//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a linear scan register allocator. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "LiveDebugVariables.h" #include "LiveRangeEdit.h" #include "VirtRegMap.h" #include "VirtRegRewriter.h" #include "RegisterClassInfo.h" #include "Spiller.h" #include "RegisterCoalescer.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Function.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/ADT/EquivalenceClasses.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace llvm; STATISTIC(NumIters , "Number of iterations performed"); STATISTIC(NumBacktracks, "Number of times we had to backtrack"); STATISTIC(NumCoalesce, "Number of copies coalesced"); STATISTIC(NumDowngrade, "Number of registers downgraded"); static cl::opt NewHeuristic("new-spilling-heuristic", cl::desc("Use new spilling heuristic"), cl::init(false), cl::Hidden); static cl::opt TrivCoalesceEnds("trivial-coalesce-ends", cl::desc("Attempt trivial coalescing of interval ends"), cl::init(false), cl::Hidden); static cl::opt AvoidWAWHazard("avoid-waw-hazard", cl::desc("Avoid write-write hazards for some register classes"), cl::init(false), cl::Hidden); static RegisterRegAlloc linearscanRegAlloc("linearscan", "linear scan register allocator", createLinearScanRegisterAllocator); namespace { // When we allocate a register, add it to a fixed-size queue of // registers to skip in subsequent allocations. This trades a small // amount of register pressure and increased spills for flexibility in // the post-pass scheduler. // // Note that in a the number of registers used for reloading spills // will be one greater than the value of this option. // // One big limitation of this is that it doesn't differentiate between // different register classes. So on x86-64, if there is xmm register // pressure, it can caused fewer GPRs to be held in the queue. static cl::opt NumRecentlyUsedRegs("linearscan-skip-count", cl::desc("Number of registers for linearscan to remember" "to skip."), cl::init(0), cl::Hidden); struct RALinScan : public MachineFunctionPass { static char ID; RALinScan() : MachineFunctionPass(ID) { initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); initializeRegisterCoalescerPass( *PassRegistry::getPassRegistry()); initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); initializeLiveStacksPass(*PassRegistry::getPassRegistry()); initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); // Initialize the queue to record recently-used registers. if (NumRecentlyUsedRegs > 0) RecentRegs.resize(NumRecentlyUsedRegs, 0); RecentNext = RecentRegs.begin(); avoidWAW_ = 0; } typedef std::pair IntervalPtr; typedef SmallVector IntervalPtrs; private: /// RelatedRegClasses - This structure is built the first time a function is /// compiled, and keeps track of which register classes have registers that /// belong to multiple classes or have aliases that are in other classes. EquivalenceClasses RelatedRegClasses; DenseMap OneClassForEachPhysReg; // NextReloadMap - For each register in the map, it maps to the another // register which is defined by a reload from the same stack slot and // both reloads are in the same basic block. DenseMap NextReloadMap; // DowngradedRegs - A set of registers which are being "downgraded", i.e. // un-favored for allocation. SmallSet DowngradedRegs; // DowngradeMap - A map from virtual registers to physical registers being // downgraded for the virtual registers. DenseMap DowngradeMap; MachineFunction* mf_; MachineRegisterInfo* mri_; const TargetMachine* tm_; const TargetRegisterInfo* tri_; const TargetInstrInfo* tii_; BitVector allocatableRegs_; BitVector reservedRegs_; LiveIntervals* li_; MachineLoopInfo *loopInfo; RegisterClassInfo RegClassInfo; /// handled_ - Intervals are added to the handled_ set in the order of their /// start value. This is uses for backtracking. std::vector handled_; /// fixed_ - Intervals that correspond to machine registers. /// IntervalPtrs fixed_; /// active_ - Intervals that are currently being processed, and which have a /// live range active for the current point. IntervalPtrs active_; /// inactive_ - Intervals that are currently being processed, but which have /// a hold at the current point. IntervalPtrs inactive_; typedef std::priority_queue, greater_ptr > IntervalHeap; IntervalHeap unhandled_; /// regUse_ - Tracks register usage. SmallVector regUse_; SmallVector regUseBackUp_; /// vrm_ - Tracks register assignments. VirtRegMap* vrm_; std::auto_ptr rewriter_; std::auto_ptr spiller_; // The queue of recently-used registers. SmallVector RecentRegs; SmallVector::iterator RecentNext; // Last write-after-write register written. unsigned avoidWAW_; // Record that we just picked this register. void recordRecentlyUsed(unsigned reg) { assert(reg != 0 && "Recently used register is NOREG!"); if (!RecentRegs.empty()) { *RecentNext++ = reg; if (RecentNext == RecentRegs.end()) RecentNext = RecentRegs.begin(); } } public: virtual const char* getPassName() const { return "Linear Scan Register Allocator"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); if (StrongPHIElim) AU.addRequiredID(StrongPHIEliminationID); // Make sure PassManager knows which analyses to make available // to coalescing and which analyses coalescing invalidates. AU.addRequiredTransitive(); AU.addRequired(); AU.addRequiredID(LiveStacksID); AU.addPreservedID(LiveStacksID); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequiredID(MachineDominatorsID); AU.addPreservedID(MachineDominatorsID); MachineFunctionPass::getAnalysisUsage(AU); } /// runOnMachineFunction - register allocate the whole function bool runOnMachineFunction(MachineFunction&); // Determine if we skip this register due to its being recently used. bool isRecentlyUsed(unsigned reg) const { return reg == avoidWAW_ || std::find(RecentRegs.begin(), RecentRegs.end(), reg) != RecentRegs.end(); } private: /// linearScan - the linear scan algorithm void linearScan(); /// initIntervalSets - initialize the interval sets. /// void initIntervalSets(); /// processActiveIntervals - expire old intervals and move non-overlapping /// ones to the inactive list. void processActiveIntervals(SlotIndex CurPoint); /// processInactiveIntervals - expire old intervals and move overlapping /// ones to the active list. void processInactiveIntervals(SlotIndex CurPoint); /// hasNextReloadInterval - Return the next liveinterval that's being /// defined by a reload from the same SS as the specified one. LiveInterval *hasNextReloadInterval(LiveInterval *cur); /// DowngradeRegister - Downgrade a register for allocation. void DowngradeRegister(LiveInterval *li, unsigned Reg); /// UpgradeRegister - Upgrade a register for allocation. void UpgradeRegister(unsigned Reg); /// assignRegOrStackSlotAtInterval - assign a register if one /// is available, or spill. void assignRegOrStackSlotAtInterval(LiveInterval* cur); void updateSpillWeights(std::vector &Weights, unsigned reg, float weight, const TargetRegisterClass *RC); /// findIntervalsToSpill - Determine the intervals to spill for the /// specified interval. It's passed the physical registers whose spill /// weight is the lowest among all the registers whose live intervals /// conflict with the interval. void findIntervalsToSpill(LiveInterval *cur, std::vector > &Candidates, unsigned NumCands, SmallVector &SpillIntervals); /// attemptTrivialCoalescing - If a simple interval is defined by a copy, /// try to allocate the definition to the same register as the source, /// if the register is not defined during the life time of the interval. /// This eliminates a copy, and is used to coalesce copies which were not /// coalesced away before allocation either due to dest and src being in /// different register classes or because the coalescer was overly /// conservative. unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg); /// /// Register usage / availability tracking helpers. /// void initRegUses() { regUse_.resize(tri_->getNumRegs(), 0); regUseBackUp_.resize(tri_->getNumRegs(), 0); } void finalizeRegUses() { #ifndef NDEBUG // Verify all the registers are "freed". bool Error = false; for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) { if (regUse_[i] != 0) { dbgs() << tri_->getName(i) << " is still in use!\n"; Error = true; } } if (Error) llvm_unreachable(0); #endif regUse_.clear(); regUseBackUp_.clear(); } void addRegUse(unsigned physReg) { assert(TargetRegisterInfo::isPhysicalRegister(physReg) && "should be physical register!"); ++regUse_[physReg]; for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) ++regUse_[*as]; } void delRegUse(unsigned physReg) { assert(TargetRegisterInfo::isPhysicalRegister(physReg) && "should be physical register!"); assert(regUse_[physReg] != 0); --regUse_[physReg]; for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) { assert(regUse_[*as] != 0); --regUse_[*as]; } } bool isRegAvail(unsigned physReg) const { assert(TargetRegisterInfo::isPhysicalRegister(physReg) && "should be physical register!"); return regUse_[physReg] == 0; } void backUpRegUses() { regUseBackUp_ = regUse_; } void restoreRegUses() { regUse_ = regUseBackUp_; } /// /// Register handling helpers. /// /// getFreePhysReg - return a free physical register for this virtual /// register interval if we have one, otherwise return 0. unsigned getFreePhysReg(LiveInterval* cur); unsigned getFreePhysReg(LiveInterval* cur, const TargetRegisterClass *RC, unsigned MaxInactiveCount, SmallVector &inactiveCounts, bool SkipDGRegs); /// getFirstNonReservedPhysReg - return the first non-reserved physical /// register in the register class. unsigned getFirstNonReservedPhysReg(const TargetRegisterClass *RC) { ArrayRef O = RegClassInfo.getOrder(RC); assert(!O.empty() && "All registers reserved?!"); return O.front(); } void ComputeRelatedRegClasses(); template void printIntervals(const char* const str, ItTy i, ItTy e) const { DEBUG({ if (str) dbgs() << str << " intervals:\n"; for (; i != e; ++i) { dbgs() << '\t' << *i->first << " -> "; unsigned reg = i->first->reg; if (TargetRegisterInfo::isVirtualRegister(reg)) reg = vrm_->getPhys(reg); dbgs() << tri_->getName(reg) << '\n'; } }); } }; char RALinScan::ID = 0; } INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc", "Linear Scan Register Allocator", false, false) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination) INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights) INITIALIZE_PASS_DEPENDENCY(LiveStacks) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(VirtRegMap) INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc", "Linear Scan Register Allocator", false, false) void RALinScan::ComputeRelatedRegClasses() { // First pass, add all reg classes to the union, and determine at least one // reg class that each register is in. bool HasAliases = false; for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(), E = tri_->regclass_end(); RCI != E; ++RCI) { RelatedRegClasses.insert(*RCI); for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end(); I != E; ++I) { HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0; const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I]; if (PRC) { // Already processed this register. Just make sure we know that // multiple register classes share a register. RelatedRegClasses.unionSets(PRC, *RCI); } else { PRC = *RCI; } } } // Second pass, now that we know conservatively what register classes each reg // belongs to, add info about aliases. We don't need to do this for targets // without register aliases. if (HasAliases) for (DenseMap::iterator I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end(); I != E; ++I) for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) { const