//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the VirtRegMap class. // // It also contains implementations of the Spiller interface, which, given a // virtual register map and a machine function, eliminates all virtual // references by replacing them with physical register references - adding spill // code as necessary. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "virtregmap" #include "VirtRegMap.h" #include "llvm/Function.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include using namespace llvm; STATISTIC(NumSpills , "Number of register spills"); STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting"); //===----------------------------------------------------------------------===// // VirtRegMap implementation //===----------------------------------------------------------------------===// char VirtRegMap::ID = 0; INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false) bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) { MRI = &mf.getRegInfo(); TII = mf.getTarget().getInstrInfo(); TRI = mf.getTarget().getRegisterInfo(); MF = &mf; ReMatId = MAX_STACK_SLOT+1; LowSpillSlot = HighSpillSlot = NO_STACK_SLOT; Virt2PhysMap.clear(); Virt2StackSlotMap.clear(); Virt2ReMatIdMap.clear(); Virt2SplitMap.clear(); Virt2SplitKillMap.clear(); ReMatMap.clear(); ImplicitDefed.clear(); SpillSlotToUsesMap.clear(); MI2VirtMap.clear(); SpillPt2VirtMap.clear(); RestorePt2VirtMap.clear(); EmergencySpillMap.clear(); EmergencySpillSlots.clear(); SpillSlotToUsesMap.resize(8); ImplicitDefed.resize(MF->getRegInfo().getNumVirtRegs()); allocatableRCRegs.clear(); for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(), E = TRI->regclass_end(); I != E; ++I) allocatableRCRegs.insert(std::make_pair(*I, TRI->getAllocatableSet(mf, *I))); grow(); return false; } void VirtRegMap::grow() { unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); Virt2PhysMap.resize(NumRegs); Virt2StackSlotMap.resize(NumRegs); Virt2ReMatIdMap.resize(NumRegs); Virt2SplitMap.resize(NumRegs); Virt2SplitKillMap.resize(NumRegs); ReMatMap.resize(NumRegs); ImplicitDefed.resize(NumRegs); } unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), RC->getAlignment()); if (LowSpillSlot == NO_STACK_SLOT) LowSpillSlot = SS; if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot) HighSpillSlot = SS; assert(SS >= LowSpillSlot && "Unexpected low spill slot"); unsigned Idx = SS-LowSpillSlot; while (Idx >= SpillSlotToUsesMap.size()) SpillSlotToUsesMap.resize(SpillSlotToUsesMap.size()*2); return SS; } unsigned VirtRegMap::getRegAllocPref(unsigned virtReg) { std::pair Hint = MRI->getRegAllocationHint(virtReg); unsigned physReg = Hint.second; if (TargetRegisterInfo::isVirtualRegister(physReg) && hasPhys(physReg)) physReg = getPhys(physReg); if (Hint.first == 0) return (TargetRegisterInfo::isPhysicalRegister(physReg)) ? physReg : 0; return TRI->ResolveRegAllocHint(Hint.first, physReg, *MF); } int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) { assert(TargetRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && "attempt to assign stack slot to already spilled register"); const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); ++NumSpills; return Virt2StackSlotMap[virtReg] = createSpillSlot(RC); } void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) { assert(TargetRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && "attempt to assign stack slot to already spilled register"); assert((SS >= 0 || (SS >= MF->getFrameInfo()->getObjectIndexBegin())) && "illegal fixed frame index"); Virt2StackSlotMap[virtReg] = SS; } int VirtRegMap::assignVirtReMatId(unsigned virtReg) { assert(TargetRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT && "attempt to assign re-mat id to already spilled register"); Virt2ReMatIdMap[virtReg] = ReMatId; return ReMatId++; } void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) { assert(TargetRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT && "attempt to assign re-mat id to already spilled register"); Virt2ReMatIdMap[virtReg] = id; } int VirtRegMap::getEmergencySpillSlot(const TargetRegisterClass *RC) { std::map::iterator I = EmergencySpillSlots.find(RC); if (I != EmergencySpillSlots.end()) return I->second; return EmergencySpillSlots[RC] = createSpillSlot(RC); } void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) { if (!MF->getFrameInfo()->isFixedObjectIndex(FI)) { // If FI < LowSpillSlot, this stack reference was produced by // instruction selection and is not a spill if (FI >= LowSpillSlot) { assert(FI >= 0 && "Spill slot index should not be negative!"); assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size() && "Invalid spill slot"); SpillSlotToUsesMap[FI-LowSpillSlot].insert(MI); } } } void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI, MachineInstr *NewMI, ModRef MRInfo) { // Move previous memory references folded to new