//===-- UnreachableBlockElim.cpp - Remove unreachable blocks for codegen --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass is an extremely simple version of the SimplifyCFG pass. Its sole // job is to delete LLVM basic blocks that are not reachable from the entry // node. To do this, it performs a simple depth first traversal of the CFG, // then deletes any unvisited nodes. // // Note that this pass is really a hack. In particular, the instruction // selectors for various targets should just not generate code for unreachable // blocks. Until LLVM has a more systematic way of defining instruction // selectors, however, we cannot really expect them to handle additional // complexity. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/UnreachableBlockElim.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Type.h" #include "llvm/Pass.h" using namespace llvm; static bool eliminateUnreachableBlock(Function &F) { df_iterator_default_set Reachable; // Mark all reachable blocks. for (BasicBlock *BB : depth_first_ext(&F, Reachable)) (void)BB/* Mark all reachable blocks */; // Loop over all dead blocks, remembering them and deleting all instructions // in them. std::vector DeadBlocks; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) if (!Reachable.count(&*I)) { BasicBlock *BB = &*I; DeadBlocks.push_back(BB); while (PHINode *PN = dyn_cast(BB->begin())) { PN->replaceAllUsesWith(Constant::getNullValue(PN->getType())); BB->getInstList().pop_front(); } for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) (*SI)->removePredecessor(BB); BB->dropAllReferences(); } // Actually remove the blocks now. for (unsigned i = 0, e = DeadBlocks.size(); i != e; ++i) { DeadBlocks[i]->eraseFromParent(); } return !DeadBlocks.empty(); } namespace { class UnreachableBlockElimLegacyPass : public FunctionPass { bool runOnFunction(Function &F) override { return eliminateUnreachableBlock(F); } public: static char ID; // Pass identification, replacement for typeid UnreachableBlockElimLegacyPass() : FunctionPass(ID) { initializeUnreachableBlockElimLegacyPassPass( *PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addPreserved(); } }; } char UnreachableBlockElimLegacyPass::ID = 0; INITIALIZE_PASS(UnreachableBlockElimLegacyPass, "unreachableblockelim", "Remove unreachable blocks from the CFG", false, false) FunctionPass *llvm::createUnreachableBlockEliminationPass() { return new UnreachableBlockElimLegacyPass(); } PreservedAnalyses UnreachableBlockElimPass::run(Function &F, FunctionAnalysisManager &AM) { bool Changed = eliminateUnreachableBlock(F); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); return PA; } namespace { class UnreachableMachineBlockElim : public MachineFunctionPass { bool runOnMachineFunction(MachineFunction &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override; MachineModuleInfo *MMI; public: static char ID; // Pass identification, replacement for typeid UnreachableMachineBlockElim() : MachineFunctionPass(ID) {} }; } char UnreachableMachineBlockElim::ID = 0; INITIALIZE_PASS(UnreachableMachineBlockElim, "unreachable-mbb-elimination", "Remove unreachable machine basic blocks", false, false) char &llvm::UnreachableMachineBlockElimID = UnreachableMachineBlockElim::ID; void UnreachableMachineBlockElim::getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } bool UnreachableMachineBlockElim::runOnMachineFunction(MachineFunction &F) { df_iterator_default_set Reachable; bool ModifiedPHI = false; MMI = getAnalysisIfAvailable(); MachineDominatorTree *MDT = getAnalysisIfAvailable(); MachineLoopInfo *MLI = getAnalysisIfAvailable(); // Mark all reachable blocks. for (MachineBasicBlock *BB : depth_first_ext(&F, Reachable)) (void)BB/* Mark all reachable blocks */; // Loop over all dead blocks, remembering them and deleting all instructions // in them. std::vector DeadBlocks; for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) { MachineBasicBlock *BB = &*I; // Test for deadness. if (!Reachable.count(BB)) { DeadBlocks.push_back(BB); // Update dominator and loop info. if (MLI) MLI->removeBlock(BB); if (MDT && MDT->getNode(BB)) MDT->eraseNode(BB); while (BB->succ_begin() != BB->succ_end()) { MachineBasicBlock* succ = *BB->succ_begin(); MachineBasicBlock::iterator start = succ->begin(); while (start != succ->end() && start->isPHI()) { for (unsigned i = start->getNumOperands() - 1; i >= 2; i-=2) if (start->getOperand(i).isMBB() && start->getOperand(i).getMBB() == BB) { start->RemoveOperand(i); start->RemoveOperand(i-1); } start++; } BB->removeSuccessor(BB->succ_begin()); } } } // Actually remove the blocks now. for (unsigned i = 0, e = DeadBlocks.size(); i != e; ++i) DeadBlocks[i]->eraseFromParent(); // Cleanup PHI nodes. for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) { MachineBasicBlock *BB = &*I; // Prune unneeded PHI entries. SmallPtrSet preds(BB->pred_begin(), BB->pred_end()); MachineBasicBlock::iterator phi = BB->begin(); while (phi != BB->end() && phi->isPHI()) { for (unsigned i = phi->getNumOperands() - 1; i >= 2; i-=2) if (!preds.count(phi->getOperand(i).getMBB())) { phi->RemoveOperand(i); phi->RemoveOperand(i-1); ModifiedPHI = true; } if (phi->getNumOperands() == 3) { const MachineOperand &Input = phi->getOperand(1); const MachineOperand &Output = phi->getOperand(0); unsigned InputReg = Input.getReg(); unsigned OutputReg = Output.getReg(); assert(Output.getSubReg() == 0 && "Cannot have output subregister"); ModifiedPHI = true; if (InputReg != OutputReg) { MachineRegisterInfo &MRI = F.getRegInfo(); unsigned InputSub = Input.getSubReg(); if (InputSub == 0 && MRI.constrainRegClass(InputReg, MRI.getRegClass(OutputReg)) && !Input.isUndef()) { MRI.replaceRegWith(OutputReg, InputReg); } else { // The input register to the PHI has a subregister or it can't be // constrained to the proper register class or it is undef: // insert a COPY instead of simply replacing the output // with the input. const TargetInstrInfo *TII = F.getSubtarget().getInstrInfo(); BuildMI(*BB, BB->getFirstNonPHI(), phi->getDebugLoc(), TII->get(TargetOpcode::COPY), OutputReg) .addReg(InputReg, getRegState(Input), InputSub); } phi++->eraseFromParent(); } continue; } ++phi; } } F.RenumberBlocks(); return (!DeadBlocks.empty() || ModifiedPHI); }