = nullptr; } if (parseBasicBlock(*MBB, AddFalthroughFrom)) return true; // The method 'parseBasicBlock' should parse the whole block until the next // block or the end of file. assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); } while (Token.isNot(MIToken::Eof)); return false; } bool MIParser::parse(MachineInstr *&MI) { // Parse any register operands before '=' MachineOperand MO = MachineOperand::CreateImm(0); SmallVector Operands; while (Token.isRegister() || Token.isRegisterFlag()) { auto Loc = Token.location(); Optional TiedDefIdx; if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) return true; Operands.push_back( ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); if (Token.isNot(MIToken::comma)) break; lex(); } if (!Operands.empty() && expectAndConsume(MIToken::equal)) return true; unsigned OpCode, Flags = 0; if (Token.isError() || parseInstruction(OpCode, Flags)) return true; // Parse the remaining machine operands. while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { auto Loc = Token.location(); Optional TiedDefIdx; if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) return true; Operands.push_back( ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || Token.is(MIToken::lbrace)) break; if (Token.isNot(MIToken::comma)) return error("expected ',' before the next machine operand"); lex(); } DebugLoc DebugLocation; if (Token.is(MIToken::kw_debug_location)) { lex(); if (Token.isNot(MIToken::exclaim)) return error("expected a metadata node after 'debug-location'"); MDNode *Node = nullptr; if (parseMDNode(Node)) return true; DebugLocation = DebugLoc(Node); } // Parse the machine memory operands. SmallVector MemOperands; if (Token.is(MIToken::coloncolon)) { lex(); while (!Token.isNewlineOrEOF()) { MachineMemOperand *MemOp = nullptr; if (parseMachineMemoryOperand(MemOp)) return true; MemOperands.push_back(MemOp); if (Token.isNewlineOrEOF()) break; if (Token.isNot(MIToken::comma)) return error("expected ',' before the next machine memory operand"); lex(); } } const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); if (!MCID.isVariadic()) { // FIXME: Move the implicit operand verification to the machine verifier. if (verifyImplicitOperands(Operands, MCID)) return true; } // TODO: Check for extraneous machine operands. MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); MI->setFlags(Flags); for (const auto &Operand : Operands) MI->addOperand(MF, Operand.Operand); if (assignRegisterTies(*MI, Operands)) return true; if (MemOperands.empty()) return false; MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(MemOperands.size()); std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); return false; } bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { lex(); if (Token.isNot(MIToken::MachineBasicBlock)) return error("expected a machine basic block reference"); if (parseMBBReference(MBB)) return true; lex(); if (Token.isNot(MIToken::Eof)) return error( "expected end of string after the machine basic block reference"); return false; } bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { lex(); if (Token.isNot(MIToken::NamedRegister)) return error("expected a named register"); if (parseNamedRegister(Reg)) return true; lex(); if (Token.isNot(MIToken::Eof)) return error("expected end of string after the register reference"); return false; } bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { lex(); if (Token.isNot(MIToken::VirtualRegister)) return error("expected a virtual register"); if (parseVirtualRegister(Info)) return true; lex(); if (Token.isNot(MIToken::Eof)) return error("expected end of string after the register reference"); return false; } bool MIParser::parseStandaloneRegister(unsigned &Reg) { lex(); if (Token.isNot(MIToken::NamedRegister) && Token.isNot(MIToken::VirtualRegister)) return error("expected either a named or virtual register"); VRegInfo *Info; if (parseRegister(Reg, Info)) return true; lex(); if (Token.isNot(MIToken::Eof)) return error("expected end of string after the register reference"); return false; } bool MIParser::parseStandaloneStackObject(int &FI) { lex(); if (Token.isNot(MIToken::StackObject)) return error("expected a stack object"); if (parseStackFrameIndex(FI)) return true; if (Token.isNot(MIToken::Eof)) return error("expected end of string after the stack object reference"); return false; } bool MIParser::parseStandaloneMDNode(MDNode *&Node) { lex(); if (Token.is(MIToken::exclaim)) { if (parseMDNode(Node)) return true; } else if (Token.is(MIToken::md_diexpr)) { if (parseDIExpression(Node)) return true; } else return error("expected a metadata node"); if (Token.isNot(MIToken::Eof)) return error("expected end of string after the metadata node"); return false; } static const char *printImplicitRegisterFlag(const MachineOperand &MO) { assert(MO.isImplicit()); return MO.isDef() ? "implicit-def" : "implicit"; } static std::string getRegisterName(const TargetRegisterInfo *TRI, unsigned Reg) { assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); return StringRef(TRI->getName(Reg)).lower(); } /// Return true if the parsed machine operands contain a given machine operand. static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, ArrayRef Operands) { for (const auto &I : Operands) { if (ImplicitOperand.isIdenticalTo(I.Operand)) return true; } return false; } bool MIParser::verifyImplicitOperands(ArrayRef Operands, const MCInstrDesc &MCID) { if (MCID.isCall()) // We can't verify call instructions as they can contain arbitrary implicit // register and register mask operands. return false; // Gather all the expected implicit operands. SmallVector ImplicitOperands; if (MCID.ImplicitDefs) for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) ImplicitOperands.push_back( MachineOperand::CreateReg(*ImpDefs, true, true)); if (MCID.ImplicitUses) for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) ImplicitOperands.push_back( MachineOperand::CreateReg(*ImpUses, false, true)); const auto *TRI = MF.getSubtarget().getRegisterInfo(); assert(TRI && "Expected target register info"); for (const auto &I : ImplicitOperands) { if (isImplicitOperandIn(I, Operands)) continue; return error(Operands.empty() ? Token.location() : Operands.back().End, Twine("missing implicit register operand '") + printImplicitRegisterFlag(I) + " %" + getRegisterName(TRI, I.getReg()) + "'"); } return false; } bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { if (Token.is(MIToken::kw_frame_setup)) { Flags |= MachineInstr::FrameSetup; lex(); } if (Token.isNot(MIToken::Identifier)) return error("expected a machine instruction"); StringRef InstrName = Token.stringValue(); if (parseInstrName(InstrName, OpCode)) return error(Twine("unknown machine instruction name '") + InstrName + "'"); lex(); return false; } bool MIParser::parseNamedRegister(unsigned &Reg) { assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); StringRef Name = Token.stringValue(); if (getRegisterByName(Name, Reg)) return error(Twine("unknown register name '") + Name + "'"); return false; } bool MIParser::parseVirtualRegister(VRegInfo *&Info) { assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); unsigned ID; if (getUnsigned(ID)) return true; Info = &PFS.getVRegInfo(ID); return false; } bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { switch (Token.kind()) { case MIToken::underscore: Reg = 0; return false; case MIToken::NamedRegister: return parseNamedRegister(Reg); case MIToken::VirtualRegister: if (parseVirtualRegister(Info)) return true; Reg = Info->VReg; return false; // TODO: Parse other register kinds. default: llvm_unreachable("The current token should be a register"); } } bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) return error("expected '_', register class, or register bank name"); StringRef::iterator Loc = Token.location(); StringRef Name = Token.stringValue(); // Was it a register class? auto RCNameI = PFS.Names2RegClasses.find(Name); if (RCNameI != PFS.Names2RegClasses.end()) { lex(); const TargetRegisterClass &RC = *RCNameI->getValue(); switch (RegInfo.Kind) { case VRegInfo::UNKNOWN: case VRegInfo::NORMAL: RegInfo.Kind = VRegInfo::NORMAL; if (RegInfo.Explicit && RegInfo.D.RC != &RC) { const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); return error(Loc, Twine("conflicting register classes, previously: ") + Twine(TRI.getRegClassName(RegInfo.D.RC))); } RegInfo.D.RC = &RC; RegInfo.Explicit = true; return false; case VRegInfo::GENERIC: case VRegInfo::REGBANK: return error(Loc, "register class specification on generic register"); } llvm_unreachable("Unexpected register kind"); } // Should be a register bank or a generic register. const RegisterBank *RegBank = nullptr; if (Name != "_") { auto RBNameI = PFS.Names2RegBanks.find(Name); if (RBNameI == PFS.Names2RegBanks.end()) return error(Loc, "expected '_', register class, or register bank name"); RegBank = RBNameI->getValue(); } lex(); switch (RegInfo.Kind) { case VRegInfo::UNKNOWN: case VRegInfo::GENERIC: case VRegInfo::REGBANK: RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) return error(Loc, "conflicting generic register banks"); RegInfo.D.RegBank = RegBank; RegInfo.Explicit = true; return false; case VRegInfo::NORMAL: return error(Loc, "register bank specification on normal register"); } llvm_unreachable("Unexpected register kind"); } bool MIParser::parseRegisterFlag(unsigned &Flags) { const unsigned OldFlags = Flags; switch (Token.kind()) { case MIToken::kw_implicit: Flags |= RegState::Implicit; break; case MIToken::kw_implicit_define: Flags |= RegState::ImplicitDefine; break; case MIToken::kw_def: Flags |= RegState::Define; break; case MIToken::kw_dead: Flags |= RegState::Dead; break; case MIToken::kw_killed: Flags |= RegState::Kill; break; case MIToken::kw_undef: Flags |= RegState::Undef; break; case MIToken::kw_internal: Flags |= RegState::InternalRead; break; case MIToken::kw_early_clobber: Flags |= RegState::EarlyClobber; break; case MIToken::kw_debug_use: Flags |= RegState::Debug; break; case MIToken::kw_renamable: Flags |= RegState::Renamable; break; default: llvm_unreachable("The current token should be a register flag"); } if (OldFlags == Flags) // We know that the same flag is specified more than once when the flags // weren't modified. return error("duplicate '" + Token.stringValue() + "' register flag"); lex(); return false; } bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { assert(Token.is(MIToken::dot)); lex(); if (Token.isNot(MIToken::Identifier)) return error("expected a subregister index after '.'"); auto Name = Token.stringValue(); SubReg = getSubRegIndex(Name); if (!SubReg) return error(Twine("use of unknown subregister index '") + Name + "'"); lex(); return false; } bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { if (!consumeIfPresent(MIToken::kw_tied_def)) return true; if (Token.isNot(MIToken::IntegerLiteral)) return error("expected an integer literal after 'tied-def'"); if (getUnsigned(TiedDefIdx)) return true; lex(); if (expectAndConsume(MIToken::rparen)) return true; return false; } bool MIParser::assignRegisterTies(MachineInstr &MI, ArrayRef Operands) { SmallVector, 4> TiedRegisterPairs; for (unsigned I = 0, E = Operands.size(); I != E; ++I) { if (!Operands[I].TiedDefIdx) continue; // The parser ensures that this operand is a register use, so we just have // to check the tied-def operand. unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); if (DefIdx >= E) return error(Operands[I].Begin, Twine("use of invalid tied-def operand index '" + Twine(DefIdx) + "'; instruction has only ") + Twine(E) + " operands"); const auto &DefOperand = Operands[DefIdx].Operand; if (!DefOperand.isReg() || !DefOperand.isDef()) // FIXME: add note with the def operand. return error(Operands[I].Begin, Twine("use of invalid tied-def operand index '") + Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + " isn't a defined register"); // Check that the tied-def operand wasn't tied elsewhere. for (const auto &TiedPair : TiedRegisterPairs) { if (TiedPair.first == DefIdx) return error(Operands[I].Begin, Twine("the tied-def operand #") + Twine(DefIdx) + " is already tied with another register operand"); } TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); } // FIXME: Verify that for non INLINEASM instructions, the def and use tied // indices must be less than tied max. for (const auto &TiedPair : TiedRegisterPairs) MI.tieOperands(TiedPair.first, TiedPair.second); return false; } bool MIParser::parseRegisterOperand(MachineOperand &Dest, Optional &TiedDefIdx, bool IsDef) { unsigned Flags = IsDef ? RegState::Define : 0; while (Token.isRegisterFlag()) { if (parseRegisterFlag(Flags)) return true; } if (!Token.isRegister()) return error("expected a register after register flags"); unsigned Reg; VRegInfo *RegInfo; if (parseRegister(Reg, RegInfo)) return true; lex(); unsigned SubReg = 0; if (Token.is(MIToken::dot)) { if (parseSubRegisterIndex(SubReg)) return true; if (!TargetRegisterInfo::isVirtualRegister(Reg)) return error("subregister index expects a virtual register"); } if (Token.is(MIToken::colon)) { if (!TargetRegisterInfo::isVirtualRegister(Reg)) return error("register class specification expects a virtual register"); lex(); if (parseRegisterClassOrBank(*RegInfo)) return true; } MachineRegisterInfo &MRI = MF.getRegInfo(); if ((Flags & RegState::Define) == 0) { if (consumeIfPresent(MIToken::lparen)) { unsigned Idx; if (!parseRegisterTiedDefIndex(Idx)) TiedDefIdx = Idx; else { // Try a redundant low-level type. LLT Ty; if (parseLowLevelType(Token.location(), Ty)) return error("expected tied-def or low-level type after '('"); if (expectAndConsume(MIToken::rparen)) return true; if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) return error("inconsistent type for generic virtual register"); MRI.setType(Reg, Ty); } } } else