//===-- FunctionLoweringInfo.cpp ------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements routines for translating functions from LLVM IR into // Machine IR. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/WinEHFuncInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetFrameLowering.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include using namespace llvm; #define DEBUG_TYPE "function-lowering-info" /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by /// PHI nodes or outside of the basic block that defines it, or used by a /// switch or atomic instruction, which may expand to multiple basic blocks. static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { if (I->use_empty()) return false; if (isa(I)) return true; const BasicBlock *BB = I->getParent(); for (const User *U : I->users()) if (cast(U)->getParent() != BB || isa(U)) return true; return false; } static ISD::NodeType getPreferredExtendForValue(const Value *V) { // For the users of the source value being used for compare instruction, if // the number of signed predicate is greater than unsigned predicate, we // prefer to use SIGN_EXTEND. // // With this optimization, we would be able to reduce some redundant sign or // zero extension instruction, and eventually more machine CSE opportunities // can be exposed. ISD::NodeType ExtendKind = ISD::ANY_EXTEND; unsigned NumOfSigned = 0, NumOfUnsigned = 0; for (const User *U : V->users()) { if (const auto *CI = dyn_cast(U)) { NumOfSigned += CI->isSigned(); NumOfUnsigned += CI->isUnsigned(); } } if (NumOfSigned > NumOfUnsigned) ExtendKind = ISD::SIGN_EXTEND; return ExtendKind; } namespace { struct WinEHNumbering { WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo), CurrentBaseState(-1), NextState(0) {} WinEHFuncInfo &FuncInfo; int CurrentBaseState; int NextState; SmallVector, 4> HandlerStack; SmallPtrSet VisitedHandlers; int currentEHNumber() const { return HandlerStack.empty() ? CurrentBaseState : HandlerStack.back()->getEHState(); } void createUnwindMapEntry(int ToState, ActionHandler *AH); void createTryBlockMapEntry(int TryLow, int TryHigh, ArrayRef Handlers); void processCallSite(MutableArrayRef> Actions, ImmutableCallSite CS); void popUnmatchedActions(int FirstMismatch); void calculateStateNumbers(const Function &F); void findActionRootLPads(const Function &F); }; } void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, SelectionDAG *DAG) { Fn = &fn; MF = &mf; TLI = MF->getSubtarget().getTargetLowering(); RegInfo = &MF->getRegInfo(); MachineModuleInfo &MMI = MF->getMMI(); // Check whether the function can return without sret-demotion. SmallVector Outs; GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI); CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, Fn->isVarArg(), Outs, Fn->getContext()); // Initialize the mapping of values to registers. This is only set up for // instruction values that are used outside of the block that defines // them. Function::const_iterator BB = Fn->begin(), EB = Fn->end(); for (; BB != EB; ++BB) for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (const AllocaInst *AI = dyn_cast(I)) { // Static allocas can be folded into the initial stack frame adjustment. if (AI->isStaticAlloca()) { const ConstantInt *CUI = cast(AI->getArraySize()); Type *Ty = AI->getAllocatedType(); uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); unsigned Align = std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), AI->getAlignment()); TySize *= CUI->getZExtValue(); // Get total allocated size. if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. StaticAllocaMap[AI] = MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI); } else { unsigned Align = std::max( (unsigned)TLI->getDataLayout()->getPrefTypeAlignment( AI->getAllocatedType()), AI->getAlignment()); unsigned StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlignment(); if (Align <= StackAlign) Align = 0; // Inform the Frame Information that we have variable-sized objects. MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI); } } // Look