//===- UDTLayout.cpp ------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/PDB/UDTLayout.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/DebugInfo/PDB/IPDBRawSymbol.h" #include "llvm/DebugInfo/PDB/IPDBSession.h" #include "llvm/DebugInfo/PDB/PDBSymbol.h" #include "llvm/DebugInfo/PDB/PDBSymbolData.h" #include "llvm/DebugInfo/PDB/PDBSymbolFunc.h" #include "llvm/DebugInfo/PDB/PDBSymbolTypeBaseClass.h" #include "llvm/DebugInfo/PDB/PDBSymbolTypeBuiltin.h" #include "llvm/DebugInfo/PDB/PDBSymbolTypePointer.h" #include "llvm/DebugInfo/PDB/PDBSymbolTypeUDT.h" #include "llvm/DebugInfo/PDB/PDBSymbolTypeVTable.h" #include "llvm/DebugInfo/PDB/PDBTypes.h" #include "llvm/Support/Casting.h" #include #include #include #include using namespace llvm; using namespace llvm::pdb; static std::unique_ptr getSymbolType(const PDBSymbol &Symbol) { const IPDBSession &Session = Symbol.getSession(); const IPDBRawSymbol &RawSymbol = Symbol.getRawSymbol(); uint32_t TypeId = RawSymbol.getTypeId(); return Session.getSymbolById(TypeId); } static uint32_t getTypeLength(const PDBSymbol &Symbol) { auto SymbolType = getSymbolType(Symbol); const IPDBRawSymbol &RawType = SymbolType->getRawSymbol(); return RawType.getLength(); } LayoutItemBase::LayoutItemBase(const UDTLayoutBase *Parent, const PDBSymbol *Symbol, const std::string &Name, uint32_t OffsetInParent, uint32_t Size, bool IsElided) : Symbol(Symbol), Parent(Parent), Name(Name), OffsetInParent(OffsetInParent), SizeOf(Size), LayoutSize(Size), IsElided(IsElided) { UsedBytes.resize(SizeOf, true); } uint32_t LayoutItemBase::deepPaddingSize() const { return UsedBytes.size() - UsedBytes.count(); } uint32_t LayoutItemBase::tailPadding() const { int Last = UsedBytes.find_last(); return UsedBytes.size() - (Last + 1); } DataMemberLayoutItem::DataMemberLayoutItem( const UDTLayoutBase &Parent, std::unique_ptr Member) : LayoutItemBase(&Parent, Member.get(), Member->getName(), Member->getOffset(), getTypeLength(*Member), false), DataMember(std::move(Member)) { auto Type = DataMember->getType(); if (auto UDT = unique_dyn_cast(Type)) { UdtLayout = llvm::make_unique(std::move(UDT)); UsedBytes = UdtLayout->usedBytes(); } } VBPtrLayoutItem::VBPtrLayoutItem(const UDTLayoutBase &Parent, std::unique_ptr Sym, uint32_t Offset, uint32_t Size) : LayoutItemBase(&Parent, Sym.get(), "", Offset, Size, false), Type(std::move(Sym)) { } const PDBSymbolData &DataMemberLayoutItem::getDataMember() { return *dyn_cast(Symbol); } bool DataMemberLayoutItem::hasUDTLayout() const { return UdtLayout != nullptr; } const ClassLayout &DataMemberLayoutItem::getUDTLayout() const { return *UdtLayout; } VTableLayoutItem::VTableLayoutItem(const UDTLayoutBase &Parent, std::unique_ptr VT) : LayoutItemBase(&Parent, VT.get(), "", 0, getTypeLength(*VT), false), VTable(std::move(VT)) { auto VTableType = cast(VTable->getType()); ElementSize = VTableType->getLength(); } UDTLayoutBase::UDTLayoutBase(const UDTLayoutBase *Parent, const PDBSymbol &Sym, const std::string &Name, uint32_t OffsetInParent, uint32_t Size, bool IsElided) : LayoutItemBase(Parent, &Sym, Name, OffsetInParent, Size, IsElided) { // UDT storage comes from a union of all the children's storage, so start out // uninitialized. UsedBytes.reset(0, Size); initializeChildren(Sym); if (LayoutSize < Size) UsedBytes.resize(LayoutSize); } uint32_t UDTLayoutBase::tailPadding() const { uint32_t Abs = LayoutItemBase::tailPadding(); if (!LayoutItems.empty()) { const LayoutItemBase *Back = LayoutItems.back(); uint32_t ChildPadding = Back->LayoutItemBase::tailPadding(); if (Abs < ChildPadding) Abs = 0; else Abs -= ChildPadding; } return Abs; } ClassLayout::ClassLayout(const PDBSymbolTypeUDT &UDT) : UDTLayoutBase(nullptr, UDT, UDT.getName(), 0, UDT.getLength(), false), UDT(UDT) { ImmediateUsedBytes.resize(SizeOf, false); for (auto &LI : LayoutItems) { uint32_t Begin = LI->getOffsetInParent(); uint32_t End = Begin + LI->getLayoutSize(); End = std::min(SizeOf, End); ImmediateUsedBytes.set(Begin, End); } } ClassLayout::ClassLayout(std::unique_ptr UDT) : ClassLayout(*UDT) { OwnedStorage = std::move(UDT); } uint32_t ClassLayout::immediatePadding() const { return SizeOf - ImmediateUsedBytes.count(); } BaseClassLayout::BaseClassLayout(const UDTLayoutBase &Parent, uint32_t OffsetInParent, bool Elide, std::unique_ptr B) : UDTLayoutBase(&Parent, *B, B->getName(), OffsetInParent, B->getLength(), Elide), Base(std::move(B)) { if (isEmptyBase()) { // Special case an empty base so that it doesn't get treated as