if (consumeIfPresent(MIToken::lparen)) { // Virtual registers may have a tpe with GlobalISel. if (!TargetRegisterInfo::isVirtualRegister(Reg)) return error("unexpected type on physical register"); LLT Ty; if (parseLowLevelType(Token.location(), Ty)) return true; if (expectAndConsume(MIToken::rparen)) return true; if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) return error("inconsistent type for generic virtual register"); MRI.setType(Reg, Ty); } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { // Generic virtual registers must have a type. // If we end up here this means the type hasn't been specified and // this is bad! if (RegInfo->Kind == VRegInfo::GENERIC || RegInfo->Kind == VRegInfo::REGBANK) return error("generic virtual registers must have a type"); } Dest = MachineOperand::CreateReg( Reg, Flags & RegState::Define, Flags & RegState::Implicit, Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, Flags & RegState::InternalRead, Flags & RegState::Renamable); return false; } bool MIParser::parseImmediateOperand(MachineOperand &Dest) { assert(Token.is(MIToken::IntegerLiteral)); const APSInt &Int = Token.integerValue(); if (Int.getMinSignedBits() > 64) return error("integer literal is too large to be an immediate operand"); Dest = MachineOperand::CreateImm(Int.getExtValue()); lex(); return false; } bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, const Constant *&C) { auto Source = StringValue.str(); // The source has to be null terminated. SMDiagnostic Err; C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), &PFS.IRSlots); if (!C) return error(Loc + Err.getColumnNo(), Err.getMessage()); return false; } bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) return true; lex(); return false; } bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { if (Token.is(MIToken::ScalarType)) { Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); lex(); return false; } else if (Token.is(MIToken::PointerType)) { const DataLayout &DL = MF.getDataLayout(); unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); lex(); return false; } // Now we're looking for a vector. if (Token.isNot(MIToken::less)) return error(Loc, "expected unsized, pN, sN or for GlobalISel type"); lex(); if (Token.isNot(MIToken::IntegerLiteral)) return error(Loc, "expected for vctor type"); uint64_t NumElements = Token.integerValue().getZExtValue(); lex(); if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") return error(Loc, "expected '' for vector type"); lex(); if (Token.isNot(MIToken::ScalarType)) return error(Loc, "expected '' for vector type"); uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); lex(); if (Token.isNot(MIToken::greater)) return error(Loc, "expected '' for vector type"); lex(); Ty = LLT::vector(NumElements, ScalarSize); return false; } bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { assert(Token.is(MIToken::IntegerType)); auto Loc = Token.location(); lex(); if (Token.isNot(MIToken::IntegerLiteral)) return error("expected an integer literal"); const Constant *C = nullptr; if (parseIRConstant(Loc, C)) return true; Dest = MachineOperand::CreateCImm(cast(C)); return false; } bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { auto Loc = Token.location(); lex(); if (Token.isNot(MIToken::FloatingPointLiteral) && Token.isNot(MIToken::HexLiteral)) return error("expected a floating point literal"); const Constant *C = nullptr; if (parseIRConstant(Loc, C)) return true; Dest = MachineOperand::CreateFPImm(cast(C)); return false; } bool MIParser::getUnsigned(unsigned &Result) { if (Token.hasIntegerValue()) { const uint64_t Limit = uint64_t(std::numeric_limits::max()) + 1; uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); if (Val64 == Limit) return error("expected 32-bit integer (too large)"); Result = Val64; return false; } if (Token.is(MIToken::HexLiteral)) { APInt A; if (getHexUint(A)) return true; if (A.getBitWidth() > 32) return error("expected 32-bit integer (too large)"); Result = A.getZExtValue(); return false; } return true; } bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { assert(Token.is(MIToken::MachineBasicBlock) || Token.is(MIToken::MachineBasicBlockLabel)); unsigned Number; if (getUnsigned(Number)) return true; auto MBBInfo = PFS.MBBSlots.find(Number); if (MBBInfo == PFS.MBBSlots.end()) return error(Twine("use of undefined machine basic block #") + Twine(Number)); MBB = MBBInfo->second; // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once // we drop the from the bb.. format. if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) return error(Twine("the name of machine basic block #") + Twine(Number) + " isn't '" + Token.stringValue() + "'"); return false; } bool MIParser::parseMBBOperand(MachineOperand &Dest) { MachineBasicBlock *MBB; if (parseMBBReference(MBB)) return true; Dest = MachineOperand::CreateMBB(MBB); lex(); return false; } bool MIParser::parseStackFrameIndex(int &FI) { assert(Token.is(MIToken::StackObject)); unsigned ID; if (getUnsigned(ID)) return true; auto ObjectInfo = PFS.StackObjectSlots.find(ID); if (ObjectInfo == PFS.StackObjectSlots.end()) return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + "'"); StringRef Name; if (const auto *Alloca = MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) Name = Alloca->getName(); if (!Token.stringValue().empty() && Token.stringValue() != Name) return error(Twine("the name of the stack object '%stack.") + Twine(ID) + "' isn't '" + Token.stringValue() + "'"); lex(); FI = ObjectInfo->second; return false; } bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { int FI; if (parseStackFrameIndex(FI)) return true; Dest = MachineOperand::CreateFI(FI); return false; } bool MIParser::parseFixedStackFrameIndex(int &FI) { assert(Token.is(MIToken::FixedStackObject)); unsigned ID; if (getUnsigned(ID)) return true; auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); if (ObjectInfo == PFS.FixedStackObjectSlots.end()) return error(Twine("use of undefined fixed stack object '%fixed-stack.") + Twine(ID) + "'"); lex(); FI = ObjectInfo->second; return false; } bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { int FI; if (parseFixedStackFrameIndex(FI)) return true; Dest = MachineOperand::CreateFI(FI); return false; } bool MIParser::parseGlobalValue(GlobalValue *&GV) { switch (Token.kind()) { case MIToken::NamedGlobalValue: { const Module *M = MF.getFunction().getParent(); GV = M->getNamedValue(Token.stringValue()); if (!GV) return error(Twine("use of undefined global value '") + Token.range() + "'"); break; } case MIToken::GlobalValue: { unsigned GVIdx; if (getUnsigned(GVIdx)) return true; if (GVIdx >= PFS.IRSlots.GlobalValues.size()) return error(Twine("use of undefined global value '@") + Twine(GVIdx) + "'"); GV = PFS.IRSlots.GlobalValues[GVIdx]; break; } default: llvm_unreachable("The current token should be a global value"); } return false; } bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { GlobalValue *GV = nullptr; if (parseGlobalValue(GV)) return true; lex(); Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); if (parseOperandsOffset(Dest)) return true; return false; } bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { assert(Token.is(MIToken::ConstantPoolItem)); unsigned ID; if (getUnsigned(ID)) return true; auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); if (ConstantInfo == PFS.ConstantPoolSlots.end()) return error("use of undefined constant '%const." + Twine(ID) + "'"); lex(); Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); if (parseOperandsOffset(Dest)) return true; return false; } bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { assert(Token.is(MIToken::JumpTableIndex)); unsigned ID; if (getUnsigned(ID)) return true; auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); lex(); Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); return false; } bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { assert(Token.is(MIToken::ExternalSymbol)); const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); lex(); Dest = MachineOperand::CreateES(Symbol); if (parseOperandsOffset(Dest)) return true; return false; } bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { assert(Token.is(MIToken::SubRegisterIndex)); StringRef Name = Token.stringValue(); unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); if (SubRegIndex == 0) return error(Twine("unknown subregister index '") + Name + "'"); lex(); Dest = MachineOperand::CreateImm(SubRegIndex); return false; } bool MIParser::parseMDNode(MDNode *&Node) { assert(Token.is(MIToken::exclaim)); auto Loc = Token.location(); lex(); if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) return error("expected metadata id after '!'"); unsigned ID; if (getUnsigned(ID)) return true; auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); lex(); Node = NodeInfo->second.get(); return false; } bool MIParser::parseDIExpression(MDNode *&Expr) { assert(Token.is(MIToken::md_diexpr)); lex(); // FIXME: Share this parsing with the IL parser. SmallVector Elements; if (expectAndConsume(MIToken::lparen)) return true; if (Token.isNot(MIToken::rparen)) { do { if (Token.is(MIToken::Identifier)) { if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { lex(); Elements.push_back(Op); continue; } return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); } if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) return error("expected unsigned integer"); auto &U = Token.integerValue(); if (U.ugt(UINT64_MAX)) return error("element too large, limit is " + Twine(UINT64_MAX)); Elements.push_back(U.getZExtValue()); lex(); } while (consumeIfPresent(MIToken::comma)); } if (expectAndConsume(MIToken::rparen)) return true; Expr = DIExpression::get(MF.getFunction().getContext(), Elements); return false; } bool MIParser::parseMetadataOperand(MachineOperand &Dest) { MDNode *Node = nullptr; if (Token.is(MIToken::exclaim)) { if (parseMDNode(Node)) return true; } else if (Token.is(MIToken::md_diexpr)) { if (parseDIExpression(Node)) return true; } Dest = MachineOperand::CreateMetadata(Node); return false; } bool MIParser::parseCFIOffset(int &Offset) { if (Token.isNot(MIToken::IntegerLiteral)) return error("expected a cfi offset"); if (Token.integerValue().getMinSignedBits() > 32) return error("expected a 32 bit integer (the cfi offset is too large)"); Offset = (int)Token.integerValue().getExtValue(); lex(); return false; } bool MIParser::parseCFIRegister(unsigned &Reg) { if (Token.isNot(MIToken::NamedRegister)) return error("expected a cfi register"); unsigned LLVMReg; if (parseNamedRegister(LLVMReg)) return true; const auto *TRI = MF.getSubtarget().getRegisterInfo(); assert(TRI && "Expected target register info"); int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); if (DwarfReg < 0) return error("invalid DWARF register"); Reg = (unsigned)DwarfReg; lex(); return false; } bool MIParser::parseCFIEscapeValues(std::string &Values) { do { if (Token.isNot(MIToken::HexLiteral)) return error("expected a hexadecimal literal"); unsigned Value; if (getUnsigned(Value)) return true; if (Value > UINT8_MAX) return error("expected a 8-bit integer (too large)"); Values.push_back(static_cast(Value)); lex(); } while (consumeIfPresent(MIToken::comma)); return false; } bool MIParser::parseCFIOperand(MachineOperand &Dest) { auto Kind = Token.kind(); lex(); int Offset; unsigned Reg; unsigned CFIIndex; switch (Kind) { case MIToken::kw_cfi_same_value: if (parseCFIRegister(Reg)) return true; CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); break; case MIToken::kw_cfi_offset: if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || parseCFIOffset(Offset)) return true; CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); break; case MIToken::kw_cfi_rel_offset: if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || parseCFIOffset(Offset)) return true; CFIIndex = MF.addFrameInst( MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); break; case MIToken::kw_cfi_def_cfa_register: if (parseCFIRegister(Reg)) return true; CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); break; case MIToken::kw_cfi_def_cfa_offset: if (parseCFIOffset(Offset)) return true; // NB: MCCFIInstruction::createDefCfaOffset negates the offset. CFIIndex = MF.addFrameInst( MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); break; case MIToken::kw_cfi_adjust_cfa_offset: if (parseCFIOffset(Offset)) return true; CFIIndex = MF.addFrameInst( MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); break; case MIToken::kw_cfi_def_cfa: if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || parseCFIOffset(Offset)) return true; // NB: MCCFIInstruction::createDefCfa negates the offset. CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); break; case MIToken::kw_cfi_remember_state: CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); break; case MIToken::kw_cfi_restore: if (parseCFIRegister(Reg)) return true; CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); break; case MIToken::kw_cfi_restore_state: CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); break; case MIToken::kw_cfi_undefined: if (parseCFIRegister(Reg)) return true; CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); break; case MIToken::kw_cfi_register: { unsigned Reg2; if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || parseCFIRegister(Reg2)) return true; CFIIndex = MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); break; } case MIToken::kw_cfi_window_save: CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); break; case MIToken::kw_cfi_escape: { std::string Values; if (parseCFIEscapeValues(Values)) return true; CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); break; } default: // TODO: Parse the other CFI operands. llvm_unreachable("The current token should be a cfi