TargetRegisterClass *AliasClass = OneClassForEachPhysReg.lookup(*AS); if (AliasClass) RelatedRegClasses.unionSets(I->second, AliasClass); } } /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try /// allocate the definition the same register as the source register if the /// register is not defined during live time of the interval. If the interval is /// killed by a copy, try to use the destination register. This eliminates a /// copy. This is used to coalesce copies which were not coalesced away before /// allocation either due to dest and src being in different register classes or /// because the coalescer was overly conservative. unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) { unsigned Preference = vrm_->getRegAllocPref(cur.reg); if ((Preference && Preference == Reg) || !cur.containsOneValue()) return Reg; // We cannot handle complicated live ranges. Simple linear stuff only. if (cur.ranges.size() != 1) return Reg; const LiveRange &range = cur.ranges.front(); VNInfo *vni = range.valno; if (vni->isUnused() || !vni->def.isValid()) return Reg; unsigned CandReg; { MachineInstr *CopyMI; if ((CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy()) // Defined by a copy, try to extend SrcReg forward CandReg = CopyMI->getOperand(1).getReg(); else if (TrivCoalesceEnds && (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) && CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg()) // Only used by a copy, try to extend DstReg backwards CandReg = CopyMI->getOperand(0).getReg(); else return Reg; // If the target of the copy is a sub-register then don't coalesce. if(CopyMI->getOperand(0).getSubReg()) return Reg; } if (TargetRegisterInfo::isVirtualRegister(CandReg)) { if (!vrm_->isAssignedReg(CandReg)) return Reg; CandReg = vrm_->getPhys(CandReg); } if (Reg == CandReg) return Reg; const TargetRegisterClass *RC = mri_->getRegClass(cur.reg); if (!RC->contains(CandReg)) return Reg; if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg)) return Reg; // Try to coalesce. DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg) << '\n'); vrm_->clearVirt(cur.reg); vrm_->assignVirt2Phys(cur.reg, CandReg); ++NumCoalesce; return CandReg; } bool RALinScan::runOnMachineFunction(MachineFunction &fn) { mf_ = &fn; mri_ = &fn.getRegInfo(); tm_ = &fn.getTarget(); tri_ = tm_->getRegisterInfo(); tii_ = tm_->getInstrInfo(); allocatableRegs_ = tri_->getAllocatableSet(fn); reservedRegs_ = tri_->getReservedRegs(fn); li_ = &getAnalysis(); loopInfo = &getAnalysis(); RegClassInfo.runOnMachineFunction(fn); // We don't run the coalescer here because we have no reason to // interact with it. If the coalescer requires interaction, it // won't do anything. If it doesn't require interaction, we assume // it was run as a separate pass. // If this is the first function compiled, compute the related reg classes. if (RelatedRegClasses.empty()) ComputeRelatedRegClasses(); // Also resize register usage trackers. initRegUses(); vrm_ = &getAnalysis(); if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter()); spiller_.reset(createSpiller(*this, *mf_, *vrm_)); initIntervalSets(); linearScan(); // Rewrite spill code and update the PhysRegsUsed set. rewriter_->runOnMachineFunction(*mf_, *vrm_, li_); // Write out new DBG_VALUE instructions. getAnalysis().emitDebugValues(vrm_); assert(unhandled_.empty() && "Unhandled live intervals remain!"); finalizeRegUses(); fixed_.clear(); active_.clear(); inactive_.clear(); handled_.clear(); NextReloadMap.clear(); DowngradedRegs.clear(); DowngradeMap.clear(); spiller_.reset(0); return true; } /// initIntervalSets - initialize the interval sets. /// void RALinScan::initIntervalSets() { assert(unhandled_.empty() && fixed_.empty() && active_.empty() && inactive_.empty() && "interval sets should be empty on initialization"); handled_.reserve(li_->getNumIntervals()); for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) { if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) { if (!i->second->empty() && allocatableRegs_.test(i->second->reg)) { mri_->setPhysRegUsed(i->second->reg); fixed_.push_back(std::make_pair(i->second, i->second->begin())); } } else { if (i->second->empty()) { assignRegOrStackSlotAtInterval(i->second); } else unhandled_.push(i->second); } } } void RALinScan::linearScan() { // linear scan algorithm DEBUG({ dbgs() << "********** LINEAR SCAN **********\n" << "********** Function: " << mf_->getFunction()->getName() << '\n'; printIntervals("fixed", fixed_.begin(), fixed_.end()); }); while (!unhandled_.empty()) { // pick the interval with the earliest start point LiveInterval* cur = unhandled_.top(); unhandled_.pop(); ++NumIters; DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n'); assert(!cur->empty() && "Empty interval in unhandled set."); processActiveIntervals(cur->beginIndex()); processInactiveIntervals(cur->beginIndex()); assert(TargetRegisterInfo::isVirtualRegister(cur->reg) && "Can only allocate virtual registers!"); // Allocating a virtual register. try to find a free // physical register or spill an interval (possibly this one) in order to // assign it one. assignRegOrStackSlotAtInterval(cur); DEBUG({ printIntervals("active", active_.begin(), active_.end()); printIntervals("inactive", inactive_.begin(), inactive_.end()); }); } // Expire any remaining active intervals while (!active_.empty()) { IntervalPtr &IP = active_.back(); unsigned reg = IP.first->reg; DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n"); assert(TargetRegisterInfo::isVirtualRegister(reg) && "Can only allocate virtual registers!"); reg = vrm_->getPhys(reg); delRegUse(reg); active_.pop_back(); } // Expire any remaining inactive intervals DEBUG({ for (IntervalPtrs::reverse_iterator i = inactive_.rbegin(); i != inactive_.rend(); ++i) dbgs() << "\tinterval " << *i->first << " expired\n"; }); inactive_.clear(); // Add live-ins