instruction. MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI); for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI), E = MI2VirtMap.end(); I != E && I->first == OldMI; ) { MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second)); MI2VirtMap.erase(I++); } // add new memory reference MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo))); } void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) { MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI); MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo))); } void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isFI()) continue; int FI = MO.getIndex(); if (MF->getFrameInfo()->isFixedObjectIndex(FI)) continue; // This stack reference was produced by instruction selection and // is not a spill if (FI < LowSpillSlot) continue; assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size() && "Invalid spill slot"); SpillSlotToUsesMap[FI-LowSpillSlot].erase(MI); } MI2VirtMap.erase(MI); SpillPt2VirtMap.erase(MI); RestorePt2VirtMap.erase(MI); EmergencySpillMap.erase(MI); } /// FindUnusedRegisters - Gather a list of allocatable registers that /// have not been allocated to any virtual register. bool VirtRegMap::FindUnusedRegisters(LiveIntervals* LIs) { unsigned NumRegs = TRI->getNumRegs(); UnusedRegs.reset(); UnusedRegs.resize(NumRegs); BitVector Used(NumRegs); for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) Used.set(Virt2PhysMap[Reg]); } BitVector Allocatable = TRI->getAllocatableSet(*MF); bool AnyUnused = false; for (unsigned Reg = 1; Reg < NumRegs; ++Reg) { if (Allocatable[Reg] && !Used[Reg] && !LIs->hasInterval(Reg)) { bool ReallyUnused = true; for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) { if (Used[*AS] || LIs->hasInterval(*AS)) { ReallyUnused = false; break; } } if (ReallyUnused) { AnyUnused = true; UnusedRegs.set(Reg); } } } return AnyUnused; } void VirtRegMap::rewrite(SlotIndexes *Indexes) { DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" << "********** Function: " << MF->getFunction()->getName() << '\n'); DEBUG(dump()); SmallVector SuperDeads; SmallVector SuperDefs; SmallVector SuperKills; for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); MBBI != MBBE; ++MBBI) { DEBUG(MBBI->print(dbgs(), Indexes)); for (MachineBasicBlock::iterator MII = MBBI->begin(), MIE = MBBI->end(); MII != MIE;) { MachineInstr *MI = MII; ++MII; for (MachineInstr::mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { MachineOperand &MO = *MOI; if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; unsigned VirtReg = MO.getReg(); unsigned PhysReg = getPhys(VirtReg); assert(PhysReg != NO_PHYS_REG && "Instruction uses unmapped VirtReg"); // Preserve semantics of sub-register operands. if (MO.getSubReg()) { // A virtual register kill refers to the whole register, so we may // have to add operands for the super-register. if (MO.isUse()) { if (MO.isKill() && !MO.isUndef()) SuperKills.push_back(PhysReg); } else if (MO.isDead()) SuperDeads.push_back(PhysReg); else SuperDefs.push_back(PhysReg); // PhysReg operands cannot have subregister indexes. PhysReg = TRI->getSubReg(PhysReg, MO.getSubReg()); assert(PhysReg && "Invalid SubReg for physical register"); MO.setSubReg(0); } // Rewrite. Note we could have used MachineOperand::substPhysReg(), but // we need the inlining here. MO.setReg(PhysReg); } // Add any missing super-register kills after rewriting the whole // instruction. while (!SuperKills.empty()) MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true); while (!SuperDeads.empty()) MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true); while (!SuperDefs.empty()) MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI); DEBUG(dbgs() << "> " << *MI); // Finally, remove any identity copies. if (MI->isIdentityCopy()) { ++NumIdCopies; if (MI->getNumOperands() == 2) { DEBUG(dbgs() << "Deleting identity copy.\n"); RemoveMachineInstrFromMaps(MI); if (Indexes) Indexes->removeMachineInstrFromMaps(MI); // It's safe to erase MI because MII has already been incremented. MI->eraseFromParent(); } else { // Transform identity copy to a KILL to deal with subregisters. MI->setDesc(TII->get(TargetOpcode::KILL)); DEBUG(dbgs() << "Identity copy: " << *MI); } } } } // Tell MRI about physical registers in use. for (unsigned Reg = 1, RegE = TRI->getNumRegs(); Reg != RegE; ++Reg) if (!MRI->reg_nodbg_empty(Reg)) MRI->setPhysRegUsed(Reg); } void VirtRegMap::print(raw_ostream &OS, const Module* M) const { const TargetRegisterInfo* TRI = MF->getTarget().getRegisterInfo(); const MachineRegisterInfo &MRI = MF->getRegInfo(); OS << "********** REGISTER MAP **********\n"; for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) { OS << '[' << PrintReg(Reg, TRI) << " -> " << PrintReg(Virt2PhysMap[Reg], TRI) << "] " << MRI.getRegClass(Reg)->getName() << "\n"; } } for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] << "] " << MRI.getRegClass(Reg)->getName() << "\n"; } } OS << '\n'; } void VirtRegMap::dump() const { print(dbgs()); }