operand"); } Dest = MachineOperand::CreateCFIIndex(CFIIndex); return false; } bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { switch (Token.kind()) { case MIToken::NamedIRBlock: { BB = dyn_cast_or_null( F.getValueSymbolTable()->lookup(Token.stringValue())); if (!BB) return error(Twine("use of undefined IR block '") + Token.range() + "'"); break; } case MIToken::IRBlock: { unsigned SlotNumber = 0; if (getUnsigned(SlotNumber)) return true; BB = const_cast(getIRBlock(SlotNumber, F)); if (!BB) return error(Twine("use of undefined IR block '%ir-block.") + Twine(SlotNumber) + "'"); break; } default: llvm_unreachable("The current token should be an IR block reference"); } return false; } bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { assert(Token.is(MIToken::kw_blockaddress)); lex(); if (expectAndConsume(MIToken::lparen)) return true; if (Token.isNot(MIToken::GlobalValue) && Token.isNot(MIToken::NamedGlobalValue)) return error("expected a global value"); GlobalValue *GV = nullptr; if (parseGlobalValue(GV)) return true; auto *F = dyn_cast(GV); if (!F) return error("expected an IR function reference"); lex(); if (expectAndConsume(MIToken::comma)) return true; BasicBlock *BB = nullptr; if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) return error("expected an IR block reference"); if (parseIRBlock(BB, *F)) return true; lex(); if (expectAndConsume(MIToken::rparen)) return true; Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); if (parseOperandsOffset(Dest)) return true; return false; } bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { assert(Token.is(MIToken::kw_intrinsic)); lex(); if (expectAndConsume(MIToken::lparen)) return error("expected syntax intrinsic(@llvm.whatever)"); if (Token.isNot(MIToken::NamedGlobalValue)) return error("expected syntax intrinsic(@llvm.whatever)"); std::string Name = Token.stringValue(); lex(); if (expectAndConsume(MIToken::rparen)) return error("expected ')' to terminate intrinsic name"); // Find out what intrinsic we're dealing with, first try the global namespace // and then the target's private intrinsics if that fails. const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); Intrinsic::ID ID = Function::lookupIntrinsicID(Name); if (ID == Intrinsic::not_intrinsic && TII) ID = static_cast(TII->lookupName(Name)); if (ID == Intrinsic::not_intrinsic) return error("unknown intrinsic name"); Dest = MachineOperand::CreateIntrinsicID(ID); return false; } bool MIParser::parsePredicateOperand(MachineOperand &Dest) { assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); bool IsFloat = Token.is(MIToken::kw_floatpred); lex(); if (expectAndConsume(MIToken::lparen)) return error("expected syntax intpred(whatever) or floatpred(whatever"); if (Token.isNot(MIToken::Identifier)) return error("whatever"); CmpInst::Predicate Pred; if (IsFloat) { Pred = StringSwitch(Token.stringValue()) .Case("false", CmpInst::FCMP_FALSE) .Case("oeq", CmpInst::FCMP_OEQ) .Case("ogt", CmpInst::FCMP_OGT) .Case("oge", CmpInst::FCMP_OGE) .Case("olt", CmpInst::FCMP_OLT) .Case("ole", CmpInst::FCMP_OLE) .Case("one", CmpInst::FCMP_ONE) .Case("ord", CmpInst::FCMP_ORD) .Case("uno", CmpInst::FCMP_UNO) .Case("ueq", CmpInst::FCMP_UEQ) .Case("ugt", CmpInst::FCMP_UGT) .Case("uge", CmpInst::FCMP_UGE) .Case("ult", CmpInst::FCMP_ULT) .Case("ule", CmpInst::FCMP_ULE) .Case("une", CmpInst::FCMP_UNE) .Case("true", CmpInst::FCMP_TRUE) .Default(CmpInst::BAD_FCMP_PREDICATE); if (!CmpInst::isFPPredicate(Pred)) return error("invalid floating-point predicate"); } else { Pred = StringSwitch(Token.stringValue()) .Case("eq", CmpInst::ICMP_EQ) .Case("ne", CmpInst::ICMP_NE) .Case("sgt", CmpInst::ICMP_SGT) .Case("sge", CmpInst::ICMP_SGE) .Case("slt", CmpInst::ICMP_SLT) .Case("sle", CmpInst::ICMP_SLE) .Case("ugt", CmpInst::ICMP_UGT) .Case("uge", CmpInst::ICMP_UGE) .Case("ult", CmpInst::ICMP_ULT) .Case("ule", CmpInst::ICMP_ULE) .Default(CmpInst::BAD_ICMP_PREDICATE); if (!CmpInst::isIntPredicate(Pred)) return error("invalid integer predicate"); } lex(); Dest = MachineOperand::CreatePredicate(Pred); if (expectAndConsume(MIToken::rparen)) return error("predicate should be terminated by ')'."); return false; } bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { assert(Token.is(MIToken::kw_target_index)); lex(); if (expectAndConsume(MIToken::lparen)) return true; if (Token.isNot(MIToken::Identifier)) return error("expected the name of the target index"); int Index = 0; if (getTargetIndex(Token.stringValue(), Index)) return error("use of undefined target index '" + Token.stringValue() + "'"); lex(); if (expectAndConsume(MIToken::rparen)) return true; Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); if (parseOperandsOffset(Dest)) return true; return false; } bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); assert(TRI && "Expected target register info"); lex(); if (expectAndConsume(MIToken::lparen)) return true; uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); while (true) { if (Token.isNot(MIToken::NamedRegister)) return error("expected a named register"); unsigned Reg; if (parseNamedRegister(Reg)) return true; lex(); Mask[Reg / 32] |= 1U << (Reg % 32); // TODO: Report an error if the same register is used more than once. if (Token.isNot(MIToken::comma)) break; lex(); } if (expectAndConsume(MIToken::rparen)) return true; Dest = MachineOperand::CreateRegMask(Mask); return false; } bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { assert(Token.is(MIToken::kw_liveout)); const auto *TRI = MF.getSubtarget().getRegisterInfo(); assert(TRI && "Expected target register info"); uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); lex(); if (expectAndConsume(MIToken::lparen)) return true; while (true) { if (Token.isNot(MIToken::NamedRegister)) return error("expected a named register"); unsigned Reg; if (parseNamedRegister(Reg)) return true; lex(); Mask[Reg / 32] |= 1U << (Reg % 32); // TODO: Report an error if the same register is used more than once. if (Token.isNot(MIToken::comma)) break; lex(); } if (expectAndConsume(MIToken::rparen)) return true; Dest = MachineOperand::CreateRegLiveOut(Mask); return false; } bool MIParser::parseMachineOperand(MachineOperand &Dest, Optional &TiedDefIdx) { switch (Token.kind()) { case MIToken::kw_implicit: case MIToken::kw_implicit_define: case MIToken::kw_def: case MIToken::kw_dead: case MIToken::kw_killed: case MIToken::kw_undef: case MIToken::kw_internal: case MIToken::kw_early_clobber: case MIToken::kw_debug_use: case MIToken::kw_renamable: case MIToken::underscore: case MIToken::NamedRegister: case MIToken::VirtualRegister: return parseRegisterOperand(Dest, TiedDefIdx); case MIToken::IntegerLiteral: return parseImmediateOperand(Dest); case MIToken::IntegerType: return parseTypedImmediateOperand(Dest); case MIToken::kw_half: case MIToken::kw_float: case MIToken::kw_double: case MIToken::kw_x86_fp80: case MIToken::kw_fp128: case MIToken::kw_ppc_fp128: return parseFPImmediateOperand(Dest); case MIToken::MachineBasicBlock: return parseMBBOperand(Dest); case MIToken::StackObject: return parseStackObjectOperand(Dest); case MIToken::FixedStackObject: return parseFixedStackObjectOperand(Dest); case MIToken::GlobalValue: case MIToken::NamedGlobalValue: return parseGlobalAddressOperand(Dest); case MIToken::ConstantPoolItem: return parseConstantPoolIndexOperand(Dest); case MIToken::JumpTableIndex: return parseJumpTableIndexOperand(Dest); case MIToken::ExternalSymbol: return parseExternalSymbolOperand(Dest); case MIToken::SubRegisterIndex: return parseSubRegisterIndexOperand(Dest); case MIToken::md_diexpr: case MIToken::exclaim: return parseMetadataOperand(Dest); case MIToken::kw_cfi_same_value: case MIToken::kw_cfi_offset: case MIToken::kw_cfi_rel_offset: case MIToken::kw_cfi_def_cfa_register: case MIToken::kw_cfi_def_cfa_offset: case MIToken::kw_cfi_adjust_cfa_offset: case MIToken::kw_cfi_escape: case MIToken::kw_cfi_def_cfa: case MIToken::kw_cfi_register: case MIToken::kw_cfi_remember_state: case MIToken::kw_cfi_restore: case MIToken::kw_cfi_restore_state: case MIToken::kw_cfi_undefined: case MIToken::kw_cfi_window_save: return parseCFIOperand(Dest); case MIToken::kw_blockaddress: return parseBlockAddressOperand(Dest); case MIToken::kw_intrinsic: return parseIntrinsicOperand(Dest); case MIToken::kw_target_index: return parseTargetIndexOperand(Dest); case MIToken::kw_liveout: return parseLiveoutRegisterMaskOperand(Dest); case MIToken::kw_floatpred: case MIToken::kw_intpred: return parsePredicateOperand(Dest); case MIToken::Error: return true; case MIToken::Identifier: if (const auto *RegMask = getRegMask(Token.stringValue())) { Dest = MachineOperand::CreateRegMask(RegMask); lex(); break; } else return parseCustomRegisterMaskOperand(Dest); default: // FIXME: Parse the MCSymbol machine operand. return error("expected a machine operand"); } return false; } bool MIParser::parseMachineOperandAndTargetFlags( MachineOperand &Dest, Optional &TiedDefIdx) { unsigned TF = 0; bool HasTargetFlags = false; if (Token.is(MIToken::kw_target_flags)) { HasTargetFlags = true; lex(); if (expectAndConsume(MIToken::lparen)) return true; if (Token.isNot(MIToken::Identifier)) return error("expected the name of the target flag"); if (getDirectTargetFlag(Token.stringValue(), TF)) { if (getBitmaskTargetFlag(Token.stringValue(), TF)) return error("use of undefined target flag '" + Token.stringValue() + "'"); } lex(); while (Token.is(MIToken::comma)) { lex(); if (Token.isNot(MIToken::Identifier)) return error("expected the name of the target flag"); unsigned BitFlag = 0; if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) return error("use of undefined target flag '" + Token.stringValue() + "'"); // TODO: Report an error when using a duplicate bit target flag. TF |= BitFlag; lex(); } if (expectAndConsume(MIToken::rparen)) return true; } auto Loc = Token.location(); if (parseMachineOperand(Dest, TiedDefIdx)) return true; if (!HasTargetFlags) return false; if (Dest.isReg()) return error(Loc, "register operands can't have target flags"); Dest.setTargetFlags(TF); return false; } bool MIParser::parseOffset(int64_t &Offset) { if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) return false; StringRef Sign = Token.range(); bool IsNegative = Token.is(MIToken::minus); lex(); if (Token.isNot(MIToken::IntegerLiteral)) return error("expected an integer literal after '" + Sign + "'"); if (Token.integerValue().getMinSignedBits() > 64) return error("expected 64-bit integer (too large)"); Offset = Token.integerValue().getExtValue(); if (IsNegative) Offset = -Offset; lex(); return false; } bool MIParser::parseAlignment(unsigned &Alignment) { assert(Token.is(MIToken::kw_align)); lex(); if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) return error("expected an integer literal after 'align'"); if (getUnsigned(Alignment)) return true; lex(); return false; } bool MIParser::parseOperandsOffset(MachineOperand &Op) { int64_t Offset = 0; if (parseOffset(Offset)) return true; Op.setOffset(Offset); return false; } bool MIParser::parseIRValue(const Value *&V) { switch (Token.kind()) { case MIToken::NamedIRValue: { V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); break; } case MIToken::IRValue: { unsigned SlotNumber = 0; if (getUnsigned(SlotNumber)) return true; V = getIRValue(SlotNumber); break; } case MIToken::NamedGlobalValue: case MIToken::GlobalValue: { GlobalValue *GV = nullptr; if (parseGlobalValue(GV)) return true; V = GV; break; } case MIToken::QuotedIRValue: { const Constant *C = nullptr; if (parseIRConstant(Token.location(), Token.stringValue(), C)) return true; V = C; break; } default: llvm_unreachable("The current token should be an IR block reference"); } if (!V) return error(Twine("use of undefined IR value '") + Token.range() + "'"); return false; } bool MIParser::getUint64(uint64_t &Result) { if (Token.hasIntegerValue()) { if (Token.integerValue().getActiveBits() > 64) return error("expected 64-bit integer (too large)"); Result = Token.integerValue().getZExtValue(); return false; } if (Token.is(MIToken::HexLiteral)) { APInt A; if (getHexUint(A)) return true; if (A.getBitWidth() > 64) return error("expected 64-bit integer (too large)"); Result = A.getZExtValue(); return false; } return true; } bool MIParser::getHexUint(APInt &Result) { assert(Token.is(MIToken::HexLiteral)); StringRef S = Token.range(); assert(S[0] == '0' && tolower(S[1]) == 'x'); // This could be a floating point literal with a special prefix. if (!isxdigit(S[2])) return true; StringRef V = S.substr(2); APInt A(V.size()*4, V, 16); // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make // sure it isn't the case before constructing result. unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); Result = APInt(NumBits, ArrayRef(A.getRawData(), A.getNumWords())); return false; } bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { const auto OldFlags = Flags; switch (Token.kind()) { case MIToken::kw_volatile: Flags |= MachineMemOperand::MOVolatile; break; case MIToken::kw_non_temporal: Flags |= MachineMemOperand::MONonTemporal; break; case MIToken::kw_dereferenceable: Flags |= MachineMemOperand::MODereferenceable; break; case MIToken::kw_invariant: Flags |= MachineMemOperand::MOInvariant; break; case MIToken::StringConstant: { MachineMemOperand::Flags TF; if (getMMOTargetFlag(Token.stringValue(), TF)) return error("use of undefined target MMO flag '" + Token.stringValue() + "'"); Flags |= TF; break; } default: llvm_unreachable("The current token should be a memory operand flag"); } if (OldFlags == Flags) // We know that the same flag is specified more than once when the flags // weren't modified. return error("duplicate '" + Token.stringValue() + "' memory operand flag"); lex(); return false; } bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { switch (Token.kind()) { case MIToken::kw_stack: PSV = MF.getPSVManager().getStack(); break; case MIToken::kw_got: PSV = MF.getPSVManager().getGOT(); break; case MIToken::kw_jump_table: PSV = MF.getPSVManager().getJumpTable(); break; case MIToken::kw_constant_pool: PSV = MF.getPSVManager().getConstantPool(); break; case MIToken::FixedStackObject: { int FI; if (parseFixedStackFrameIndex(FI)) return true; PSV = MF.getPSVManager().getFixedStack(FI); // The token was already consumed, so use return here instead of break. return false; } case MIToken::StackObject: { int FI; if (parseStackFrameIndex(FI)) return true; PSV = MF.getPSVManager().getFixedStack(FI); // The token was already consumed, so use return here instead of break. return false; } case MIToken::kw_call_entry: lex(); switch (Token.kind()) { case MIToken::GlobalValue: case MIToken::NamedGlobalValue: { GlobalValue *GV = nullptr; if (parseGlobalValue(GV)) return true; PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); break; } case MIToken::ExternalSymbol: PSV = MF.getPSVManager().getExternalSymbolCallEntry( MF.createExternalSymbolName(Token.stringValue())); break; default: return error( "expected a global value or an external symbol after 'call-entry'"); } break; default: llvm_unreachable("The current token should be pseudo source value"); } lex(); return false; } bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || Token.is(MIToken::kw_call_entry)) { const PseudoSourceValue *PSV = nullptr; if (parseMemoryPseudoSourceValue(PSV)) return true; int64_t Offset = 0; if (parseOffset(Offset)) return true; Dest = MachinePointerInfo(PSV, Offset); return false; } if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && Token.isNot(MIToken::GlobalValue) && Token.isNot(MIToken::NamedGlobalValue) && Token.isNot(MIToken::QuotedIRValue)) return error("expected an IR value reference"); const Value *V = nullptr; if (parseIRValue(V)) return true; if (!V->getType()->isPointerTy()) return error("expected a pointer IR value"); lex(); int64_t Offset = 0; if (parseOffset(Offset)) return true; Dest = MachinePointerInfo(V, Offset); return false; } bool MIParser::parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID) { SSID = SyncScope::System; if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { lex(); if (expectAndConsume(MIToken::lparen)) return error("expected '(' in syncscope"); std::string SSN; if (parseStringConstant(SSN)) return true; SSID = Context.getOrInsertSyncScopeID(SSN); if (expectAndConsume(MIToken::rparen)) return error("expected ')' in syncscope"); } return false; } bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { Order = AtomicOrdering::NotAtomic; if (Token.isNot(MIToken::Identifier)) return false; Order = StringSwitch(Token.stringValue()) .Case("unordered", AtomicOrdering::Unordered) .Case("monotonic", AtomicOrdering::Monotonic) .Case("acquire", AtomicOrdering::Acquire) .Case("release", AtomicOrdering::Release) .Case("acq_rel", AtomicOrdering::AcquireRelease) .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) .Default(AtomicOrdering::NotAtomic); if (Order != AtomicOrdering::NotAtomic) { lex(); return false; } return error("expected an atomic scope, ordering or a size integer literal"); } bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { if (expectAndConsume(MIToken::lparen)) return true; MachineMemOperand::Flags Flags = MachineMemOperand::MONone; while (Token.isMemoryOperandFlag()) { if (parseMemoryOperandFlag(Flags)) return true; } if (Token.isNot(MIToken::Identifier) || (Token.stringValue() != "load" && Token.stringValue() != "store")) return error("expected 'load' or 'store' memory operation"); if (Token.stringValue() == "load") Flags |= MachineMemOperand::MOLoad; else Flags |= MachineMemOperand::MOStore; lex(); // Optional 'store' for operands that both load and store. if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { Flags |= MachineMemOperand::MOStore; lex(); } // Optional synchronization scope. SyncScope::ID SSID; if (parseOptionalScope(MF.getFunction().getContext(), SSID)) return true; // Up to two atomic orderings (cmpxchg provides guarantees on failure). AtomicOrdering Order, FailureOrder; if (parseOptionalAtomicOrdering(Order)) return true; if (parseOptionalAtomicOrdering(FailureOrder)) return true; if (Token.isNot(MIToken::IntegerLiteral)) return error("expected the size integer literal after memory operation"); uint64_t Size; if (getUint64(Size)) return true; lex(); MachinePointerInfo Ptr = MachinePointerInfo(); if (Token.is(MIToken::Identifier)) { const char *Word = ((Flags & MachineMemOperand::MOLoad) && (Flags & MachineMemOperand::MOStore)) ? "on" : Flags & MachineMemOperand::MOLoad ? "from" : "into"; if (Token.stringValue() != Word) return error(Twine("expected '") + Word + "'"); lex(); if (parseMachinePointerInfo(Ptr)) return true; } unsigned BaseAlignment = Size; AAMDNodes AAInfo; MDNode *Range = nullptr; while (consumeIfPresent(MIToken::comma)) { switch (Token.kind()) { case MIToken::kw_align: if (parseAlignment(BaseAlignment)) return true; break; case MIToken::md_tbaa: lex(); if (parseMDNode(AAInfo.TBAA)) return true; break; case MIToken::md_alias_scope: lex(); if (parseMDNode(AAInfo.Scope)) return true; break; case MIToken::md_noalias: lex(); if (parseMDNode(AAInfo.NoAlias)) return true; break; case MIToken::md_range: lex(); if (parseMDNode(Range)) return true; break; // TODO: Report an error on duplicate metadata nodes. default: return error("expected 'align' or '!tbaa' or '!alias.scope' or " "'!noalias' or '!range'"); } } if (expectAndConsume(MIToken::rparen)) return true; Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, SSID, Order, FailureOrder); return false; } void MIParser::initNames2InstrOpCodes() { if (!Names2InstrOpCodes.empty()) return; const auto *TII = MF.getSubtarget().getInstrInfo(); assert(TII && "Expected target instruction info"); for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); } bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { initNames2InstrOpCodes(); auto InstrInfo = Names2InstrOpCodes.find(InstrName); if (InstrInfo == Names2InstrOpCodes.end()) return true; OpCode = InstrInfo->getValue(); return false; } void MIParser::initNames2Regs() { if (!Names2Regs.empty()) return; // The '%noreg' register is the register 0. Names2Regs.insert(std::make_pair("noreg", 0)); const auto *TRI = MF.getSubtarget().getRegisterInfo(); assert(TRI && "Expected target register info"); for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { bool WasInserted = Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) .second; (void)WasInserted; assert(WasInserted && "Expected registers to be unique case-insensitively"); } } bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { initNames2Regs(); auto RegInfo = Names2Regs.find(RegName); if (RegInfo == Names2Regs.end()) return true; Reg = RegInfo->getValue(); return false; } void