to every BB except for entry. Also perform trivial coalescing. MachineFunction::iterator EntryMBB = mf_->begin(); SmallVector LiveInMBBs; for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) { LiveInterval &cur = *i->second; unsigned Reg = 0; bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg); if (isPhys) Reg = cur.reg; else if (vrm_->isAssignedReg(cur.reg)) Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg)); if (!Reg) continue; // Ignore splited live intervals. if (!isPhys && vrm_->getPreSplitReg(cur.reg)) continue; for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end(); I != E; ++I) { const LiveRange &LR = *I; if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) { for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i) if (LiveInMBBs[i] != EntryMBB) { assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Adding a virtual register to livein set?"); LiveInMBBs[i]->addLiveIn(Reg); } LiveInMBBs.clear(); } } } DEBUG(dbgs() << *vrm_); // Look for physical registers that end up not being allocated even though // register allocator had to spill other registers in its register class. if (!vrm_->FindUnusedRegisters(li_)) return; } /// processActiveIntervals - expire old intervals and move non-overlapping ones /// to the inactive list. void RALinScan::processActiveIntervals(SlotIndex CurPoint) { DEBUG(dbgs() << "\tprocessing active intervals:\n"); for (unsigned i = 0, e = active_.size(); i != e; ++i) { LiveInterval *Interval = active_[i].first; LiveInterval::iterator IntervalPos = active_[i].second; unsigned reg = Interval->reg; IntervalPos = Interval->advanceTo(IntervalPos, CurPoint); if (IntervalPos == Interval->end()) { // Remove expired intervals. DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n"); assert(TargetRegisterInfo::isVirtualRegister(reg) && "Can only allocate virtual registers!"); reg = vrm_->getPhys(reg); delRegUse(reg); // Pop off the end of the list. active_[i] = active_.back(); active_.pop_back(); --i; --e; } else if (IntervalPos->start > CurPoint) { // Move inactive intervals to inactive list. DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n"); assert(TargetRegisterInfo::isVirtualRegister(reg) && "Can only allocate virtual registers!"); reg = vrm_->getPhys(reg); delRegUse(reg); // add to inactive. inactive_.push_back(std::make_pair(Interval, IntervalPos)); // Pop off the end of the list. active_[i] = active_.back(); active_.pop_back(); --i; --e; } else { // Otherwise, just update the iterator position. active_[i].second = IntervalPos; } } } /// processInactiveIntervals - expire old intervals and move overlapping /// ones to the active list. void RALinScan::processInactiveIntervals(SlotIndex CurPoint) { DEBUG(dbgs() << "\tprocessing inactive intervals:\n"); for (unsigned i = 0, e = inactive_.size(); i != e; ++i) { LiveInterval *Interval = inactive_[i].first; LiveInterval::iterator IntervalPos = inactive_[i].second; unsigned reg = Interval->reg; IntervalPos = Interval->advanceTo(IntervalPos, CurPoint); if (IntervalPos == Interval->end()) { // remove expired intervals. DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n"); // Pop off the end of the list. inactive_[i] = inactive_.back(); inactive_.pop_back(); --i; --e; } else if (IntervalPos->start <= CurPoint) { // move re-activated intervals in active list DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n"); assert(TargetRegisterInfo::isVirtualRegister(reg) && "Can only allocate virtual registers!"); reg = vrm_->getPhys(reg); addRegUse(reg); // add to active active_.push_back(std::make_pair(Interval, IntervalPos)); // Pop off the end of the list. inactive_[i] = inactive_.back(); inactive_.pop_back(); --i; --e; } else { // Otherwise, just update the iterator position. inactive_[i].second = IntervalPos; } } } /// updateSpillWeights - updates the spill weights of the specifed physical /// register and its weight. void RALinScan::updateSpillWeights(std::vector &Weights, unsigned reg, float weight, const TargetRegisterClass *RC) { SmallSet Processed; SmallSet SuperAdded; SmallVector Supers; Weights[reg] += weight; Processed.insert(reg); for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) { Weights[*as] += weight; Processed.insert(*as); if (tri_->isSubRegister(*as, reg) && SuperAdded.insert(*as) && RC->contains(*as)) { Supers.push_back(*as); } } // If the alias is a super-register, and the super-register is in the // register class we are trying to allocate. Then add the weight to all // sub-registers of the super-register even if they are not aliases. // e.g. allocating for GR32, bh is not used, updating bl spill weight. // bl should get the same spill weight otherwise it will be chosen // as a spill candidate since spilling bh doesn't make ebx available. for (unsigned i = 0, e = Supers.size(); i != e; ++i) { for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr) if (!Processed.count(*sr)) Weights[*sr] += weight; } } static RALinScan::IntervalPtrs::iterator FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) { for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end(); I != E; ++I) if (I->first == LI) return I; return IP.end(); } static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, SlotIndex Point){ for (unsigned i = 0, e = V.size(); i != e; ++i) { RALinScan::IntervalPtr &IP = V[i]; LiveInterval::iterator I = std::upper_bound(IP.first->begin(), IP.second, Point); if (I != IP.first->begin()) --I; IP.second = I; } } /// getConflictWeight - Return the number of conflicts between cur /// live interval and defs and uses of Reg weighted by loop depthes. static float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_, MachineRegisterInfo *mri_, MachineLoopInfo *loopInfo) { float Conflicts = 0; for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg), E = mri_->reg_end(); I != E; ++I) { MachineInstr *MI = &*I; if (cur->liveAt(li_->getInstructionIndex(MI))) { unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent()); Conflicts += std::pow(10.0f, (float)loopDepth); } } return Conflicts; } /// findIntervalsToSpill - Determine the intervals to spill for the /// specified interval. It's passed the physical registers whose spill /// weight is the lowest among all the registers whose live intervals /// conflict with the interval. void RALinScan::findIntervalsToSpill(LiveInterval *cur, std::vector > &Candidates, unsigned NumCands, SmallVector &SpillIntervals) { // We have figured out the *best* register to spill. But there are other // registers that are pretty good as well (spill weight within 3%). Spill // the one that has fewest defs and uses that conflict with cur. float Conflicts[3] = { 0.0f, 0.0f, 0.0f }; SmallVector SLIs[3]; DEBUG({ dbgs() << "\tConsidering " << NumCands << " candidates: "; for (unsigned i = 0; i != NumCands; ++i) dbgs() << tri_->getName(Candidates[i].first) << " "; dbgs() << "\n"; }); // Calculate the number of conflicts of each candidate. for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) { unsigned Reg = i->first->reg; unsigned PhysReg = vrm_->getPhys(Reg); if (!cur->overlapsFrom(*i->first, i->second)) continue; for (unsigned j = 0; j < NumCands; ++j) { unsigned Candidate = Candidates[j].first; if (tri_->regsOverlap(PhysReg, Candidate)) { if (NumCands > 1) Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo); SLIs[j].push_back(i->first); } } } for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){ unsigned Reg = i->first->reg; unsigned PhysReg = vrm_->getPhys(Reg); if (!cur->overlapsFrom(*i->first, i->second-1)) continue; for (unsigned j = 0; j < NumCands; ++j) { unsigned Candidate = Candidates[j].first; if (tri_->regsOverlap(PhysReg, Candidate)) { if (NumCands > 1) Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo); SLIs[j].push_back(i->first); } } } // Which is the best candidate? unsigned BestCandidate = 0; float MinConflicts = Conflicts[0]; for (unsigned i = 1; i != NumCands; ++i) { if (Conflicts[i] < MinConflicts) { BestCandidate = i; MinConflicts = Conflicts[i]; } } std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(), std::back_inserter(SpillIntervals)); } namespace { struct WeightCompare { private: const RALinScan &Allocator; public: WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {} typedef std::pair RegWeightPair; bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const { return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first); } }; } static bool weightsAreClose(float w1, float w2) { if (!NewHeuristic) return false; float diff = w1 - w2; if (diff <= 0.02f) // Within 0.02f return true; return (diff / w2) <= 0.05f; // Within 5%. } LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) { DenseMap::iterator I = NextReloadMap.find(cur->reg); if (I == NextReloadMap.end()) return 0; return &li_->getInterval(I->second); } void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) { for (const unsigned *AS = tri_->getOverlaps(Reg); *AS; ++AS) { bool isNew = DowngradedRegs.insert(*AS); (void)isNew; // Silence compiler warning. assert(isNew && "Multiple reloads holding the same register?"); DowngradeMap.insert(std::make_pair(li->reg, *AS)); } ++NumDowngrade; } void RALinScan::UpgradeRegister(unsigned Reg) { if (Reg) { DowngradedRegs.erase(Reg); for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) DowngradedRegs.erase(*AS); } } namespace { struct LISorter { bool operator()(LiveInterval* A, LiveInterval* B) { return A->beginIndex() < B->beginIndex(); } }; } /// assignRegOrStackSlotAtInterval - assign a register if one is available, or /// spill. void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) { const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); DEBUG(dbgs() << "\tallocating current interval from " << RC->getName() << ": "); // This is an implicitly defined live interval, just assign any register. if (cur->empty()) { unsigned physReg = vrm_->getRegAllocPref(cur->reg); if (!physReg) physReg = getFirstNonReservedPhysReg(RC); DEBUG(dbgs() << tri_->getName(physReg) << '\n'); // Note the register is not really in use. vrm_->assignVirt2Phys(cur->reg, physReg); return; } backUpRegUses(); std::vector > SpillWeightsToAdd; SlotIndex StartPosition = cur->beginIndex(); const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC); // If start of this live interval is defined by a move instruction and its // source is assigned a physical register that is compatible with the target // register class, then we should try to assign it the same register. // This can happen when the move is from a larger register class to a smaller // one, e.g. X86::mov32to32_. These move instructions are not coalescable. if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) { VNInfo *vni = cur->begin()->valno; if (!vni->isUnused() && vni->def.isValid()) { MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def); if (CopyMI && CopyMI->isCopy()) { unsigned DstSubReg = CopyMI->getOperand(0).getSubReg(); unsigned SrcReg = CopyMI->getOperand(1).getReg(); unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg(); unsigned Reg = 0; if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) Reg = SrcReg; else if (vrm_->isAssignedReg(SrcReg)) Reg = vrm_->getPhys(SrcReg); if (Reg) { if (SrcSubReg) Reg = tri_->getSubReg(Reg, SrcSubReg); if (DstSubReg) Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC); if (Reg && allocatableRegs_[Reg] && RC->contains(Reg)) mri_->setRegAllocationHint(cur->reg, 0, Reg); } } } } // For every interval in inactive we overlap with, mark the // register as not free and update spill weights. for (IntervalPtrs::const_iterator i = inactive_.begin(), e = inactive_.end(); i != e; ++i) { unsigned Reg = i->first->reg; assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Can only