//===-- DWARFUnit.cpp -----------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallString.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h" #include "llvm/DebugInfo/DWARF/DWARFUnit.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/Casting.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Path.h" #include #include #include #include #include namespace llvm { using namespace dwarf; void DWARFUnitSectionBase::parse(DWARFContext &C, const DWARFSection &Section) { parseImpl(C, Section, C.getDebugAbbrev(), C.getRangeSection(), C.getStringSection(), StringRef(), C.getAddrSection(), C.getLineSection().Data, C.isLittleEndian(), false); } void DWARFUnitSectionBase::parseDWO(DWARFContext &C, const DWARFSection &DWOSection, DWARFUnitIndex *Index) { parseImpl(C, DWOSection, C.getDebugAbbrevDWO(), C.getRangeDWOSection(), C.getStringDWOSection(), C.getStringOffsetDWOSection(), C.getAddrSection(), C.getLineDWOSection().Data, C.isLittleEndian(), true); } DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section, const DWARFDebugAbbrev *DA, StringRef RS, StringRef SS, StringRef SOS, StringRef AOS, StringRef LS, bool LE, bool IsDWO, const DWARFUnitSectionBase &UnitSection, const DWARFUnitIndex::Entry *IndexEntry) : Context(DC), InfoSection(Section), Abbrev(DA), RangeSection(RS), LineSection(LS), StringSection(SS), StringOffsetSection([&]() { if (IndexEntry) if (const auto *C = IndexEntry->getOffset(DW_SECT_STR_OFFSETS)) return SOS.slice(C->Offset, C->Offset + C->Length); return SOS; }()), AddrOffsetSection(AOS), isLittleEndian(LE), isDWO(IsDWO), UnitSection(UnitSection), IndexEntry(IndexEntry) { clear(); } DWARFUnit::~DWARFUnit() = default; bool DWARFUnit::getAddrOffsetSectionItem(uint32_t Index, uint64_t &Result) const { uint32_t Offset = AddrOffsetSectionBase + Index * AddrSize; if (AddrOffsetSection.size() < Offset + AddrSize) return false; DataExtractor DA(AddrOffsetSection, isLittleEndian, AddrSize); Result = DA.getAddress(&Offset); return true; } bool DWARFUnit::getStringOffsetSectionItem(uint32_t Index, uint32_t &Result) const { // FIXME: string offset section entries are 8-byte for DWARF64. const uint32_t ItemSize = 4; uint32_t Offset = Index * ItemSize; if (StringOffsetSection.size() < Offset + ItemSize) return false; DataExtractor DA(StringOffsetSection, isLittleEndian, 0); Result = DA.getU32(&Offset); return true; } bool DWARFUnit::extractImpl(DataExtractor debug_info, uint32_t *offset_ptr) { Length = debug_info.getU32(offset_ptr); Version = debug_info.getU16(offset_ptr); uint64_t AbbrOffset = debug_info.getU32(offset_ptr); if (IndexEntry) { if (AbbrOffset) return false; auto *UnitContrib = IndexEntry->getOffset(); if (!UnitContrib || UnitContrib->Length != (Length + 4)) return false; auto *AbbrEntry = IndexEntry->getOffset(DW_SECT_ABBREV); if (!AbbrEntry) return false; AbbrOffset = AbbrEntry->Offset; } AddrSize = debug_info.getU8(offset_ptr); bool LengthOK = debug_info.isValidOffset(getNextUnitOffset() - 1); bool VersionOK = DWARFContext::isSupportedVersion(Version); bool AddrSizeOK = AddrSize == 4 || AddrSize == 8; if (!LengthOK || !VersionOK || !AddrSizeOK) return false; Abbrevs = Abbrev->getAbbreviationDeclarationSet(AbbrOffset); return Abbrevs != nullptr; } bool DWARFUnit::extract(DataExtractor debug_info, uint32_t *offset_ptr) { clear(); Offset = *offset_ptr; if (debug_info.isValidOffset(*offset_ptr)) { if (extractImpl(debug_info, offset_ptr)) return true; // reset the offset to where we tried to parse from if anything went wrong *offset_ptr = Offset; } return false; } bool DWARFUnit::extractRangeList(uint32_t RangeListOffset, DWARFDebugRangeList &RangeList) const { // Require that compile unit is extracted. assert(!DieArray.empty()); DataExtractor RangesData(RangeSection, isLittleEndian, AddrSize); uint32_t ActualRangeListOffset = RangeSectionBase + RangeListOffset; return RangeList.extract(RangesData, &ActualRangeListOffset); } void DWARFUnit::clear() { Offset = 0; Length = 0; Version = 0; Abbrevs = nullptr; AddrSize = 0; BaseAddr = 0; RangeSectionBase = 0; AddrOffsetSectionBase = 0; clearDIEs(false); DWO.reset(); } const char *DWARFUnit::getCompilationDir() { return getUnitDIE().getAttributeValueAsString(DW_AT_comp_dir, nullptr); } Optional DWARFUnit::getDWOId() { return getUnitDIE().getAttributeValueAsUnsignedConstant(DW_AT_GNU_dwo_id); } void DWARFUnit::extractDIEsToVector( bool AppendCUDie, bool AppendNonCUDies, std::vector &Dies) const { if (!AppendCUDie && !AppendNonCUDies) return; // Set the offset to that of the first DIE and calculate the start of the // next compilation unit header. uint32_t DIEOffset = Offset + getHeaderSize(); uint32_t NextCUOffset = getNextUnitOffset(); DWARFDebugInfoEntry DIE; DataExtractor DebugInfoData = getDebugInfoExtractor(); uint32_t Depth = 0; bool IsCUDie = true; while (DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset, Depth)) { if (IsCUDie) { if (AppendCUDie) Dies.push_back(DIE); if (!AppendNonCUDies) break; // The average bytes per DIE entry has been seen to be // around 14-20 so let's pre-reserve the needed memory for // our DIE entries accordingly. Dies.reserve(Dies.size() + getDebugInfoSize() / 14); IsCUDie = false; } else { Dies.push_back(DIE); } if (const DWARFAbbreviationDeclaration *AbbrDecl = DIE.getAbbreviationDeclarationPtr()) { // Normal DIE if (AbbrDecl->hasChildren()) ++Depth; } else { // NULL DIE. if (Depth > 0) --Depth; if (Depth == 0) break; // We are done with this compile unit! } } // Give a little bit of info if we encounter corrupt DWARF (our offset // should always terminate at or before the start of the next compilation // unit header). if (DIEOffset > NextCUOffset) fprintf(stderr, "warning: DWARF compile unit extends beyond its " "bounds cu 0x%8.8x at 0x%8.8x'\n", getOffset(), DIEOffset); } size_t DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) { if ((CUDieOnly && !DieArray.empty()) || DieArray.size() > 1) return 0; // Already parsed. bool HasCUDie = !DieArray.empty(); extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray); if (DieArray.empty()) return 0; // If CU DIE was just parsed, copy several attribute values from it. if (!HasCUDie) { DWARFDie UnitDie = getUnitDIE(); auto BaseAddr = UnitDie.getAttributeValueAsAddress(DW_AT_low_pc); if (!BaseAddr) BaseAddr = UnitDie.getAttributeValueAsAddress(DW_AT_entry_pc); if (BaseAddr) setBaseAddress(*BaseAddr); AddrOffsetSectionBase = UnitDie.getAttributeValueAsSectionOffset(DW_AT_GNU_addr_base) .getValueOr(0); RangeSectionBase = UnitDie.getAttributeValueAsSectionOffset(DW_AT_rnglists_base) .getValueOr(0); // Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for // skeleton CU DIE, so that DWARF users not aware of it are not broken. } return DieArray.size(); } DWARFUnit::DWOHolder::DWOHolder(StringRef DWOPath) : DWOU(nullptr) { auto Obj = object::ObjectFile::createObjectFile(DWOPath); if (!Obj) { // TODO: Actually report errors helpfully. consumeError(Obj.takeError()); return; } DWOFile = std::move(Obj.get()); DWOContext.reset( cast(new DWARFContextInMemory(*DWOFile.getBinary()))); if (DWOContext->getNumDWOCompileUnits() > 0) DWOU = DWOContext->getDWOCompileUnitAtIndex(0); } bool DWARFUnit::parseDWO() { if (isDWO) return false; if (DWO.get()) return false; DWARFDie UnitDie = getUnitDIE(); if (!UnitDie) return false; const char *DWOFileName = UnitDie.getAttributeValueAsString(DW_AT_GNU_dwo_name, nullptr); if (!DWOFileName) return false; const char *CompilationDir = UnitDie.getAttributeValueAsString(DW_AT_comp_dir, nullptr); SmallString<16> AbsolutePath; if (sys::path::is_relative(DWOFileName) && CompilationDir != nullptr) { sys::path::append(AbsolutePath, CompilationDir); } sys::path::append(AbsolutePath, DWOFileName); DWO = llvm::make_unique(AbsolutePath); DWARFUnit *DWOCU = DWO->getUnit(); // Verify that compile unit in .dwo file is valid. if (!DWOCU || DWOCU->getDWOId() != getDWOId()) { DWO.reset(); return false; } // Share .debug_addr and .debug_ranges section with compile unit in .dwo DWOCU->setAddrOffsetSection(AddrOffsetSection, AddrOffsetSectionBase); auto DWORangesBase = UnitDie.getRangesBaseAttribute(); DWOCU->setRangesSection(RangeSection, DWORangesBase ? *DWORangesBase : 0); return true; } void DWARFUnit::clearDIEs(bool KeepCUDie) { if (DieArray.size() > (unsigned)KeepCUDie) { // std::vectors never get any smaller when resized to a smaller size, // or when clear() or erase() are called, the size will report that it // is smaller, but the memory allocated remains intact (call capacity() // to see this). So we need to create a temporary vector and swap the // contents which will cause just the internal pointers to be swapped // so that when temporary vector goes out of scope, it will destroy the // contents. std::vector TmpArray; DieArray.swap(TmpArray); // Save at least the compile unit DIE if (KeepCUDie) DieArray.push_back(TmpArray.front()); } } void DWARFUnit::collectAddressRanges(DWARFAddressRangesVector &CURanges) { DWARFDie UnitDie = getUnitDIE(); if (!UnitDie) return; // First, check if unit DIE describes address ranges for the whole unit. const auto &CUDIERanges = UnitDie.getAddressRanges(); if (!CUDIERanges.empty()) { CURanges.insert(CURanges.end(), CUDIERanges.begin(), CUDIERanges.end()); return; } // This function is usually called if there in no .debug_aranges section // in order to produce a compile unit level set of address ranges that // is accurate. If the DIEs weren't parsed, then we don't want all dies for // all compile units to stay loaded when they weren't needed. So we can end // up parsing the DWARF and then throwing them all away to keep memory usage // down. const bool ClearDIEs = extractDIEsIfNeeded(false) > 1; getUnitDIE().collectChildrenAddressRanges(CURanges); // Collect address ranges from DIEs in .dwo if necessary. bool DWOCreated = parseDWO(); if (DWO.get()) DWO->getUnit()->collectAddressRanges(CURanges); if (DWOCreated) DWO.reset(); // Keep memory down by clearing DIEs if this generate function // caused them to be parsed. if (ClearDIEs) clearDIEs(true); } DWARFDie DWARFUnit::getSubprogramForAddress(uint64_t Address) { extractDIEsIfNeeded(false); for (const DWARFDebugInfoEntry &D : DieArray) { DWARFDie DIE(this, &D); if (DIE.isSubprogramDIE() && DIE.addressRangeContainsAddress(Address)) { return DIE; } } return DWARFDie(); } void DWARFUnit::getInlinedChainForAddress(uint64_t Address, SmallVectorImpl &InlinedChain) { // First, find a subprogram that contains the given address (the root // of inlined chain). DWARFDie SubprogramDIE; // Try to look for subprogram DIEs in the DWO file. parseDWO(); if (DWO) SubprogramDIE = DWO->getUnit()->getSubprogramForAddress(Address); else SubprogramDIE = getSubprogramForAddress(Address); // Get inlined chain rooted at this subprogram DIE. if (SubprogramDIE) SubprogramDIE.getInlinedChainForAddress(Address, InlinedChain); else InlinedChain.clear(); } const DWARFUnitIndex &getDWARFUnitIndex(DWARFContext &Context, DWARFSectionKind Kind) { if (Kind == DW_SECT_INFO) return Context.getCUIndex(); assert(Kind == DW_SECT_TYPES); return Context.getTUIndex(); } DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) { if (!Die) return DWARFDie(); const uint32_t Depth = Die->getDepth(); // Unit DIEs always have a depth of zero and never have parents. if (Depth == 0) return DWARFDie(); // Depth of 1 always means parent is the compile/type unit. if (Depth == 1) return getUnitDIE(); // Look for previous DIE with a depth that is one less than the Die's depth. const uint32_t ParentDepth = Depth - 1; for (uint32_t I = getDIEIndex(Die) - 1; I > 0; --I) { if (DieArray[I].getDepth() == ParentDepth) return DWARFDie(this, &DieArray[I]); } return DWARFDie(); } DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) { if (!Die) return DWARFDie(); uint32_t Depth = Die->getDepth(); // Unit DIEs always have a depth of zero and never have siblings. if (Depth == 0) return DWARFDie(); // NULL DIEs don't have siblings. if (Die->getAbbreviationDeclarationPtr() == nullptr) return DWARFDie(); // Find the next DIE whose depth is the same as the Die's depth. for (size_t I=getDIEIndex(Die)+1, EndIdx = DieArray.size(); I