for inline asm that clobbers the SP register. if (isa(I) || isa(I)) { ImmutableCallSite CS(I); if (isa(CS.getCalledValue())) { unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); std::vector Ops = TLI->ParseConstraints(TRI, CS); for (size_t I = 0, E = Ops.size(); I != E; ++I) { TargetLowering::AsmOperandInfo &Op = Ops[I]; if (Op.Type == InlineAsm::isClobber) { // Clobbers don't have SDValue operands, hence SDValue(). TLI->ComputeConstraintToUse(Op, SDValue(), DAG); std::pair PhysReg = TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, Op.ConstraintVT); if (PhysReg.first == SP) MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true); } } } } // Look for calls to the @llvm.va_start intrinsic. We can omit some // prologue boilerplate for variadic functions that don't examine their // arguments. if (const auto *II = dyn_cast(I)) { if (II->getIntrinsicID() == Intrinsic::vastart) MF->getFrameInfo()->setHasVAStart(true); } // If we have a musttail call in a variadic funciton, we need to ensure we // forward implicit register parameters. if (const auto *CI = dyn_cast(I)) { if (CI->isMustTailCall() && Fn->isVarArg()) MF->getFrameInfo()->setHasMustTailInVarArgFunc(true); } // Mark values used outside their block as exported, by allocating // a virtual register for them. if (isUsedOutsideOfDefiningBlock(I)) if (!isa(I) || !StaticAllocaMap.count(cast(I))) InitializeRegForValue(I); // Collect llvm.dbg.declare information. This is done now instead of // during the initial isel pass through the IR so that it is done // in a predictable order. if (const DbgDeclareInst *DI = dyn_cast(I)) { assert(DI->getVariable() && "Missing variable"); assert(DI->getDebugLoc() && "Missing location"); if (MMI.hasDebugInfo()) { // Don't handle byval struct arguments or VLAs, for example. // Non-byval arguments are handled here (they refer to the stack // temporary alloca at this point). const Value *Address = DI->getAddress(); if (Address) { if (const BitCastInst *BCI = dyn_cast(Address)) Address = BCI->getOperand(0); if (const AllocaInst *AI = dyn_cast(Address)) { DenseMap::iterator SI = StaticAllocaMap.find(AI); if (SI != StaticAllocaMap.end()) { // Check for VLAs. int FI = SI->second; MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(), FI, DI->getDebugLoc()); } } } } } // Decide the preferred extend type for a value. PreferredExtendType[I] = getPreferredExtendForValue(I); } // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This // also creates the initial PHI MachineInstrs, though none of the input // operands are populated. for (BB = Fn->begin(); BB != EB; ++BB) { MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); MBBMap[BB] = MBB; MF->push_back(MBB); // Transfer the address-taken flag. This is necessary because there could // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only // the first one should be marked. if (BB->hasAddressTaken()) MBB->setHasAddressTaken(); // Create Machine PHI nodes for LLVM PHI nodes, lowering them as // appropriate. for (BasicBlock::const_iterator I = BB->begin(); const PHINode *PN = dyn_cast(I); ++I) { if (PN->use_empty()) continue; // Skip empty types if (PN->getType()->isEmptyTy()) continue; DebugLoc DL = PN->getDebugLoc(); unsigned PHIReg = ValueMap[PN]; assert(PHIReg && "PHI node does not have an assigned virtual register!"); SmallVector ValueVTs; ComputeValueVTs(*TLI, PN->getType(), ValueVTs); for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { EVT VT = ValueVTs[vti]; unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); for (unsigned i = 0; i != NumRegisters; ++i) BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); PHIReg += NumRegisters; } } } // Mark landing pad blocks. SmallVector LPads; for (BB = Fn->begin(); BB != EB; ++BB) { if (const auto *Invoke = dyn_cast(BB->getTerminator())) MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); if (BB->isLandingPad()) LPads.push_back(BB->getLandingPadInst()); } // If this is an MSVC EH personality, we need to do a bit more work. EHPersonality Personality = EHPersonality::Unknown; if (!LPads.empty()) Personality = classifyEHPersonality(LPads.back()->getPersonalityFn()); if (!isMSVCEHPersonality(Personality)) return; WinEHFuncInfo *EHInfo = nullptr; if (Personality == EHPersonality::MSVC_Win64SEH) { addSEHHandlersForLPads(LPads); } else if (Personality == EHPersonality::MSVC_CXX) { const Function *WinEHParentFn = MMI.getWinEHParent(&fn); EHInfo = &MMI.getWinEHFuncInfo(WinEHParentFn); if (EHInfo->LandingPadStateMap.empty()) { WinEHNumbering Num(*EHInfo); Num.findActionRootLPads(*WinEHParentFn); // The VisitedHandlers list is used by both findActionRootLPads and // calculateStateNumbers, but both functions need to visit all handlers. Num.VisitedHandlers.clear(); Num.calculateStateNumbers(*WinEHParentFn); // Pop everything on the handler stack. // It may be necessary to call this more than once because a handler can // be pushed on the stack as a result of clearing the stack. while (!Num.HandlerStack.empty()) Num.processCallSite(None, ImmutableCallSite()); } // Copy the state numbers to LandingPadInfo for the current function, which // could be a handler or the parent. for (const LandingPadInst *LP : LPads) { MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()]; MMI.addWinEHState(LPadMBB, EHInfo->LandingPadStateMap[LP]); } } } void FunctionLoweringInfo::addSEHHandlersForLPads( ArrayRef LPads) { MachineModuleInfo &MMI = MF->getMMI(); // Iterate over all landing pads with llvm.eh.actions calls. for (const LandingPadInst *LP : LPads) { const IntrinsicInst *ActionsCall = dyn_cast(LP->getNextNode()); if (!ActionsCall || ActionsCall->getIntrinsicID() != Intrinsic::eh_actions) continue; // Parse the llvm.eh.actions call we found. MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()]; SmallVector, 4> Actions; parseEHActions(ActionsCall, Actions); // Iterate EH actions from most to least precedence, which means // iterating in reverse. for (auto I = Actions.rbegin(), E = Actions.rend(); I != E; ++I) { ActionHandler *Action = I->get(); if (auto *CH = dyn_cast(Action)) { const auto *Filter = dyn_cast(CH->getSelector()->stripPointerCasts()); assert((Filter || CH->getSelector()->isNullValue()) && "expected function or catch-all"); const auto *RecoverBA = cast(CH->getHandlerBlockOrFunc()); MMI.addSEHCatchHandler(LPadMBB, Filter, RecoverBA); } else { assert(isa(Action)); const auto *Fini = cast(Action->getHandlerBlockOrFunc()); MMI.addSEHCleanupHandler(LPadMBB, Fini); } } } } void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) { WinEHUnwindMapEntry UME; UME.ToState = ToState; if (auto *CH = dyn_cast_or_null(AH)) UME.Cleanup = cast(CH->getHandlerBlockOrFunc()); else UME.Cleanup = nullptr; FuncInfo.UnwindMap.push_back(UME); } void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh, ArrayRef Handlers) { // See if we already have an entry for this set of handlers. // This is using iterators rather than a range-based for loop because // if we find the entry we're looking for we'll need the iterator to erase it. int NumHandlers = Handlers.size(); auto I = FuncInfo.TryBlockMap.begin(); auto E = FuncInfo.TryBlockMap.end(); for ( ; I != E; ++I) { auto &Entry = *I; if (Entry.HandlerArray.size() != (size_t)NumHandlers) continue; int N; for (N = 0; N < NumHandlers; ++N) { if (Entry.HandlerArray[N].Handler != Handlers[N]->getHandlerBlockOrFunc()) break; // breaks out of inner loop } // If all the handlers match, this is what we were looking for. if (N == NumHandlers) { break; } } // If we found an existing entry for this set of handlers, extend the range // but move the entry to the end of the map vector. The order of entries // in the map is critical to the way that the runtime finds handlers. // FIXME: Depending on what has happened with block ordering, this may // incorrectly combine entries that should remain separate. if (I != E) { // Copy the existing entry. WinEHTryBlockMapEntry Entry = *I; Entry.TryLow = std::min(TryLow, Entry.TryLow); Entry.TryHigh = std::max(TryHigh, Entry.TryHigh); assert(Entry.TryLow <= Entry.TryHigh); // Erase the old entry and add this