allocate virtual registers!"); const TargetRegisterClass *RegRC = mri_->getRegClass(Reg); // If this is not in a related reg class to the register we're allocating, // don't check it. if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader && cur->overlapsFrom(*i->first, i->second-1)) { Reg = vrm_->getPhys(Reg); addRegUse(Reg); SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight)); } } // Speculatively check to see if we can get a register right now. If not, // we know we won't be able to by adding more constraints. If so, we can // check to see if it is valid. Doing an exhaustive search of the fixed_ list // is very bad (it contains all callee clobbered registers for any functions // with a call), so we want to avoid doing that if possible. unsigned physReg = getFreePhysReg(cur); unsigned BestPhysReg = physReg; if (physReg) { // We got a register. However, if it's in the fixed_ list, we might // conflict with it. Check to see if we conflict with it or any of its // aliases. SmallSet RegAliases; for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS) RegAliases.insert(*AS); bool ConflictsWithFixed = false; for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { IntervalPtr &IP = fixed_[i]; if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) { // Okay, this reg is on the fixed list. Check to see if we actually // conflict. LiveInterval *I = IP.first; if (I->endIndex() > StartPosition) { LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition); IP.second = II; if (II != I->begin() && II->start > StartPosition) --II; if (cur->overlapsFrom(*I, II)) { ConflictsWithFixed = true; break; } } } } // Okay, the register picked by our speculative getFreePhysReg call turned // out to be in use. Actually add all of the conflicting fixed registers to // regUse_ so we can do an accurate query. if (ConflictsWithFixed) { // For every interval in fixed we overlap with, mark the register as not // free and update spill weights. for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { IntervalPtr &IP = fixed_[i]; LiveInterval *I = IP.first; const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg]; if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader && I->endIndex() > StartPosition) { LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition); IP.second = II; if (II != I->begin() && II->start > StartPosition) --II; if (cur->overlapsFrom(*I, II)) { unsigned reg = I->reg; addRegUse(reg); SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight)); } } } // Using the newly updated regUse_ object, which includes conflicts in the // future, see if there are any registers available. physReg = getFreePhysReg(cur); } } // Restore the physical register tracker, removing information about the // future. restoreRegUses(); // If we find a free register, we are done: assign this virtual to // the free physical register and add this interval to the active // list. if (physReg) { DEBUG(dbgs() << tri_->getName(physReg) << '\n'); assert(RC->contains(physReg) && "Invalid candidate"); vrm_->assignVirt2Phys(cur->reg, physReg); addRegUse(physReg); active_.push_back(std::make_pair(cur, cur->begin())); handled_.push_back(cur); // Remember physReg for avoiding a write-after-write hazard in the next // instruction. if (AvoidWAWHazard && tri_->avoidWriteAfterWrite(mri_->getRegClass(cur->reg))) avoidWAW_ = physReg; // "Upgrade" the physical register since it has been allocated. UpgradeRegister(physReg); if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) { // "Downgrade" physReg to try to keep physReg from being allocated until // the next reload from the same SS is allocated. mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg); DowngradeRegister(cur, physReg); } return; } DEBUG(dbgs() << "no free registers\n"); // Compile the spill weights into an array that is better for scanning. std::vector SpillWeights(tri_->getNumRegs(), 0.0f); for (std::vector >::iterator I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I) updateSpillWeights(SpillWeights, I->first, I->second, RC); // for each interval in active, update spill weights. for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end(); i != e; ++i) { unsigned reg = i->first->reg; assert(TargetRegisterInfo::isVirtualRegister(reg) && "Can only allocate virtual registers!"); reg = vrm_->getPhys(reg); updateSpillWeights(SpillWeights, reg, i->first->weight, RC); } DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n"); // Find a register to spill. float minWeight = HUGE_VALF; unsigned minReg = 0; bool Found = false; std::vector > RegsWeights; ArrayRef Order = RegClassInfo.getOrder(RC); if (!minReg || SpillWeights[minReg] == HUGE_VALF) for (unsigned i = 0; i != Order.size(); ++i) { unsigned reg = Order[i]; float regWeight = SpillWeights[reg]; // Skip recently allocated registers and reserved registers. if (minWeight > regWeight && !isRecentlyUsed(reg)) Found = true; RegsWeights.push_back(std::make_pair(reg, regWeight)); } // If we didn't find a register that is spillable, try aliases? if (!Found) { for (unsigned i = 0; i != Order.size(); ++i) { unsigned reg = Order[i]; // No need to worry about if the alias register size < regsize of RC. // We are going to spill all registers that alias it anyway. for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as])); } } // Sort all potential spill candidates by weight. std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this)); minReg = RegsWeights[0].first; minWeight = RegsWeights[0].second; if (minWeight == HUGE_VALF) { // All registers must have inf weight. Just grab one! minReg = BestPhysReg ? BestPhysReg : getFirstNonReservedPhysReg(RC); if (cur->weight == HUGE_VALF || li_->getApproximateInstructionCount(*cur) == 0) { // Spill a physical register around defs and uses. if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) { // spillPhysRegAroundRegDefsUses