padding. UsedBytes.resize(1); UsedBytes.set(0); } IsVirtualBase = Base->isVirtualBaseClass(); } void UDTLayoutBase::initializeChildren(const PDBSymbol &Sym) { // Handled bases first, followed by VTables, followed by data members, // followed by functions, followed by other. This ordering is necessary // so that bases and vtables get initialized before any functions which // may override them. UniquePtrVector Bases; UniquePtrVector VTables; UniquePtrVector Members; UniquePtrVector VirtualBaseSyms; auto Children = Sym.findAllChildren(); while (auto Child = Children->getNext()) { if (auto Base = unique_dyn_cast(Child)) { if (Base->isVirtualBaseClass()) VirtualBaseSyms.push_back(std::move(Base)); else Bases.push_back(std::move(Base)); } else if (auto Data = unique_dyn_cast(Child)) { if (Data->getDataKind() == PDB_DataKind::Member) Members.push_back(std::move(Data)); else Other.push_back(std::move(Data)); } else if (auto VT = unique_dyn_cast(Child)) VTables.push_back(std::move(VT)); else if (auto Func = unique_dyn_cast(Child)) Funcs.push_back(std::move(Func)); else { Other.push_back(std::move(Child)); } } // We don't want to have any re-allocations in the list of bases, so make // sure to reserve enough space so that our ArrayRefs don't get invalidated. AllBases.reserve(Bases.size() + VirtualBaseSyms.size()); // Only add non-virtual bases to the class first. Only at the end of the // class, after all non-virtual bases and data members have been added do we // add virtual bases. This way the offsets are correctly aligned when we go // to lay out virtual bases. for (auto &Base : Bases) { uint32_t Offset = Base->getOffset(); // Non-virtual bases never get elided. auto BL = llvm::make_unique(*this, Offset, false, std::move(Base)); AllBases.push_back(BL.get()); addChildToLayout(std::move(BL)); } NonVirtualBases = AllBases; assert(VTables.size() <= 1); if (!VTables.empty()) { auto VTLayout = llvm::make_unique(*this, std::move(VTables[0])); VTable = VTLayout.get(); addChildToLayout(std::move(VTLayout)); } for (auto &Data : Members) { auto DM = llvm::make_unique(*this, std::move(Data)); addChildToLayout(std::move(DM)); } // Make sure add virtual bases before adding functions, since functions may be // overrides of virtual functions declared in a virtual base, so the VTables // and virtual intros need to be correctly initialized. for (auto &VB : VirtualBaseSyms) { int VBPO = VB->getVirtualBasePointerOffset(); if (!hasVBPtrAtOffset(VBPO)) { if (auto VBP = VB->getRawSymbol().getVirtualBaseTableType()) { auto VBPL = llvm::make_unique(*this, std::move(VBP), VBPO, VBP->getLength()); VBPtr = VBPL.get(); addChildToLayout(std::move(VBPL)); } } // Virtual bases always go at the end. So just look for the last place we // ended when writing something, and put our virtual base there. // Note that virtual bases get elided unless this is a top-most derived // class. uint32_t Offset = UsedBytes.find_last() + 1; bool Elide = (Parent != nullptr); auto BL = llvm::make_unique(*this, Offset, Elide, std::move(VB)); AllBases.push_back(BL.get()); // Only lay this virtual base out directly inside of *this* class if this // is a top-most derived class. Keep track of it regardless, but only // physically lay it out if it's a topmost derived class. addChildToLayout(std::move(BL)); } VirtualBases = makeArrayRef(AllBases).drop_front(NonVirtualBases.size()); if (Parent != nullptr) LayoutSize = UsedBytes.find_last() + 1; } bool UDTLayoutBase::hasVBPtrAtOffset(uint32_t Off) const { if (VBPtr && VBPtr->getOffsetInParent() == Off) return true; for (BaseClassLayout *BL : AllBases) { if (BL->hasVBPtrAtOffset(Off - BL->getOffsetInParent())) return true; } return false; } void UDTLayoutBase::addChildToLayout(std::unique_ptr Child) { uint32_t Begin = Child->getOffsetInParent(); if (!Child->isElided()) { BitVector ChildBytes = Child->usedBytes(); // Suppose the child occupies 4 bytes starting at offset 12 in a 32 byte // class. When we call ChildBytes.resize(32), the Child's storage will // still begin at offset 0, so we need to shift it left by offset bytes // to get it into the right position. ChildBytes.resize(UsedBytes.size()); ChildBytes <<= Child->getOffsetInParent(); UsedBytes |= ChildBytes; if (ChildBytes.count() > 0) { auto Loc = std::upper_bound(LayoutItems.begin(), LayoutItems.end(), Begin, [](uint32_t Off, const LayoutItemBase *Item) { return (Off < Item->getOffsetInParent()); }); LayoutItems.insert(Loc, Child.get()); } } ChildStorage.push_back(std::move(Child)); }