MIParser::initNames2RegMasks() { if (!Names2RegMasks.empty()) return; const auto *TRI = MF.getSubtarget().getRegisterInfo(); assert(TRI && "Expected target register info"); ArrayRef RegMasks = TRI->getRegMasks(); ArrayRef RegMaskNames = TRI->getRegMaskNames(); assert(RegMasks.size() == RegMaskNames.size()); for (size_t I = 0, E = RegMasks.size(); I < E; ++I) Names2RegMasks.insert( std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); } const uint32_t *MIParser::getRegMask(StringRef Identifier) { initNames2RegMasks(); auto RegMaskInfo = Names2RegMasks.find(Identifier); if (RegMaskInfo == Names2RegMasks.end()) return nullptr; return RegMaskInfo->getValue(); } void MIParser::initNames2SubRegIndices() { if (!Names2SubRegIndices.empty()) return; const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) Names2SubRegIndices.insert( std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); } unsigned MIParser::getSubRegIndex(StringRef Name) { initNames2SubRegIndices(); auto SubRegInfo = Names2SubRegIndices.find(Name); if (SubRegInfo == Names2SubRegIndices.end()) return 0; return SubRegInfo->getValue(); } static void initSlots2BasicBlocks( const Function &F, DenseMap &Slots2BasicBlocks) { ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); MST.incorporateFunction(F); for (auto &BB : F) { if (BB.hasName()) continue; int Slot = MST.getLocalSlot(&BB); if (Slot == -1) continue; Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); } } static const BasicBlock *getIRBlockFromSlot( unsigned Slot, const DenseMap &Slots2BasicBlocks) { auto BlockInfo = Slots2BasicBlocks.find(Slot); if (BlockInfo == Slots2BasicBlocks.end()) return nullptr; return BlockInfo->second; } const BasicBlock *MIParser::getIRBlock(unsigned Slot) { if (Slots2BasicBlocks.empty()) initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); return getIRBlockFromSlot(Slot, Slots2BasicBlocks); } const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { if (&F == &MF.getFunction()) return getIRBlock(Slot); DenseMap CustomSlots2BasicBlocks; initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); } static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, DenseMap &Slots2Values) { int Slot = MST.getLocalSlot(V); if (Slot == -1) return; Slots2Values.insert(std::make_pair(unsigned(Slot), V)); } /// Creates the mapping from slot numbers to function's unnamed IR values. static void initSlots2Values(const Function &F, DenseMap &Slots2Values) { ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); MST.incorporateFunction(F); for (const auto &Arg : F.args()) mapValueToSlot(&Arg, MST, Slots2Values); for (const auto &BB : F) { mapValueToSlot(&BB, MST, Slots2Values); for (const auto &I : BB) mapValueToSlot(&I, MST, Slots2Values); } } const Value *MIParser::getIRValue(unsigned Slot) { if (Slots2Values.empty()) initSlots2Values(MF.getFunction(), Slots2Values); auto ValueInfo = Slots2Values.find(Slot); if (ValueInfo == Slots2Values.end()) return nullptr; return ValueInfo->second; } void MIParser::initNames2TargetIndices() { if (!Names2TargetIndices.empty()) return; const auto *TII = MF.getSubtarget().getInstrInfo(); assert(TII && "Expected target instruction info"); auto Indices = TII->getSerializableTargetIndices(); for (const auto &I : Indices) Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); } bool MIParser::getTargetIndex(StringRef Name, int &Index) { initNames2TargetIndices(); auto IndexInfo = Names2TargetIndices.find(Name); if (IndexInfo == Names2TargetIndices.end()) return true; Index = IndexInfo->second; return false; } void MIParser::initNames2DirectTargetFlags() { if (!Names2DirectTargetFlags.empty()) return; const auto *TII = MF.getSubtarget().getInstrInfo(); assert(TII && "Expected target instruction info"); auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); for (const auto &I : Flags) Names2DirectTargetFlags.insert( std::make_pair(StringRef(I.second), I.first)); } bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { initNames2DirectTargetFlags(); auto FlagInfo = Names2DirectTargetFlags.find(Name); if (FlagInfo == Names2DirectTargetFlags.end()) return true; Flag = FlagInfo->second; return false; } void MIParser::initNames2BitmaskTargetFlags() { if (!Names2BitmaskTargetFlags.empty()) return; const auto *TII = MF.getSubtarget().getInstrInfo(); assert(TII && "Expected target instruction info"); auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); for (const auto &I : Flags) Names2BitmaskTargetFlags.insert( std::make_pair(StringRef(I.second), I.first)); } bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { initNames2BitmaskTargetFlags(); auto FlagInfo = Names2BitmaskTargetFlags.find(Name); if (FlagInfo == Names2BitmaskTargetFlags.end()) return true; Flag = FlagInfo->second; return false; } void MIParser::initNames2MMOTargetFlags() { if (!Names2MMOTargetFlags.empty()) return; const auto *TII = MF.getSubtarget().getInstrInfo(); assert(TII && "Expected target instruction info"); auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); for (const auto &I : Flags) Names2MMOTargetFlags.insert( std::make_pair(StringRef(I.second), I.first)); } bool MIParser::getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag) { initNames2MMOTargetFlags(); auto FlagInfo = Names2MMOTargetFlags.find(Name); if (FlagInfo == Names2MMOTargetFlags.end()) return true; Flag = FlagInfo->second; return false; } bool MIParser::parseStringConstant(std::string &Result) { if (Token.isNot(MIToken::StringConstant)) return error("expected string constant"); Result = Token.stringValue(); lex(); return false; } bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, StringRef Src, SMDiagnostic &Error) { return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); } bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, StringRef Src, SMDiagnostic &Error) { return MIParser(PFS, Error, Src).parseBasicBlocks(); } bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, MachineBasicBlock *&MBB, StringRef Src, SMDiagnostic &Error) { return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); } bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, unsigned &Reg, StringRef Src, SMDiagnostic &Error) { return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); } bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, unsigned &Reg, StringRef Src, SMDiagnostic &Error) { return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); } bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, VRegInfo *&Info, StringRef Src, SMDiagnostic &Error) { return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); } bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, int &FI, StringRef Src, SMDiagnostic &Error) { return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); } bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, MDNode *&Node, StringRef Src, SMDiagnostic &Error) { return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); }