one to the back. FuncInfo.TryBlockMap.erase(I); FuncInfo.TryBlockMap.push_back(Entry); return; } // If we didn't find an entry, create a new one. WinEHTryBlockMapEntry TBME; TBME.TryLow = TryLow; TBME.TryHigh = TryHigh; assert(TBME.TryLow <= TBME.TryHigh); for (CatchHandler *CH : Handlers) { WinEHHandlerType HT; if (CH->getSelector()->isNullValue()) { HT.Adjectives = 0x40; HT.TypeDescriptor = nullptr; } else { auto *GV = cast(CH->getSelector()->stripPointerCasts()); // Selectors are always pointers to GlobalVariables with 'struct' type. // The struct has two fields, adjectives and a type descriptor. auto *CS = cast(GV->getInitializer()); HT.Adjectives = cast(CS->getAggregateElement(0U))->getZExtValue(); HT.TypeDescriptor = cast(CS->getAggregateElement(1)->stripPointerCasts()); } HT.Handler = cast(CH->getHandlerBlockOrFunc()); HT.CatchObjRecoverIdx = CH->getExceptionVarIndex(); TBME.HandlerArray.push_back(HT); } FuncInfo.TryBlockMap.push_back(TBME); } static void print_name(const Value *V) { #ifndef NDEBUG if (!V) { DEBUG(dbgs() << "null"); return; } if (const auto *F = dyn_cast(V)) DEBUG(dbgs() << F->getName()); else DEBUG(V->dump()); #endif } void WinEHNumbering::processCallSite( MutableArrayRef> Actions, ImmutableCallSite CS) { DEBUG(dbgs() << "processCallSite (EH state = " << currentEHNumber() << ") for: "); print_name(CS ? CS.getCalledValue() : nullptr); DEBUG(dbgs() << '\n'); DEBUG(dbgs() << "HandlerStack: \n"); for (int I = 0, E = HandlerStack.size(); I < E; ++I) { DEBUG(dbgs() << " "); print_name(HandlerStack[I]->getHandlerBlockOrFunc()); DEBUG(dbgs() << '\n'); } DEBUG(dbgs() << "Actions: \n"); for (int I = 0, E = Actions.size(); I < E; ++I) { DEBUG(dbgs() << " "); print_name(Actions[I]->getHandlerBlockOrFunc()); DEBUG(dbgs() << '\n'); } int FirstMismatch = 0; for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E; ++FirstMismatch) { if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() != Actions[FirstMismatch]->getHandlerBlockOrFunc()) break; } // Remove unmatched actions from the stack and process their EH states. popUnmatchedActions(FirstMismatch); DEBUG(dbgs() << "Pushing actions for CallSite: "); print_name(CS ? CS.getCalledValue() : nullptr); DEBUG(dbgs() << '\n'); bool LastActionWasCatch = false; const LandingPadInst *LastRootLPad = nullptr; for (size_t I = FirstMismatch; I != Actions.size(); ++I) { // We can reuse eh states when pushing two catches for the same invoke. bool CurrActionIsCatch = isa(Actions[I].get()); auto *Handler = cast(Actions[I]->getHandlerBlockOrFunc()); // Various conditions can lead to a handler being popped from the // stack and re-pushed later. That shouldn't create a new state. // FIXME: Can code optimization lead to re-used handlers? if (FuncInfo.HandlerEnclosedState.count(Handler)) { // If we already assigned the state enclosed by this handler re-use it. Actions[I]->setEHState(FuncInfo.HandlerEnclosedState[Handler]); continue; } const LandingPadInst* RootLPad = FuncInfo.RootLPad[Handler]; if (CurrActionIsCatch && LastActionWasCatch && RootLPad == LastRootLPad) { DEBUG(dbgs() << "setEHState for handler to " << currentEHNumber() << "\n"); Actions[I]->setEHState(currentEHNumber()); } else { DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() << ", "); print_name(Actions[I]->getHandlerBlockOrFunc()); DEBUG(dbgs() << ") with EH state " << NextState << "\n"); createUnwindMapEntry(currentEHNumber(), Actions[I].get()); DEBUG(dbgs() << "setEHState for handler to " << NextState << "\n"); Actions[I]->setEHState(NextState); NextState++; } HandlerStack.push_back(std::move(Actions[I])); LastActionWasCatch = CurrActionIsCatch; LastRootLPad = RootLPad; } // This is used to defer numbering states for a handler until after the // last time it appears in an invoke action list. if (CS.isInvoke()) { for (int I = 0, E = HandlerStack.size(); I < E; ++I) { auto *Handler = cast(HandlerStack[I]->getHandlerBlockOrFunc()); if (FuncInfo.LastInvoke[Handler] != cast(CS.getInstruction())) continue; FuncInfo.LastInvokeVisited[Handler] = true; DEBUG(dbgs() << "Last invoke of "); print_name(Handler); DEBUG(dbgs() << " has been visited.