//===- Attributes.cpp - Implement AttributesList --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // \file // \brief This file implements the Attribute, AttributeImpl, AttrBuilder, // AttributeListImpl, and AttributeList classes. // //===----------------------------------------------------------------------===// #include "AttributeImpl.h" #include "LLVMContextImpl.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Type.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Attribute Construction Methods //===----------------------------------------------------------------------===// // allocsize has two integer arguments, but because they're both 32 bits, we can // pack them into one 64-bit value, at the cost of making said value // nonsensical. // // In order to do this, we need to reserve one value of the second (optional) // allocsize argument to signify "not present." static const unsigned AllocSizeNumElemsNotPresent = -1; static uint64_t packAllocSizeArgs(unsigned ElemSizeArg, const Optional &NumElemsArg) { assert((!NumElemsArg.hasValue() || *NumElemsArg != AllocSizeNumElemsNotPresent) && "Attempting to pack a reserved value"); return uint64_t(ElemSizeArg) << 32 | NumElemsArg.getValueOr(AllocSizeNumElemsNotPresent); } static std::pair> unpackAllocSizeArgs(uint64_t Num) { unsigned NumElems = Num & std::numeric_limits::max(); unsigned ElemSizeArg = Num >> 32; Optional NumElemsArg; if (NumElems != AllocSizeNumElemsNotPresent) NumElemsArg = NumElems; return std::make_pair(ElemSizeArg, NumElemsArg); } Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind, uint64_t Val) { LLVMContextImpl *pImpl = Context.pImpl; FoldingSetNodeID ID; ID.AddInteger(Kind); if (Val) ID.AddInteger(Val); void *InsertPoint; AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); if (!PA) { // If we didn't find any existing attributes of the same shape then create a // new one and insert it. if (!Val) PA = new EnumAttributeImpl(Kind); else PA = new IntAttributeImpl(Kind, Val); pImpl->AttrsSet.InsertNode(PA, InsertPoint); } // Return the Attribute that we found or created. return Attribute(PA); } Attribute Attribute::get(LLVMContext &Context, StringRef Kind, StringRef Val) { LLVMContextImpl *pImpl = Context.pImpl; FoldingSetNodeID ID; ID.AddString(Kind); if (!Val.empty()) ID.AddString(Val); void *InsertPoint; AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); if (!PA) { // If we didn't find any existing attributes of the same shape then create a // new one and insert it. PA = new StringAttributeImpl(Kind, Val); pImpl->AttrsSet.InsertNode(PA, InsertPoint); } // Return the Attribute that we found or created. return Attribute(PA); } Attribute Attribute::getWithAlignment(LLVMContext &Context, uint64_t Align) { assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x40000000 && "Alignment too large."); return get(Context, Alignment, Align); } Attribute Attribute::getWithStackAlignment(LLVMContext &Context, uint64_t Align) { assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x100 && "Alignment too large."); return get(Context, StackAlignment, Align); } Attribute Attribute::getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes) { assert(Bytes && "Bytes must be non-zero."); return get(Context, Dereferenceable, Bytes); } Attribute Attribute::getWithDereferenceableOrNullBytes(LLVMContext &Context, uint64_t Bytes) { assert(Bytes && "Bytes must be non-zero."); return get(Context, DereferenceableOrNull, Bytes); } Attribute Attribute::getWithAllocSizeArgs(LLVMContext &Context, unsigned ElemSizeArg, const Optional &NumElemsArg) { assert(!(ElemSizeArg == 0 && NumElemsArg && *NumElemsArg == 0) && "Invalid allocsize arguments -- given allocsize(0, 0)"); return get(Context, AllocSize, packAllocSizeArgs(ElemSizeArg, NumElemsArg)); } //===----------------------------------------------------------------------===// // Attribute Accessor Methods //===----------------------------------------------------------------------===// bool Attribute::isEnumAttribute() const { return pImpl && pImpl->isEnumAttribute(); } bool Attribute::isIntAttribute() const { return pImpl && pImpl->isIntAttribute(); } bool Attribute::isStringAttribute() const { return pImpl && pImpl->isStringAttribute(); } Attribute::AttrKind Attribute::getKindAsEnum() const { if (!pImpl) return None; assert((isEnumAttribute() || isIntAttribute()) && "Invalid attribute type to get the kind as an enum!"); return pImpl->getKindAsEnum(); } uint64_t Attribute::getValueAsInt() const { if (!pImpl) return 0; assert(isIntAttribute() && "Expected the attribute to be an integer attribute!"); return pImpl->getValueAsInt(); } StringRef Attribute::getKindAsString() const { if (!pImpl) return StringRef(); assert(isStringAttribute() && "Invalid attribute type to get the kind as a string!"); return pImpl->getKindAsString(); } StringRef Attribute::getValueAsString() const { if (!pImpl) return StringRef(); assert(isStringAttribute() && "Invalid attribute type to get the value as a string!"); return pImpl->getValueAsString(); } bool Attribute::hasAttribute(AttrKind Kind) const { return (pImpl && pImpl->hasAttribute(Kind)) || (!pImpl && Kind == None); } bool Attribute::hasAttribute(StringRef Kind) const { if (!isStringAttribute()) return false; return pImpl && pImpl->hasAttribute(Kind); } unsigned Attribute::getAlignment() const { assert(hasAttribute(Attribute::Alignment) && "Trying to get alignment from non-alignment attribute!"); return pImpl->getValueAsInt(); } unsigned Attribute::getStackAlignment() const { assert(hasAttribute(Attribute::StackAlignment) && "Trying to get alignment from non-alignment attribute!"); return pImpl->getValueAsInt(); } uint64_t Attribute::getDereferenceableBytes() const { assert(hasAttribute(Attribute::Dereferenceable) && "Trying to get dereferenceable bytes from " "non-dereferenceable attribute!"); return pImpl->getValueAsInt(); } uint64_t Attribute::getDereferenceableOrNullBytes() const { assert(hasAttribute(Attribute::DereferenceableOrNull) && "Trying to get dereferenceable bytes from " "non-dereferenceable attribute!"); return pImpl->getValueAsInt(); } std::pair> Attribute::getAllocSizeArgs() const { assert(hasAttribute(Attribute::AllocSize) && "Trying to get allocsize args from non-allocsize attribute"); return unpackAllocSizeArgs(pImpl->getValueAsInt()); } std::string Attribute::getAsString(bool InAttrGrp) const { if (!pImpl) return ""; if (hasAttribute(Attribute::SanitizeAddress)) return "sanitize_address"; if (hasAttribute(Attribute::AlwaysInline)) return "alwaysinline"; if (hasAttribute(Attribute::ArgMemOnly)) return "argmemonly"; if (hasAttribute(Attribute::Builtin)) return "builtin"; if (hasAttribute(Attribute::ByVal)) return "byval"; if (hasAttribute(Attribute::Convergent)) return "convergent"; if (hasAttribute(Attribute::SwiftError)) return "swifterror"; if (hasAttribute(Attribute::SwiftSelf)) return "swiftself"; if (hasAttribute(Attribute::InaccessibleMemOnly)) return "inaccessiblememonly"; if (hasAttribute(Attribute::InaccessibleMemOrArgMemOnly)) return "inaccessiblemem_or_argmemonly"; if (hasAttribute(Attribute::InAlloca)) return "inalloca"; if (hasAttribute(Attribute::InlineHint)) return "inlinehint"; if (hasAttribute(Attribute::InReg)) return "inreg"; if (hasAttribute(Attribute::JumpTable)) return "jumptable"; if (hasAttribute(Attribute::MinSize)) return "minsize"; if (hasAttribute(Attribute::Naked)) return "naked"; if (hasAttribute(Attribute::Nest)) return "nest"; if (hasAttribute(Attribute::NoAlias)) return "noalias"; if (hasAttribute(Attribute::NoBuiltin)) return "nobuiltin"; if (hasAttribute(Attribute::NoCapture)) return "nocapture"; if (hasAttribute(Attribute::NoDuplicate)) return "noduplicate"; if (hasAttribute(Attribute::NoImplicitFloat)) return "noimplicitfloat"; if (hasAttribute(Attribute::NoInline)) return "noinline"; if (hasAttribute(Attribute::NonLazyBind)) return "nonlazybind"; if (hasAttribute(Attribute::NonNull)) return "nonnull"; if (hasAttribute(Attribute::NoRedZone)) return "noredzone"; if (hasAttribute(Attribute::NoReturn)) return "noreturn"; if (hasAttribute(Attribute::NoRecurse)) return "norecurse"; if (hasAttribute(Attribute::NoUnwind)) return "nounwind"; if (hasAttribute(Attribute::OptimizeNone)) return "optnone"; if (hasAttribute(Attribute::OptimizeForSize)) return "optsize"; if (hasAttribute(Attribute::ReadNone)) return "readnone"; if (hasAttribute(Attribute::ReadOnly)) return "readonly"; if (hasAttribute(Attribute::WriteOnly)) return "writeonly"; if (hasAttribute(Attribute::Returned)) return "returned"; if (hasAttribute(Attribute::ReturnsTwice)) return "returns_twice"; if (hasAttribute(Attribute::SExt)) return "signext"; if (hasAttribute(Attribute::StackProtect)) return "ssp"; if (hasAttribute(Attribute::StackProtectReq)) return "sspreq"; if (hasAttribute(Attribute::StackProtectStrong)) return "sspstrong"; if (hasAttribute(Attribute::SafeStack)) return "safestack"; if (hasAttribute(Attribute::StructRet)) return "sret"; if (hasAttribute(Attribute::SanitizeThread)) return "sanitize_thread"; if (hasAttribute(Attribute::SanitizeMemory)) return "sanitize_memory"; if (hasAttribute(Attribute::UWTable)) return "uwtable"; if (hasAttribute(Attribute::ZExt)) return "zeroext"; if (hasAttribute(Attribute::Cold)) return "cold"; // FIXME: These should be output like this: // // align=4 // alignstack=8 // if (hasAttribute(Attribute::Alignment)) { std::string Result; Result += "align"; Result += (InAttrGrp) ? "=" : " "; Result += utostr(getValueAsInt()); return Result; } auto AttrWithBytesToString = [&](const char *Name) { std::string Result; Result += Name; if (InAttrGrp) { Result += "="; Result += utostr(getValueAsInt()); } else { Result += "("; Result += utostr(getValueAsInt()); Result += ")"; } return Result; }; if (hasAttribute(Attribute::StackAlignment)) return AttrWithBytesToString("alignstack"); if (hasAttribute(Attribute::Dereferenceable)) return AttrWithBytesToString("dereferenceable"); if (hasAttribute(Attribute::DereferenceableOrNull)) return AttrWithBytesToString("dereferenceable_or_null"); if (hasAttribute(Attribute::AllocSize)) { unsigned ElemSize; Optional NumElems; std::tie(ElemSize, NumElems) = getAllocSizeArgs(); std::string Result = "allocsize("; Result += utostr(ElemSize); if (NumElems.hasValue()) { Result += ','; Result += utostr(*NumElems); } Result += ')'; return Result; } // Convert target-dependent attributes to strings of the form: // // "kind" // "kind" = "value" // if (isStringAttribute()) { std::string Result; Result += (Twine('"') + getKindAsString() + Twine('"')).str(); std::string AttrVal = pImpl->getValueAsString(); if (AttrVal.empty()) return Result; // Since some attribute strings contain special characters that cannot be // printable, those have to be escaped to make the attribute value printable // as is. e.g. "\01__gnu_mcount_nc" { raw_string_ostream OS(Result); OS << "=\""; PrintEscapedString(AttrVal, OS); OS << "\""; } return Result; } llvm_unreachable("Unknown attribute"); } bool Attribute::operator<(Attribute A) const { if (!pImpl && !A.pImpl) return false; if (!pImpl) return true; if (!A.pImpl) return false; return *pImpl < *A.pImpl; } //===----------------------------------------------------------------------===// // AttributeImpl Definition //===----------------------------------------------------------------------===// // Pin the vtables to this file. AttributeImpl::~AttributeImpl() = default; void EnumAttributeImpl::anchor() {} void