may have invalidated iterator stored // in fixed_. Reset them. for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { IntervalPtr &IP = fixed_[i]; LiveInterval *I = IP.first; if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg)) IP.second = I->advanceTo(I->begin(), StartPosition); } DowngradedRegs.clear(); assignRegOrStackSlotAtInterval(cur); } else { assert(false && "Ran out of registers during register allocation!"); report_fatal_error("Ran out of registers during register allocation!"); } return; } } // Find up to 3 registers to consider as spill candidates. unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1; while (LastCandidate > 1) { if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight)) break; --LastCandidate; } DEBUG({ dbgs() << "\t\tregister(s) with min weight(s): "; for (unsigned i = 0; i != LastCandidate; ++i) dbgs() << tri_->getName(RegsWeights[i].first) << " (" << RegsWeights[i].second << ")\n"; }); // If the current has the minimum weight, we need to spill it and // add any added intervals back to unhandled, and restart // linearscan. if (cur->weight != HUGE_VALF && cur->weight <= minWeight) { DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n'); SmallVector added; LiveRangeEdit LRE(*cur, added); spiller_->spill(LRE); std::sort(added.begin(), added.end(), LISorter()); if (added.empty()) return; // Early exit if all spills were folded. // Merge added with unhandled. Note that we have already sorted // intervals returned by addIntervalsForSpills by their starting // point. // This also update the NextReloadMap. That is, it adds mapping from a // register defined by a reload from SS to the next reload from SS in the // same basic block. MachineBasicBlock *LastReloadMBB = 0; LiveInterval *LastReload = 0; int LastReloadSS = VirtRegMap::NO_STACK_SLOT; for (unsigned i = 0, e = added.size(); i != e; ++i) { LiveInterval *ReloadLi = added[i]; if (ReloadLi->weight == HUGE_VALF && li_->getApproximateInstructionCount(*ReloadLi) == 0) { SlotIndex ReloadIdx = ReloadLi->beginIndex(); MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx); int ReloadSS = vrm_->getStackSlot(ReloadLi->reg); if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) { // Last reload of same SS is in the same MBB. We want to try to // allocate both reloads the same register and make sure the reg // isn't clobbered in between if at all possible. assert(LastReload->beginIndex() < ReloadIdx); NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg)); } LastReloadMBB = ReloadMBB; LastReload = ReloadLi; LastReloadSS = ReloadSS; } unhandled_.push(ReloadLi); } return; } ++NumBacktracks; // Push the current interval back to unhandled since we are going // to re-run at least this iteration. Since we didn't modify it it // should go back right in the front of the list unhandled_.push(cur); assert(TargetRegisterInfo::isPhysicalRegister(minReg) && "did not choose a register to spill?"); // We spill all intervals aliasing the register with // minimum weight, rollback to the interval with the earliest // start point and let the linear scan algorithm run again SmallVector spillIs; // Determine which intervals have to be spilled. findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs); // Set of spilled vregs (used later to rollback properly) SmallSet spilled; // The earliest start of a Spilled interval indicates up to where // in handled we need to roll back assert(!spillIs.empty() && "No spill intervals?"); SlotIndex earliestStart = spillIs[0]->beginIndex(); // Spill live intervals of virtual regs mapped to the physical register we // want to clear (and its aliases). We only spill those that overlap with the // current interval as the rest do not affect its allocation. we also keep // track of the earliest start of all spilled live intervals since this will // mark our rollback point. SmallVector added; while (!spillIs.empty()) { LiveInterval *sli = spillIs.back(); spillIs.pop_back(); DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n'); if (sli->beginIndex() < earliestStart) earliestStart = sli->beginIndex(); LiveRangeEdit LRE(*sli, added, 0, &spillIs); spiller_->spill(LRE); spilled.insert(sli->reg); } // Include any added intervals in earliestStart. for (unsigned i = 0, e = added.size(); i != e; ++i) { SlotIndex SI = added[i]->beginIndex(); if (SI < earliestStart) earliestStart = SI; } DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n'); // Scan handled in reverse order up to the earliest start of a // spilled live interval and undo each one, restoring the state of // unhandled. while (!handled_.empty()) { LiveInterval* i = handled_.back(); // If this interval starts before t we are done. if (!i->empty() && i->beginIndex() < earliestStart) break; DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n'); handled_.pop_back(); // When undoing a live interval allocation we must know if it is active or // inactive to properly update regUse_ and the VirtRegMap. IntervalPtrs::iterator it; if ((it = FindIntervalInVector(active_, i)) != active_.end()) { active_.erase(it); assert(!TargetRegisterInfo::isPhysicalRegister(i->reg)); if (!spilled.count(i->reg)) unhandled_.push(i); delRegUse(vrm_->getPhys(i->reg)); vrm_->clearVirt(i->reg); } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) { inactive_.erase(it); assert(!TargetRegisterInfo::isPhysicalRegister(i->reg)); if (!spilled.count(i->reg)) unhandled_.push(i); vrm_->clearVirt(i->reg); } else { assert(TargetRegisterInfo::isVirtualRegister(i->reg) && "Can only allocate virtual registers!"); vrm_->clearVirt(i->reg); unhandled_.push(i); } DenseMap::iterator ii = DowngradeMap.find(i->reg); if (ii == DowngradeMap.end()) // It interval has a preference, it must be defined by a copy. Clear the // preference now since the source interval allocation may have been // undone as