\n"); } } DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: "); print_name(CS ? CS.getCalledValue() : nullptr); DEBUG(dbgs() << '\n'); } void WinEHNumbering::popUnmatchedActions(int FirstMismatch) { // Don't recurse while we are looping over the handler stack. Instead, defer // the numbering of the catch handlers until we are done popping. SmallVector PoppedCatches; for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) { std::unique_ptr Handler = HandlerStack.pop_back_val(); if (isa(Handler.get())) PoppedCatches.push_back(cast(Handler.release())); } int TryHigh = NextState - 1; int LastTryLowIdx = 0; for (int I = 0, E = PoppedCatches.size(); I != E; ++I) { CatchHandler *CH = PoppedCatches[I]; DEBUG(dbgs() << "Popped handler with state " << CH->getEHState() << "\n"); if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) { int TryLow = CH->getEHState(); auto Handlers = makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1); DEBUG(dbgs() << "createTryBlockMapEntry(" << TryLow << ", " << TryHigh); for (size_t J = 0; J < Handlers.size(); ++J) { DEBUG(dbgs() << ", "); print_name(Handlers[J]->getHandlerBlockOrFunc()); } DEBUG(dbgs() << ")\n"); createTryBlockMapEntry(TryLow, TryHigh, Handlers); LastTryLowIdx = I + 1; } } for (CatchHandler *CH : PoppedCatches) { if (auto *F = dyn_cast(CH->getHandlerBlockOrFunc())) { if (FuncInfo.LastInvokeVisited[F]) { DEBUG(dbgs() << "Assigning base state " << NextState << " to "); print_name(F); DEBUG(dbgs() << '\n'); FuncInfo.HandlerBaseState[F] = NextState; DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() << ", null)\n"); createUnwindMapEntry(currentEHNumber(), nullptr); ++NextState; calculateStateNumbers(*F); } else { DEBUG(dbgs() << "Deferring handling of "); print_name(F); DEBUG(dbgs() << " until last invoke visited.\n"); } } delete CH; } } void WinEHNumbering::calculateStateNumbers(const Function &F) { auto I = VisitedHandlers.insert(&F); if (!I.second) return; // We've already visited this handler, don't renumber it. int OldBaseState = CurrentBaseState; if (FuncInfo.HandlerBaseState.count(&F)) { CurrentBaseState = FuncInfo.HandlerBaseState[&F]; } size_t SavedHandlerStackSize = HandlerStack.size(); DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n'); SmallVector, 4> ActionList; for (const BasicBlock &BB : F) { for (const Instruction &I : BB) { const auto *CI = dyn_cast(&I); if (!CI || CI->doesNotThrow()) continue; processCallSite(None, CI); } const auto *II = dyn_cast(BB.getTerminator()); if (!II) continue; const LandingPadInst *LPI = II->getLandingPadInst(); auto *ActionsCall = dyn_cast(LPI->getNextNode()); if (!ActionsCall) continue; assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions); parseEHActions(ActionsCall, ActionList); if (ActionList.empty()) continue; processCallSite(ActionList, II); ActionList.clear(); FuncInfo.LandingPadStateMap[LPI] = currentEHNumber(); DEBUG(dbgs() << "Assigning state " << currentEHNumber() << " to landing pad at " << LPI->getParent()->getName() << '\n'); } // Pop any actions that were pushed on the stack for this function. popUnmatchedActions(SavedHandlerStackSize); DEBUG(dbgs() << "Assigning max state " << NextState - 1 << " to " << F.getName() << '\n'); FuncInfo.CatchHandlerMaxState[&F] = NextState - 1; CurrentBaseState = OldBaseState; } // This function follows the same basic traversal as calculateStateNumbers // but it is necessary to identify the root landing pad associated // with each action before we start assigning state numbers. void WinEHNumbering::findActionRootLPads(const Function &F) { auto I = VisitedHandlers.insert(&F); if (!I.second) return; // We've already visited this handler, don't revisit it. SmallVector, 4> ActionList; for (const BasicBlock &BB : F) { const auto *II = dyn_cast(BB.getTerminator()); if (!II) continue; const LandingPadInst *LPI = II->getLandingPadInst(); auto *ActionsCall = dyn_cast(LPI->getNextNode()); if (!ActionsCall) continue; assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions); parseEHActions(ActionsCall, ActionList); if (ActionList.empty()) continue; for (int I = 0, E = ActionList.size(); I < E; ++I) { if (auto *Handler = dyn_cast(ActionList[I]->getHandlerBlockOrFunc())) { FuncInfo.LastInvoke[Handler] = II; // Don't replace the root landing pad if we previously saw this // handler in a different function. if (FuncInfo.RootLPad.count(Handler) && FuncInfo.RootLPad[Handler]->getParent()->getParent() != &F) continue; DEBUG(dbgs() << "Setting root lpad for "); print_name(Handler); DEBUG(dbgs() << " to " << LPI->getParent()->getName() << '\n'); FuncInfo.RootLPad[Handler] = LPI; } } // Walk the actions again and look for nested handlers. This has to // happen after all of the actions have been processed in the current // function. for (int I = 0, E = ActionList.size(); I < E; ++I) if (auto *Handler = dyn_cast(ActionList[I]->getHandlerBlockOrFunc())) findActionRootLPads(*Handler); ActionList.clear(); } } /// clear - Clear out all the function-specific state. This returns this /// FunctionLoweringInfo to an empty state, ready to be used for a /// different function. void FunctionLoweringInfo::clear() { assert(CatchInfoFound.size() == CatchInfoLost.size() && "Not all catch info was assigned to a landing pad!"); MBBMap.clear(); ValueMap.clear(); StaticAllocaMap.clear(); #ifndef NDEBUG CatchInfoLost.clear(); CatchInfoFound.clear(); #endif LiveOutRegInfo.clear(); VisitedBBs.clear(); ArgDbgValues.clear(); ByValArgFrameIndexMap.clear(); RegFixups.clear(); StatepointStackSlots.clear(); StatepointRelocatedValues.clear(); PreferredExtendType.clear(); } /// CreateReg - Allocate a single virtual register for the given type. unsigned FunctionLoweringInfo::CreateReg(MVT VT) { return RegInfo->createVirtualRegister( MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); } /// CreateRegs - Allocate the appropriate number of virtual registers of /// the correctly promoted or expanded types. Assign these registers /// consecutive vreg numbers and return the first assigned number. /// /// In the case that the given value has struct or array type, this function /// will assign registers for each member or element. /// unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); SmallVector ValueVTs; ComputeValueVTs(*TLI, Ty, ValueVTs); unsigned FirstReg = 0; for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { EVT ValueVT = ValueVTs[Value]; MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); for (unsigned i = 0; i != NumRegs; ++i) { unsigned R = CreateReg(RegisterVT); if (!FirstReg) FirstReg = R; } } return FirstReg; } /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If /// the register's LiveOutInfo is for a smaller bit width, it is extended to /// the larger bit width by zero extension. The bit width must be no smaller /// than the LiveOutInfo's existing bit width. const FunctionLoweringInfo::LiveOutInfo * FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { if (!LiveOutRegInfo.inBounds(Reg)) return nullptr; LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; if (!LOI->IsValid) return nullptr; if (BitWidth > LOI->KnownZero.getBitWidth()) { LOI->NumSignBits = 1; LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); } return LOI; } /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination /// register based on the LiveOutInfo of its operands. void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { Type *Ty = PN->getType(); if (!Ty->isIntegerTy() || Ty->isVectorTy()) return; SmallVector ValueVTs; ComputeValueVTs(*TLI, Ty, ValueVTs); assert(ValueVTs.size() == 1 && "PHIs with non-vector integer types should have a single VT."); EVT IntVT = ValueVTs[0]; if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) return; IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); unsigned BitWidth = IntVT.getSizeInBits(); unsigned DestReg = ValueMap[PN]; if (!TargetRegisterInfo::isVirtualRegister(DestReg)) return; LiveOutRegInfo.grow(DestReg); LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; Value *V = PN->getIncomingValue(0); if (isa(V) || isa(V)) { DestLOI.NumSignBits = 1; APInt Zero(BitWidth, 0); DestLOI.KnownZero = Zero; DestLOI.KnownOne = Zero; return; } if (ConstantInt *CI = dyn_cast(V)) { APInt Val = CI->getValue().zextOrTrunc(BitWidth); DestLOI.NumSignBits = Val.getNumSignBits(); DestLOI.KnownZero = ~Val; DestLOI.KnownOne = Val; } else { assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" "CopyToReg node was created."); unsigned SrcReg = ValueMap[V]; if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { DestLOI.IsValid = false; return; } const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); if (!SrcLOI) { DestLOI.IsValid = false; return; } DestLOI = *SrcLOI; } assert(DestLOI.KnownZero.getBitWidth() == BitWidth && DestLOI.KnownOne.getBitWidth() == BitWidth && "Masks should have the same bit width as the type."); for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { Value *V = PN->getIncomingValue(i); if (isa(V) || isa(V)) { DestLOI.NumSignBits = 1; APInt Zero(BitWidth, 0); DestLOI.KnownZero = Zero; DestLOI.KnownOne = Zero; return; } if (ConstantInt *CI = dyn_cast(V)) { APInt Val = CI->getValue().zextOrTrunc(BitWidth); DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); DestLOI.KnownZero &= ~Val; DestLOI.KnownOne &= Val; continue; } assert(ValueMap.count(V) && "V should have been placed in ValueMap when " "its CopyToReg node was created."); unsigned SrcReg = ValueMap[V]; if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { DestLOI.IsValid = false; return; } const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); if (!SrcLOI) { DestLOI.IsValid = false; return; } DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); DestLOI.KnownZero &= SrcLOI->KnownZero; DestLOI.KnownOne &= SrcLOI->KnownOne; } } /// setArgumentFrameIndex - Record frame index for the byval /// argument. This overrides previous frame index entry for this argument, /// if any. void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, int FI) { ByValArgFrameIndexMap[A] = FI; } /// getArgumentFrameIndex - Get frame index for the byval argument. /// If the argument does not have any assigned frame index then 0 is /// returned. int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { DenseMap::iterator I = ByValArgFrameIndexMap.find(A); if (I != ByValArgFrameIndexMap.end()) return I->second; DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); return 0; } /// ComputeUsesVAFloatArgument - Determine if any floating-point values are /// being passed to this variadic function, and set the MachineModuleInfo's /// usesVAFloatArgument flag if so. This flag is used to emit an undefined /// reference to _fltused on Windows, which will link in MSVCRT's /// floating-point support. void llvm::ComputeUsesVAFloatArgument(const CallInst &I, MachineModuleInfo *MMI) { FunctionType *FT = cast( I.getCalledValue()->getType()->getContainedType(0)); if (FT->isVarArg() && !MMI->usesVAFloatArgument()) { for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { Type* T = I.getArgOperand(i)->getType(); for (auto i : post_order(T)) { if (i->isFloatingPointTy()) { MMI->setUsesVAFloatArgument(true); return; } } } } } /// AddLandingPadInfo - Extract the exception handling information from the /// landingpad instruction and add them to the specified machine module info. void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, MachineBasicBlock *MBB) { MMI.addPersonality(MBB, cast(I.getPersonalityFn()->stripPointerCasts())); if (I.isCleanup()) MMI.addCleanup(MBB); // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, // but we need to do it this way because of how the DWARF EH emitter // processes the clauses. for (unsigned i = I.getNumClauses(); i != 0; --i) { Value *Val = I.getClause(i - 1); if (I.isCatch(i - 1)) { MMI.addCatchTypeInfo(MBB, dyn_cast(Val->stripPointerCasts())); } else { // Add filters in a list. Constant *CVal = cast(Val); SmallVector FilterList; for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) FilterList.push_back(cast((*II)->stripPointerCasts())); MMI.addFilterTypeInfo(MBB, FilterList); } } }