IntAttributeImpl::anchor() {} void StringAttributeImpl::anchor() {} bool AttributeImpl::hasAttribute(Attribute::AttrKind A) const { if (isStringAttribute()) return false; return getKindAsEnum() == A; } bool AttributeImpl::hasAttribute(StringRef Kind) const { if (!isStringAttribute()) return false; return getKindAsString() == Kind; } Attribute::AttrKind AttributeImpl::getKindAsEnum() const { assert(isEnumAttribute() || isIntAttribute()); return static_cast(this)->getEnumKind(); } uint64_t AttributeImpl::getValueAsInt() const { assert(isIntAttribute()); return static_cast(this)->getValue(); } StringRef AttributeImpl::getKindAsString() const { assert(isStringAttribute()); return static_cast(this)->getStringKind(); } StringRef AttributeImpl::getValueAsString() const { assert(isStringAttribute()); return static_cast(this)->getStringValue(); } bool AttributeImpl::operator<(const AttributeImpl &AI) const { // This sorts the attributes with Attribute::AttrKinds coming first (sorted // relative to their enum value) and then strings. if (isEnumAttribute()) { if (AI.isEnumAttribute()) return getKindAsEnum() < AI.getKindAsEnum(); if (AI.isIntAttribute()) return true; if (AI.isStringAttribute()) return true; } if (isIntAttribute()) { if (AI.isEnumAttribute()) return false; if (AI.isIntAttribute()) { if (getKindAsEnum() == AI.getKindAsEnum()) return getValueAsInt() < AI.getValueAsInt(); return getKindAsEnum() < AI.getKindAsEnum(); } if (AI.isStringAttribute()) return true; } if (AI.isEnumAttribute()) return false; if (AI.isIntAttribute()) return false; if (getKindAsString() == AI.getKindAsString()) return getValueAsString() < AI.getValueAsString(); return getKindAsString() < AI.getKindAsString(); } //===----------------------------------------------------------------------===// // AttributeSet Definition //===----------------------------------------------------------------------===// AttributeSet AttributeSet::get(LLVMContext &C, const AttrBuilder &B) { return AttributeSet(AttributeSetNode::get(C, B)); } AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef Attrs) { return AttributeSet(AttributeSetNode::get(C, Attrs)); } unsigned AttributeSet::getNumAttributes() const { return SetNode ? SetNode->getNumAttributes() : 0; } bool AttributeSet::hasAttribute(Attribute::AttrKind Kind) const { return SetNode ? SetNode->hasAttribute(Kind) : 0; } bool AttributeSet::hasAttribute(StringRef Kind) const { return SetNode ? SetNode->hasAttribute(Kind) : 0; } Attribute AttributeSet::getAttribute(Attribute::AttrKind Kind) const { return SetNode ? SetNode->getAttribute(Kind) : Attribute(); } Attribute AttributeSet::getAttribute(StringRef Kind) const { return SetNode ? SetNode->getAttribute(Kind) : Attribute(); } unsigned AttributeSet::getAlignment() const { return SetNode ? SetNode->getAlignment() : 0; } unsigned AttributeSet::getStackAlignment() const { return SetNode ? SetNode->getStackAlignment() : 0; } uint64_t AttributeSet::getDereferenceableBytes() const { return SetNode ? SetNode->getDereferenceableBytes() : 0; } uint64_t AttributeSet::getDereferenceableOrNullBytes() const { return SetNode ? SetNode->getDereferenceableOrNullBytes() : 0; } std::pair> AttributeSet::getAllocSizeArgs() const { return SetNode ? SetNode->getAllocSizeArgs() : std::pair>(0, 0); } std::string AttributeSet::getAsString(bool InAttrGrp) const { return SetNode ? SetNode->getAsString(InAttrGrp) : ""; } AttributeSet::iterator AttributeSet::begin() const { return SetNode ? SetNode->begin() : nullptr; } AttributeSet::iterator AttributeSet::end() const { return SetNode ? SetNode->end() : nullptr; } //===----------------------------------------------------------------------===// // AttributeSetNode Definition //===----------------------------------------------------------------------===// AttributeSetNode::AttributeSetNode(ArrayRef Attrs) : AvailableAttrs(0), NumAttrs(Attrs.size()) { // There's memory after the node where we can store the entries in. std::copy(Attrs.begin(), Attrs.end(), getTrailingObjects()); for (Attribute I : *this) { if (!I.isStringAttribute()) { AvailableAttrs |= ((uint64_t)1) << I.getKindAsEnum(); } } } AttributeSetNode *AttributeSetNode::get(LLVMContext &C, ArrayRef Attrs) { if (Attrs.empty()) return nullptr; // Otherwise, build a key to look up the existing attributes. LLVMContextImpl *pImpl = C.pImpl; FoldingSetNodeID ID; SmallVector SortedAttrs(Attrs.begin(), Attrs.end()); std::sort(SortedAttrs.begin(), SortedAttrs.end()); for (Attribute Attr : SortedAttrs) Attr.Profile(ID); void *InsertPoint; AttributeSetNode *PA = pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, InsertPoint); // If we didn't find any existing attributes of the same shape then create a // new one and insert it. if (!PA) { // Coallocate entries after the AttributeSetNode itself. void *Mem = ::operator new(totalSizeToAlloc(SortedAttrs.size())); PA = new (Mem) AttributeSetNode(SortedAttrs); pImpl->AttrsSetNodes.InsertNode(PA, InsertPoint); } // Return the AttributeSetNode that we found or created. return PA; } AttributeSetNode *AttributeSetNode::get(LLVMContext &C, const AttrBuilder &B) { // Add target-independent attributes. SmallVector Attrs; for (Attribute::AttrKind Kind = Attribute::None; Kind != Attribute::EndAttrKinds; Kind = Attribute::AttrKind(Kind + 1)) { if (!B.contains(Kind)) continue; Attribute Attr; switch (Kind) { case Attribute::Alignment: Attr = Attribute::getWithAlignment(C, B.getAlignment()); break; case Attribute::StackAlignment: Attr = Attribute::getWithStackAlignment(C, B.getStackAlignment()); break; case Attribute::Dereferenceable: Attr = Attribute::getWithDereferenceableBytes( C, B.getDereferenceableBytes()); break; case Attribute::DereferenceableOrNull: Attr = Attribute::getWithDereferenceableOrNullBytes( C, B.getDereferenceableOrNullBytes()); break; case Attribute::AllocSize: { auto A = B.getAllocSizeArgs(); Attr = Attribute::getWithAllocSizeArgs(C, A.first, A.second); break; } default: Attr = Attribute::get(C, Kind); } Attrs.push_back(Attr); } // Add target-dependent (string) attributes. for (const auto &TDA : B.td_attrs()) Attrs.emplace_back(Attribute::get(C, TDA.first, TDA.second)); return get(C, Attrs); } bool AttributeSetNode::hasAttribute(StringRef Kind) const { for (Attribute I : *this) if (I.hasAttribute(Kind)) return true; return false; } Attribute AttributeSetNode::getAttribute(Attribute::AttrKind Kind) const { if (hasAttribute(Kind)) { for (Attribute I : *this) if (I.hasAttribute(Kind)) return I; } return Attribute(); } Attribute AttributeSetNode::getAttribute(StringRef Kind) const { for (Attribute I : *this) if (I.hasAttribute(Kind)) return I; return Attribute(); } unsigned AttributeSetNode::getAlignment() const { for (Attribute I : *this) if (I.hasAttribute(Attribute::Alignment)) return I.getAlignment(); return 0; } unsigned AttributeSetNode::getStackAlignment() const { for (Attribute I : *this) if (I.hasAttribute(Attribute::StackAlignment)) return I.getStackAlignment(); return 0; } uint64_t AttributeSetNode::getDereferenceableBytes() const { for (Attribute I : *this) if (I.hasAttribute(Attribute::Dereferenceable)) return I.getDereferenceableBytes(); return 0; } uint64_t AttributeSetNode::getDereferenceableOrNullBytes() const { for (Attribute I : *this) if (I.hasAttribute(Attribute::DereferenceableOrNull)) return I.getDereferenceableOrNullBytes(); return 0; } std::pair> AttributeSetNode::getAllocSizeArgs() const { for (Attribute I : *this) if (I.hasAttribute(Attribute::AllocSize)) return I.getAllocSizeArgs(); return std::make_pair(0, 0); } std::string AttributeSetNode::getAsString(bool InAttrGrp) const { std::string Str; for (iterator I = begin(), E = end(); I != E; ++I) { if (I != begin()) Str += ' '; Str += I->getAsString(InAttrGrp); } return Str; } //===----------------------------------------------------------------------===// // AttributeListImpl Definition //===----------------------------------------------------------------------===// AttributeListImpl::AttributeListImpl( LLVMContext &C, ArrayRef> Slots) : Context(C), NumSlots(Slots.size()), AvailableFunctionAttrs(0) { #ifndef NDEBUG assert(!Slots.empty() && "pointless AttributeListImpl"); if (Slots.size() >= 2) { auto &PrevPair = Slots.front(); for (auto &CurPair : Slots.drop_front()) { assert(PrevPair.first <= CurPair.first && "Attribute set not ordered!"); } } #endif // There's memory after the node where we can store the entries in. std::copy(Slots.begin(), Slots.end(), getTrailingObjects()); // Initialize AvailableFunctionAttrs summary bitset. static_assert(Attribute::EndAttrKinds <= sizeof(AvailableFunctionAttrs) * CHAR_BIT, "Too many attributes"); static_assert(AttributeList::FunctionIndex == ~0u, "FunctionIndex should be biggest possible index"); const auto &Last = Slots.back(); if (Last.first == AttributeList::FunctionIndex) { AttributeSet Node = Last.second; for (Attribute I : Node) { if (!I.isStringAttribute()) AvailableFunctionAttrs |= ((uint64_t)1) << I.getKindAsEnum(); } } } void AttributeListImpl::Profile(FoldingSetNodeID &ID) const { Profile(ID, makeArrayRef(getSlotPair(0), getNumSlots())); } void AttributeListImpl::Profile( FoldingSetNodeID &ID, ArrayRef> Nodes) { for (const auto &Node : Nodes) { ID.AddInteger(Node.first); ID.AddPointer(Node.second.SetNode); } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void AttributeListImpl::dump() const { AttributeList(const_cast(this)).dump(); } #endif //===----------------------------------------------------------------------===// // AttributeList Construction and Mutation Methods //===----------------------------------------------------------------------===// AttributeList AttributeList::getImpl( LLVMContext &C, ArrayRef> Attrs) { assert(!Attrs.empty() && "creating pointless AttributeList"); #ifndef NDEBUG unsigned LastIndex = 0; bool IsFirst = true; for (auto &&AttrPair : Attrs) { assert((IsFirst || LastIndex < AttrPair.first) && "unsorted or duplicate AttributeList indices"); assert(AttrPair.second.hasAttributes() && "pointless AttributeList slot"); LastIndex = AttrPair.first; IsFirst = false; } #endif LLVMContextImpl *pImpl = C.pImpl; FoldingSetNodeID ID; AttributeListImpl::Profile(ID, Attrs); void *InsertPoint; AttributeListImpl *PA = pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint); // If we didn't find any existing attributes of the same shape then // create a new one and insert it. if (!PA) { // Coallocate entries after the AttributeListImpl itself. void *Mem = ::operator new( AttributeListImpl::totalSizeToAlloc(Attrs.size())); PA = new (Mem) AttributeListImpl(C, Attrs); pImpl->AttrsLists.InsertNode(PA, InsertPoint); } // Return the AttributesList that we found or created. return AttributeList(PA); } AttributeList AttributeList::get(LLVMContext &C, ArrayRef> Attrs) { // If there are no attributes then return a null AttributesList pointer. if (Attrs.empty()) return AttributeList(); assert(std::is_sorted(Attrs.begin(), Attrs.end(), [](const std::pair &LHS, const std::pair &RHS) { return LHS.first < RHS.first; }) && "Misordered Attributes list!"); assert(none_of(Attrs, [](const std::pair &Pair) { return Pair.second.hasAttribute(Attribute::None); }) && "Pointless attribute!"); // Create a vector if (unsigned, AttributeSetNode*) pairs from the attributes // list. SmallVector, 8> AttrPairVec; for (ArrayRef>::iterator I = Attrs.begin(), E = Attrs.end(); I != E; ) { unsigned Index = I->first; SmallVector AttrVec; while (I != E && I->first == Index) { AttrVec.push_back(I->second); ++I; } AttrPairVec.emplace_back(Index, AttributeSet::get(C, AttrVec)); } return getImpl(C, AttrPairVec); } AttributeList AttributeList::get(LLVMContext &C, ArrayRef> Attrs) { // If there are no attributes then return a null AttributesList pointer. if (Attrs.empty()) return AttributeList(); return getImpl(C, Attrs); } AttributeList AttributeList::get(LLVMContext &C, AttributeSet FnAttrs, AttributeSet RetAttrs, ArrayRef ArgAttrs) { SmallVector, 8> AttrPairs; if (RetAttrs.hasAttributes()) AttrPairs.emplace_back(ReturnIndex, RetAttrs); size_t Index = 1; for (AttributeSet AS : ArgAttrs) { if (AS.hasAttributes()) AttrPairs.emplace_back(Index, AS); ++Index; } if (FnAttrs.hasAttributes()) AttrPairs.emplace_back(FunctionIndex, FnAttrs); if (AttrPairs.empty()) return AttributeList(); return getImpl(C, AttrPairs); } AttributeList AttributeList::get(LLVMContext &C, unsigned Index, const AttrBuilder &B) { if (!B.hasAttributes()) return AttributeList(); AttributeSet AS = AttributeSet::get(C, B); std::pair Arr[1] = {{Index, AS}}; return getImpl(C, Arr); } AttributeList AttributeList::get(LLVMContext &C, unsigned Index, ArrayRef Kinds) { SmallVector, 8> Attrs; for (Attribute::AttrKind K : Kinds) Attrs.emplace_back(Index, Attribute::get(C, K)); return get(C, Attrs); } AttributeList AttributeList::get(LLVMContext &C, unsigned Index, ArrayRef Kinds) { SmallVector, 8> Attrs; for (StringRef K : Kinds) Attrs.emplace_back(Index, Attribute::get(C, K)); return get(C, Attrs); } AttributeList AttributeList::get(LLVMContext &C, ArrayRef Attrs) { if (Attrs.empty()) return AttributeList(); if (Attrs.size() == 1) return Attrs[0]; SmallVector, 8> AttrNodeVec; AttributeListImpl *A0 = Attrs[0].pImpl; if (A0) AttrNodeVec.append(A0->getSlotPair(0), A0->getSlotPair(A0->getNumSlots())); // Copy all attributes from Attrs into AttrNodeVec while keeping AttrNodeVec // ordered by index. Because we know that each list in Attrs is ordered by // index we only need to merge each successive list in rather than doing a // full sort. for (unsigned I = 1, E = Attrs.size(); I != E; ++I) { AttributeListImpl *ALI = Attrs[I].pImpl; if (!ALI) continue; SmallVector, 8>::iterator ANVI = AttrNodeVec.begin(), ANVE; for (const IndexAttrPair *AI = ALI->getSlotPair(0), *AE = ALI->getSlotPair(ALI->getNumSlots()); AI != AE; ++AI) { ANVE = AttrNodeVec.end(); while (ANVI != ANVE && ANVI->first <= AI->first) ++ANVI; ANVI = AttrNodeVec.insert(ANVI, *AI) + 1; } } return getImpl(C, AttrNodeVec); } AttributeList AttributeList::addAttribute(LLVMContext &C, unsigned Index, Attribute::AttrKind Kind) const { if (hasAttribute(Index, Kind)) return *this; return addAttributes(C, Index, AttributeList::get(C, Index, Kind)); } AttributeList AttributeList::addAttribute(LLVMContext &C, unsigned Index, StringRef Kind, StringRef Value) const { AttrBuilder B; B.addAttribute(Kind, Value); return addAttributes(C, Index, AttributeList::get(C, Index, B)); } AttributeList AttributeList::addAttribute(LLVMContext &C, ArrayRef Indices, Attribute A) const { assert(std::is_sorted(Indices.begin(), Indices.end())); unsigned I = 0, E = pImpl ? pImpl->getNumSlots() : 0; SmallVector AttrVec; for (unsigned Index : Indices) { // Add all attribute slots before the current index. for (; I < E && getSlotIndex(I) < Index; ++I) AttrVec.emplace_back(getSlotIndex(I), pImpl->getSlotNode(I)); // Add the attribute at this index. If we already have attributes at this // index, merge them into a new set. AttrBuilder B; if (I < E && getSlotIndex(I) == Index) { B.merge(AttrBuilder(pImpl->getSlotNode(I))); ++I; } B.addAttribute(A); AttrVec.emplace_back(Index, AttributeSet::get(C, B)); } // Add remaining attributes. for (; I < E; ++I) AttrVec.emplace_back(getSlotIndex(I), pImpl->getSlotNode(I)); return get(C, AttrVec); } AttributeList AttributeList::addAttributes(LLVMContext &C, unsigned Index, AttributeList Attrs) const { if (!pImpl) return Attrs; if (!Attrs.pImpl) return *this; return addAttributes(C, Index, Attrs.getAttributes(Index)); } AttributeList AttributeList::addAttributes(LLVMContext &C, unsigned Index, const AttrBuilder &B) const { if (!B.hasAttributes()) return *this; if (!pImpl) return AttributeList::get(C, {{Index, AttributeSet::get(C, B)}}); #ifndef NDEBUG // FIXME it is not obvious how this should work for alignment. For now, say // we can't change a known alignment. unsigned OldAlign = getParamAlignment(Index); unsigned NewAlign = B.getAlignment(); assert((!OldAlign || !NewAlign || OldAlign == NewAlign) && "Attempt to change alignment!"); #endif SmallVector AttrVec; uint64_t NumAttrs = pImpl->getNumSlots(); unsigned I; // Add all the attribute slots before the one we need to merge. for (I = 0; I < NumAttrs; ++I) { if (getSlotIndex(I) >= Index) break; AttrVec.emplace_back(getSlotIndex(I), pImpl->getSlotNode(I)); } AttrBuilder NewAttrs; if (I < NumAttrs && getSlotIndex(I) == Index) { // We need to merge the attribute sets. NewAttrs.merge(pImpl->getSlotNode(I)); ++I; } NewAttrs.merge(B); // Add the new or merged attribute set at this index. AttrVec.emplace_back(Index, AttributeSet::get(C, NewAttrs)); // Add the remaining entries. for (; I < NumAttrs; ++I) AttrVec.emplace_back(getSlotIndex(I), pImpl->getSlotNode(I)); return get(C, AttrVec); } AttributeList AttributeList::removeAttribute(LLVMContext &C, unsigned Index, Attribute::AttrKind Kind) const { if (!hasAttribute(Index, Kind)) return *this; return removeAttributes(C, Index, AttributeList::get(C, Index, Kind)); } AttributeList AttributeList::removeAttribute(LLVMContext &C, unsigned Index, StringRef Kind) const { if (!hasAttribute(Index, Kind)) return *this; return removeAttributes(C, Index, AttributeList::get(C, Index, Kind)); } AttributeList AttributeList::removeAttributes(LLVMContext &C, unsigned Index, AttributeList Attrs) const { return removeAttributes(C, Index, AttrBuilder(Attrs.getAttributes(Index))); } AttributeList AttributeList::removeAttributes(LLVMContext &C, unsigned Index, const AttrBuilder &Attrs) const { if (!pImpl) return AttributeList(); // FIXME it is not obvious how this should work for alignment. // For now, say we can't pass in alignment, which no current use does. assert(!Attrs.hasAlignmentAttr() && "Attempt to change alignment!"); // Add the attribute slots before the one we're trying to add. SmallVector AttrSets; uint64_t NumAttrs = pImpl->getNumSlots(); AttrBuilder B; uint64_t LastIndex = 0; for (unsigned I = 0, E = NumAttrs; I != E; ++I) { if (getSlotIndex(I) >= Index) { if (getSlotIndex(I) == Index) B = AttrBuilder(pImpl->getSlotNode(LastIndex++)); break; } LastIndex = I + 1; AttrSets.push_back({getSlotIndex(I), pImpl->getSlotNode(I)}); } // Remove the attributes from the existing set and add them. B.remove(Attrs); if (B.hasAttributes()) AttrSets.push_back({Index, AttributeSet::get(C, B)}); // Add the remaining attribute slots. for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I) AttrSets.push_back({getSlotIndex(I), pImpl->getSlotNode(I)}); return get(C, AttrSets); } AttributeList AttributeList::removeAttributes(LLVMContext &C, unsigned WithoutIndex) const { if (!pImpl) return AttributeList(); SmallVector, 4> AttrSet; for (unsigned I = 0, E = pImpl->getNumSlots(); I != E; ++I) { unsigned Index = getSlotIndex(I); if (Index != WithoutIndex) AttrSet.push_back({Index, pImpl->getSlotNode(I)}); } return get(C, AttrSet); } AttributeList AttributeList::addDereferenceableAttr(LLVMContext &C, unsigned Index, uint64_t Bytes) const { AttrBuilder B; B.addDereferenceableAttr(Bytes); return addAttributes(C, Index, AttributeList::get(C, Index, B)); } AttributeList AttributeList::addDereferenceableOrNullAttr(LLVMContext &C, unsigned Index, uint64_t Bytes) const { AttrBuilder B; B.addDereferenceableOrNullAttr(Bytes); return addAttributes(C, Index, AttributeList::get(C, Index, B)); } AttributeList AttributeList::addAllocSizeAttr(LLVMContext &C, unsigned Index, unsigned ElemSizeArg, const Optional &NumElemsArg) { AttrBuilder B; B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); return addAttributes(C, Index, AttributeList::get(C, Index, B)); } //===----------------------------------------------------------------------===// // AttributeList Accessor Methods //===----------------------------------------------------------------------===// LLVMContext &AttributeList::getContext() const { return pImpl->getContext(); } AttributeSet AttributeList::getParamAttributes(unsigned ArgNo) const { return getAttributes(ArgNo + 1); } AttributeSet AttributeList::getRetAttributes() const { return getAttributes(ReturnIndex); } AttributeSet AttributeList::getFnAttributes() const { return getAttributes(FunctionIndex); } bool AttributeList::hasAttribute(unsigned Index, Attribute::AttrKind Kind) const { return getAttributes(Index).hasAttribute(Kind); } bool AttributeList::hasAttribute(unsigned Index, StringRef Kind) const { return getAttributes(Index).hasAttribute(Kind); } bool AttributeList::hasAttributes(unsigned Index) const { return getAttributes(Index).hasAttributes(); } bool AttributeList::hasFnAttribute(Attribute::AttrKind Kind) const { return pImpl && pImpl->hasFnAttribute(Kind); } bool AttributeList::hasFnAttribute(StringRef Kind) const { return hasAttribute(AttributeList::FunctionIndex, Kind); } bool AttributeList::hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const { return hasAttribute(ArgNo + 1, Kind); } bool AttributeList::hasAttrSomewhere(Attribute::AttrKind Attr, unsigned *Index) const { if (!pImpl) return false; for (unsigned I = 0, E = pImpl->getNumSlots(); I != E; ++I) for (AttributeListImpl::iterator II = pImpl->begin(I), IE = pImpl->end(I); II != IE; ++II) if (II->hasAttribute(Attr)) { if (Index) *Index = pImpl->getSlotIndex(I); return true; } return false; } Attribute AttributeList::getAttribute(unsigned Index, Attribute::AttrKind Kind) const { return getAttributes(Index).getAttribute(Kind); } Attribute AttributeList::getAttribute(unsigned Index, StringRef Kind) const { return getAttributes(Index).getAttribute(Kind); } unsigned AttributeList::getParamAlignment(unsigned Index) const { return getAttributes(Index).getAlignment(); } unsigned AttributeList::getStackAlignment(unsigned Index) const { return getAttributes(Index).getStackAlignment(); } uint64_t AttributeList::getDereferenceableBytes(unsigned Index) const { return getAttributes(Index).getDereferenceableBytes(); } uint64_t AttributeList::getDereferenceableOrNullBytes(unsigned Index) const { return getAttributes(Index).getDereferenceableOrNullBytes(); } std::pair> AttributeList::getAllocSizeArgs(unsigned Index) const { return getAttributes(Index).getAllocSizeArgs(); } std::string AttributeList::getAsString(unsigned Index, bool InAttrGrp) const { return getAttributes(Index).getAsString(InAttrGrp); } AttributeSet AttributeList::getAttributes(unsigned Index) const { if (!pImpl) return AttributeSet(); // Loop through to find the attribute node we want. for (unsigned I = 0, E = pImpl->getNumSlots(); I != E; ++I) if (pImpl->getSlotIndex(I) == Index) return pImpl->getSlotNode(I); return AttributeSet(); } AttributeList::iterator AttributeList::begin(unsigned Slot) const { if (!pImpl) return ArrayRef().begin(); return pImpl->begin(Slot); } AttributeList::iterator AttributeList::end(unsigned Slot) const { if (!pImpl) return ArrayRef().end(); return pImpl->end(Slot); } //===----------------------------------------------------------------------===// // AttributeList Introspection Methods //===----------------------------------------------------------------------===// unsigned