well. mri_->setRegAllocationHint(i->reg, 0, 0); else { UpgradeRegister(ii->second); } } // Rewind the iterators in the active, inactive, and fixed lists back to the // point we reverted to. RevertVectorIteratorsTo(active_, earliestStart); RevertVectorIteratorsTo(inactive_, earliestStart); RevertVectorIteratorsTo(fixed_, earliestStart); // Scan the rest and undo each interval that expired after t and // insert it in active (the next iteration of the algorithm will // put it in inactive if required) for (unsigned i = 0, e = handled_.size(); i != e; ++i) { LiveInterval *HI = handled_[i]; if (!HI->expiredAt(earliestStart) && HI->expiredAt(cur->beginIndex())) { DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n'); active_.push_back(std::make_pair(HI, HI->begin())); assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg)); addRegUse(vrm_->getPhys(HI->reg)); } } // Merge added with unhandled. // This also update the NextReloadMap. That is, it adds mapping from a // register defined by a reload from SS to the next reload from SS in the // same basic block. MachineBasicBlock *LastReloadMBB = 0; LiveInterval *LastReload = 0; int LastReloadSS = VirtRegMap::NO_STACK_SLOT; std::sort(added.begin(), added.end(), LISorter()); for (unsigned i = 0, e = added.size(); i != e; ++i) { LiveInterval *ReloadLi = added[i]; if (ReloadLi->weight == HUGE_VALF && li_->getApproximateInstructionCount(*ReloadLi) == 0) { SlotIndex ReloadIdx = ReloadLi->beginIndex(); MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx); int ReloadSS = vrm_->getStackSlot(ReloadLi->reg); if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) { // Last reload of same SS is in the same MBB. We want to try to // allocate both reloads the same register and make sure the reg // isn't clobbered in between if at all possible. assert(LastReload->beginIndex() < ReloadIdx); NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg)); } LastReloadMBB = ReloadMBB; LastReload = ReloadLi; LastReloadSS = ReloadSS; } unhandled_.push(ReloadLi); } } unsigned RALinScan::getFreePhysReg(LiveInterval* cur, const TargetRegisterClass *RC, unsigned MaxInactiveCount, SmallVector &inactiveCounts, bool SkipDGRegs) { unsigned FreeReg = 0; unsigned FreeRegInactiveCount = 0; std::pair Hint = mri_->getRegAllocationHint(cur->reg); // Resolve second part of the hint (if possible) given the current allocation. unsigned physReg = Hint.second; if (TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg)) physReg = vrm_->getPhys(physReg); ArrayRef Order; if (Hint.first) Order = tri_->getRawAllocationOrder(RC, Hint.first, physReg, *mf_); else Order = RegClassInfo.getOrder(RC); assert(!Order.empty() && "No allocatable register in this register class!"); // Scan for the first available register. for (unsigned i = 0; i != Order.size(); ++i) { unsigned Reg = Order[i]; // Ignore "downgraded" registers. if (SkipDGRegs && DowngradedRegs.count(Reg)) continue; // Skip reserved registers. if (reservedRegs_.test(Reg)) continue; // Skip recently allocated registers. if (isRegAvail(Reg) && (!SkipDGRegs || !isRecentlyUsed(Reg))) { FreeReg = Reg; if (FreeReg < inactiveCounts.size()) FreeRegInactiveCount = inactiveCounts[FreeReg]; else FreeRegInactiveCount = 0; break; } } // If there are no free regs, or if this reg has the max inactive count, // return this register. if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) { // Remember what register we picked so we can skip it next time. if (FreeReg != 0) recordRecentlyUsed(FreeReg); return FreeReg; } // Continue scanning the registers, looking for the one with the highest // inactive count. Alkis found that this reduced register pressure very // slightly on X86 (in rev 1.94 of this file), though this should probably be // reevaluated now. for (unsigned i = 0; i != Order.size(); ++i) { unsigned Reg = Order[i]; // Ignore "downgraded" registers. if (SkipDGRegs && DowngradedRegs.count(Reg)) continue; // Skip reserved registers. if (reservedRegs_.test(Reg)) continue; if (isRegAvail(Reg) && Reg < inactiveCounts.size() && FreeRegInactiveCount < inactiveCounts[Reg] && (!SkipDGRegs || !isRecentlyUsed(Reg))) { FreeReg = Reg; FreeRegInactiveCount = inactiveCounts[Reg]; if (FreeRegInactiveCount == MaxInactiveCount) break; // We found the one with the max inactive count. } } // Remember what register we picked so we can skip it next time. recordRecentlyUsed(FreeReg); return FreeReg; } /// getFreePhysReg - return a free physical register for this virtual register /// interval if we have one, otherwise return 0. unsigned RALinScan::getFreePhysReg(LiveInterval *cur) { SmallVector inactiveCounts; unsigned MaxInactiveCount = 0; const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC); for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end(); i != e; ++i) { unsigned reg = i->first->reg; assert(TargetRegisterInfo::isVirtualRegister(reg) && "Can only allocate virtual registers!"); // If this is not in a related reg class to the register we're allocating, // don't check it. const TargetRegisterClass *RegRC = mri_->getRegClass(reg); if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) { reg = vrm_->getPhys(reg); if (inactiveCounts.size() <= reg) inactiveCounts.resize(reg+1); ++inactiveCounts[reg]; MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]); } } // If copy coalescer has assigned a "preferred" register, check if it's // available first. unsigned Preference = vrm_->getRegAllocPref(cur->reg); if (Preference) { DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") "); if (isRegAvail(Preference) && RC->contains(Preference)) return Preference; } unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, true); if (FreeReg) return FreeReg; return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false); } FunctionPass* llvm::createLinearScanRegisterAllocator() { return new RALinScan(); }