AttributeList::getNumSlots() const { return pImpl ? pImpl->getNumSlots() : 0; } unsigned AttributeList::getSlotIndex(unsigned Slot) const { assert(pImpl && Slot < pImpl->getNumSlots() && "Slot # out of range!"); return pImpl->getSlotIndex(Slot); } AttributeList AttributeList::getSlotAttributes(unsigned Slot) const { assert(pImpl && Slot < pImpl->getNumSlots() && "Slot # out of range!"); return pImpl->getSlotAttributes(Slot); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void AttributeList::dump() const { dbgs() << "PAL[\n"; for (unsigned i = 0, e = getNumSlots(); i < e; ++i) { uint64_t Index = getSlotIndex(i); dbgs() << " { "; if (Index == ~0U) dbgs() << "~0U"; else dbgs() << Index; dbgs() << " => " << getAsString(Index) << " }\n"; } dbgs() << "]\n"; } #endif //===----------------------------------------------------------------------===// // AttrBuilder Method Implementations //===----------------------------------------------------------------------===// AttrBuilder::AttrBuilder(AttributeList AL, unsigned Index) { AttributeListImpl *pImpl = AL.pImpl; if (!pImpl) return; for (unsigned I = 0, E = pImpl->getNumSlots(); I != E; ++I) { if (pImpl->getSlotIndex(I) != Index) continue; for (AttributeListImpl::iterator II = pImpl->begin(I), IE = pImpl->end(I); II != IE; ++II) addAttribute(*II); break; } } AttrBuilder::AttrBuilder(AttributeSet AS) { if (AS.hasAttributes()) { for (const Attribute &A : AS) addAttribute(A); } } void AttrBuilder::clear() { Attrs.reset(); TargetDepAttrs.clear(); Alignment = StackAlignment = DerefBytes = DerefOrNullBytes = 0; AllocSizeArgs = 0; } AttrBuilder &AttrBuilder::addAttribute(Attribute::AttrKind Val) { assert((unsigned)Val < Attribute::EndAttrKinds && "Attribute out of range!"); assert(Val != Attribute::Alignment && Val != Attribute::StackAlignment && Val != Attribute::Dereferenceable && Val != Attribute::AllocSize && "Adding integer attribute without adding a value!"); Attrs[Val] = true; return *this; } AttrBuilder &AttrBuilder::addAttribute(Attribute Attr) { if (Attr.isStringAttribute()) { addAttribute(Attr.getKindAsString(), Attr.getValueAsString()); return *this; } Attribute::AttrKind Kind = Attr.getKindAsEnum(); Attrs[Kind] = true; if (Kind == Attribute::Alignment) Alignment = Attr.getAlignment(); else if (Kind == Attribute::StackAlignment) StackAlignment = Attr.getStackAlignment(); else if (Kind == Attribute::Dereferenceable) DerefBytes = Attr.getDereferenceableBytes(); else if (Kind == Attribute::DereferenceableOrNull) DerefOrNullBytes = Attr.getDereferenceableOrNullBytes(); else if (Kind == Attribute::AllocSize) AllocSizeArgs = Attr.getValueAsInt(); return *this; } AttrBuilder &AttrBuilder::addAttribute(StringRef A, StringRef V) { TargetDepAttrs[A] = V; return *this; } AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrKind Val) { assert((unsigned)Val < Attribute::EndAttrKinds && "Attribute out of range!"); Attrs[Val] = false; if (Val == Attribute::Alignment) Alignment = 0; else if (Val == Attribute::StackAlignment) StackAlignment = 0; else if (Val == Attribute::Dereferenceable) DerefBytes = 0; else if (Val == Attribute::DereferenceableOrNull) DerefOrNullBytes = 0; else if (Val == Attribute::AllocSize) AllocSizeArgs = 0; return *this; } AttrBuilder &AttrBuilder::removeAttributes(AttributeList A, uint64_t Index) { for (Attribute Attr : A.getAttributes(Index)) { if (Attr.isEnumAttribute() || Attr.isIntAttribute()) { removeAttribute(Attr.getKindAsEnum()); } else { assert(Attr.isStringAttribute() && "Invalid attribute type!"); removeAttribute(Attr.getKindAsString()); } } return *this; } AttrBuilder &AttrBuilder::removeAttribute(StringRef A) { std::map::iterator I = TargetDepAttrs.find(A); if (I != TargetDepAttrs.end()) TargetDepAttrs.erase(I); return *this; } std::pair> AttrBuilder::getAllocSizeArgs() const { return unpackAllocSizeArgs(AllocSizeArgs); } AttrBuilder &AttrBuilder::addAlignmentAttr(unsigned Align) { if (Align == 0) return *this; assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x40000000 && "Alignment too large."); Attrs[Attribute::Alignment] = true; Alignment = Align; return *this; } AttrBuilder &AttrBuilder::addStackAlignmentAttr(unsigned Align) { // Default alignment, allow the target to define how to align it. if (Align == 0) return *this; assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x100 && "Alignment too large."); Attrs[Attribute::StackAlignment] = true; StackAlignment = Align; return *this; } AttrBuilder &AttrBuilder::addDereferenceableAttr(uint64_t Bytes) { if (Bytes == 0) return *this; Attrs[Attribute::Dereferenceable] = true; DerefBytes = Bytes; return *this; } AttrBuilder &AttrBuilder::addDereferenceableOrNullAttr(uint64_t Bytes) { if (Bytes == 0) return *this; Attrs[Attribute::DereferenceableOrNull] = true; DerefOrNullBytes = Bytes; return *this; } AttrBuilder &AttrBuilder::addAllocSizeAttr(unsigned ElemSize, const Optional &NumElems) { return addAllocSizeAttrFromRawRepr(packAllocSizeArgs(ElemSize, NumElems)); } AttrBuilder &AttrBuilder::addAllocSizeAttrFromRawRepr(uint64_t RawArgs) { // (0, 0) is our "not present" value, so we need to check for it here. assert(RawArgs && "Invalid allocsize arguments -- given allocsize(0, 0)"); Attrs[Attribute::AllocSize] = true; // Reuse existing machinery to store this as a single 64-bit integer so we can // save a few bytes over using a pair>. AllocSizeArgs = RawArgs; return *this; } AttrBuilder &AttrBuilder::merge(const AttrBuilder &B) { // FIXME: What if both have alignments, but they don't match?! if (!Alignment) Alignment = B.Alignment; if (!StackAlignment) StackAlignment = B.StackAlignment; if (!DerefBytes) DerefBytes = B.DerefBytes; if (!DerefOrNullBytes) DerefOrNullBytes = B.DerefOrNullBytes; if (!AllocSizeArgs) AllocSizeArgs = B.AllocSizeArgs; Attrs |= B.Attrs; for (auto I : B.td_attrs()) TargetDepAttrs[I.first] = I.second; return *this; } AttrBuilder &AttrBuilder::remove(const AttrBuilder &B) { // FIXME: What if both have alignments, but they don't match?! if (B.Alignment) Alignment = 0; if (B.StackAlignment) StackAlignment = 0; if (B.DerefBytes) DerefBytes = 0; if (B.DerefOrNullBytes) DerefOrNullBytes = 0; if (B.AllocSizeArgs) AllocSizeArgs = 0; Attrs &= ~B.Attrs; for (auto I : B.td_attrs()) TargetDepAttrs.erase(I.first); return *this; } bool AttrBuilder::overlaps(const AttrBuilder &B) const { // First check if any of the target independent attributes overlap. if ((Attrs & B.Attrs).any()) return true; // Then check if any target dependent ones do. for (const auto &I : td_attrs()) if (B.contains(I.first)) return true; return false; } bool AttrBuilder::contains(StringRef A) const { return TargetDepAttrs.find(A) != TargetDepAttrs.end(); } bool AttrBuilder::hasAttributes() const { return !Attrs.none() || !TargetDepAttrs.empty(); } bool AttrBuilder::hasAttributes(AttributeList A, uint64_t Index) const { unsigned Slot = ~0U; for (unsigned I = 0, E = A.getNumSlots(); I != E; ++I) if (A.getSlotIndex(I) == Index) { Slot = I; break; } assert(Slot != ~0U && "Couldn't find the index!"); for (AttributeList::iterator I = A.begin(Slot), E = A.end(Slot); I != E; ++I) { Attribute Attr = *I; if (Attr.isEnumAttribute() || Attr.isIntAttribute()) { if (Attrs[I->getKindAsEnum()]) return true; } else { assert(Attr.isStringAttribute() && "Invalid attribute kind!"); return TargetDepAttrs.find(Attr.getKindAsString())!=TargetDepAttrs.end(); } } return false; } bool AttrBuilder::hasAlignmentAttr() const { return Alignment != 0; } bool AttrBuilder::operator==(const AttrBuilder &B) { if (Attrs != B.Attrs) return false; for (td_const_iterator I = TargetDepAttrs.begin(), E = TargetDepAttrs.end(); I != E; ++I) if (B.TargetDepAttrs.find(I->first) == B.TargetDepAttrs.end()) return false; return Alignment == B.Alignment && StackAlignment == B.StackAlignment && DerefBytes == B.DerefBytes; } //===----------------------------------------------------------------------===// // AttributeFuncs Function Defintions //===----------------------------------------------------------------------===// /// \brief Which attributes cannot be applied to a type. AttrBuilder AttributeFuncs::typeIncompatible(Type *Ty) { AttrBuilder Incompatible; if (!Ty->isIntegerTy()) // Attribute that only apply to integers. Incompatible.addAttribute(Attribute::SExt) .addAttribute(Attribute::ZExt); if (!Ty->isPointerTy()) // Attribute that only apply to pointers. Incompatible.addAttribute(Attribute::ByVal) .addAttribute(Attribute::Nest) .addAttribute(Attribute::NoAlias) .addAttribute(Attribute::NoCapture) .addAttribute(Attribute::NonNull) .addDereferenceableAttr(1) // the int here is ignored .addDereferenceableOrNullAttr(1) // the int here is ignored .addAttribute(Attribute::ReadNone) .addAttribute(Attribute::ReadOnly) .addAttribute(Attribute::StructRet) .addAttribute(Attribute::InAlloca); return Incompatible; } template static bool isEqual(const Function &Caller, const Function &Callee) { return Caller.getFnAttribute(AttrClass::getKind()) == Callee.getFnAttribute(AttrClass::getKind()); } /// \brief Compute the logical AND of the attributes of the caller and the /// callee. /// /// This function sets the caller's attribute to false if the callee's attribute /// is false. template static void setAND(Function &Caller, const Function &Callee) { if (AttrClass::isSet(Caller, AttrClass::getKind()) && !AttrClass::isSet(Callee, AttrClass::getKind())) AttrClass::set(Caller, AttrClass::getKind(), false); } /// \brief Compute the logical OR of the attributes of the caller and the /// callee. /// /// This function sets the caller's attribute to true if the callee's attribute /// is true. template static void setOR(Function &Caller, const Function &Callee) { if (!AttrClass::isSet(Caller, AttrClass::getKind()) && AttrClass::isSet(Callee, AttrClass::getKind())) AttrClass::set(Caller, AttrClass::getKind(), true); } /// \brief If the inlined function had a higher stack protection level than the /// calling function, then bump up the caller's stack protection level. static void adjustCallerSSPLevel(Function &Caller, const Function &Callee) { // If upgrading the SSP attribute, clear out the old SSP Attributes first. // Having multiple SSP attributes doesn't actually hurt, but it adds useless // clutter to the IR. AttrBuilder B; B.addAttribute(Attribute::StackProtect) .addAttribute(Attribute::StackProtectStrong) .addAttribute(Attribute::StackProtectReq); AttributeList OldSSPAttr = AttributeList::get(Caller.getContext(), AttributeList::FunctionIndex, B); if (Callee.hasFnAttribute(Attribute::StackProtectReq)) { Caller.removeAttributes(AttributeList::FunctionIndex, OldSSPAttr); Caller.addFnAttr(Attribute::StackProtectReq); } else if (Callee.hasFnAttribute(Attribute::StackProtectStrong) && !Caller.hasFnAttribute(Attribute::StackProtectReq)) { Caller.removeAttributes(AttributeList::FunctionIndex, OldSSPAttr); Caller.addFnAttr(Attribute::StackProtectStrong); } else if (Callee.hasFnAttribute(Attribute::StackProtect) && !Caller.hasFnAttribute(Attribute::StackProtectReq) && !Caller.hasFnAttribute(Attribute::StackProtectStrong)) Caller.addFnAttr(Attribute::StackProtect); } #define GET_ATTR_COMPAT_FUNC #include "AttributesCompatFunc.inc" bool AttributeFuncs::areInlineCompatible(const Function &Caller, const Function &Callee) { return hasCompatibleFnAttrs(Caller, Callee); } void AttributeFuncs::mergeAttributesForInlining(Function &Caller, const Function &Callee) { mergeFnAttrs(Caller, Callee); }