//===- Type.cpp - Implement the Type class --------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Type class for the IR library. // //===----------------------------------------------------------------------===// #include "llvm/IR/Type.h" #include "LLVMContextImpl.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/None.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Type Class Implementation //===----------------------------------------------------------------------===// Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) { switch (IDNumber) { case VoidTyID : return getVoidTy(C); case HalfTyID : return getHalfTy(C); case FloatTyID : return getFloatTy(C); case DoubleTyID : return getDoubleTy(C); case X86_FP80TyID : return getX86_FP80Ty(C); case FP128TyID : return getFP128Ty(C); case PPC_FP128TyID : return getPPC_FP128Ty(C); case LabelTyID : return getLabelTy(C); case MetadataTyID : return getMetadataTy(C); case X86_MMXTyID : return getX86_MMXTy(C); case TokenTyID : return getTokenTy(C); default: return nullptr; } } bool Type::isIntegerTy(unsigned Bitwidth) const { return isIntegerTy() && cast(this)->getBitWidth() == Bitwidth; } bool Type::canLosslesslyBitCastTo(Type *Ty) const { // Identity cast means no change so return true if (this == Ty) return true; // They are not convertible unless they are at least first class types if (!this->isFirstClassType() || !Ty->isFirstClassType()) return false; // Vector -> Vector conversions are always lossless if the two vector types // have the same size, otherwise not. Also, 64-bit vector types can be // converted to x86mmx. if (auto *thisPTy = dyn_cast(this)) { if (auto *thatPTy = dyn_cast(Ty)) return thisPTy->getBitWidth() == thatPTy->getBitWidth(); if (Ty->getTypeID() == Type::X86_MMXTyID && thisPTy->getBitWidth() == 64) return true; } if (this->getTypeID() == Type::X86_MMXTyID) if (auto *thatPTy = dyn_cast(Ty)) if (thatPTy->getBitWidth() == 64) return true; // At this point we have only various mismatches of the first class types // remaining and ptr->ptr. Just select the lossless conversions. Everything // else is not lossless. Conservatively assume we can't losslessly convert // between pointers with different address spaces. if (auto *PTy = dyn_cast(this)) { if (auto *OtherPTy = dyn_cast(Ty)) return PTy->getAddressSpace() == OtherPTy->getAddressSpace(); return false; } return false; // Other types have no identity values } bool Type::isEmptyTy() const { if (auto *ATy = dyn_cast(this)) { unsigned NumElements = ATy->getNumElements(); return NumElements == 0 || ATy->getElementType()->isEmptyTy(); } if (auto *STy = dyn_cast(this)) { unsigned NumElements = STy->getNumElements(); for (unsigned i = 0; i < NumElements; ++i) if (!STy->getElementType(i)->isEmptyTy()) return false; return true; } return false; } unsigned Type::getPrimitiveSizeInBits() const { switch (getTypeID()) { case Type::HalfTyID: return 16; case Type::FloatTyID: return 32; case Type::DoubleTyID: return 64; case Type::X86_FP80TyID: return 80; case Type::FP128TyID: return 128; case Type::PPC_FP128TyID: return 128; case Type::X86_MMXTyID: return 64; case Type::IntegerTyID: return cast(this)->getBitWidth(); case Type::VectorTyID: return cast(this)->getBitWidth(); default: return 0; } } unsigned Type::getScalarSizeInBits() const { return getScalarType()->getPrimitiveSizeInBits(); } int Type::getFPMantissaWidth() const { if (auto *VTy = dyn_cast(this)) return VTy->getElementType()->getFPMantissaWidth(); assert(isFloatingPointTy() && "Not a floating point type!"); if (getTypeID() == HalfTyID) return 11; if (getTypeID() == FloatTyID) return 24; if (getTypeID() == DoubleTyID) return 53; if (getTypeID() == X86_FP80TyID) return 64; if (getTypeID() == FP128TyID) return 113; assert(getTypeID() == PPC_FP128TyID && "unknown fp type"); return -1; } bool Type::isSizedDerivedType(SmallPtrSetImpl *Visited) const { if (auto *ATy = dyn_cast(this)) return ATy->getElementType()->isSized(Visited); if (auto *VTy = dyn_cast(this)) return VTy->getElementType()->isSized(Visited); return cast(this)->isSized(Visited); } //===----------------------------------------------------------------------===// // Primitive 'Type' data //===----------------------------------------------------------------------===// Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; } Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; } Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; } Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; } Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; } Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; } Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; } Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; } Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; } Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; } Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; } IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; } IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; } IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; } IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; } IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; } IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; } IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) { return IntegerType::get(C, N); } PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) { return getHalfTy(C)->getPointerTo(AS); } PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) { return getFloatTy(C)->getPointerTo(AS); } PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) { return getDoubleTy(C)->getPointerTo(AS); } PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) { return getX86_FP80Ty(C)->getPointerTo(AS); } PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) { return getFP128Ty(C)->getPointerTo(AS); } PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) { return getPPC_FP128Ty(C)->getPointerTo(AS); } PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) { return getX86_MMXTy(C)->getPointerTo(AS); } PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) { return getIntNTy(C, N)->getPointerTo(AS); } PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) { return getInt1Ty(C)->getPointerTo(AS); } PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) { return getInt8Ty(C)->getPointerTo(AS); } PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) { return getInt16Ty(C)->getPointerTo(AS); } PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) { return getInt32Ty(C)->getPointerTo(AS); } PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) { return getInt64Ty(C)->getPointerTo(AS); } //===----------------------------------------------------------------------===// // IntegerType Implementation //===----------------------------------------------------------------------===// IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) { assert(NumBits >= MIN_INT_BITS && "bitwidth too small"); assert(NumBits <= MAX_INT_BITS && "bitwidth too large"); // Check for the built-in integer types switch (NumBits) { case 1: return cast(Type::getInt1Ty(C)); case 8: return cast(Type::getInt8Ty(C)); case 16: return cast(Type::getInt16Ty(C)); case 32: return cast(Type::getInt32Ty(C)); case 64: return cast(Type::getInt64Ty(C)); case 128: return cast(Type::getInt128Ty(C)); default: break; } IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits]; if (!Entry) Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits); return Entry; } bool IntegerType::isPowerOf2ByteWidth() const { unsigned BitWidth = getBitWidth(); return (BitWidth > 7) && isPowerOf2_32(BitWidth); } APInt IntegerType::getMask() const { return APInt::getAllOnesValue(getBitWidth()); } //===----------------------------------------------------------------------===// // FunctionType Implementation //===----------------------------------------------------------------------===// FunctionType::FunctionType(Type *Result, ArrayRef Params, bool IsVarArgs) : Type(Result->getContext(), FunctionTyID) { Type **SubTys = reinterpret_cast(this+1); assert(isValidReturnType(Result) && "invalid return type for function"); setSubclassData(IsVarArgs); SubTys[0] = Result; for (unsigned i = 0, e = Params.size(); i != e; ++i) { assert(isValidArgumentType(Params[i]) && "Not a valid type for function argument!"); SubTys[i+1] = Params[i]; } ContainedTys = SubTys; NumContainedTys = Params.size() + 1; // + 1 for result type } // This is the factory function for the FunctionType class. FunctionType *FunctionType::get(Type *ReturnType, ArrayRef Params, bool isVarArg) { LLVMContextImpl *pImpl = ReturnType->getContext().pImpl; const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg); FunctionType *FT; // Since we only want to allocate a fresh function type in case none is found // and we don't want to perform two lookups (one for checking if existent and // one for inserting the newly allocated one), here we instead lookup based on // Key and update the reference to the function type in-place to a newly // allocated one if not found. auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key); if (Insertion.second) { // The function type was not found. Allocate one and update FunctionTypes // in-place. FT = (FunctionType *)pImpl->TypeAllocator.Allocate( sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1), alignof(FunctionType)); new (FT) FunctionType(ReturnType, Params, isVarArg); *Insertion.first = FT; } else { // The function type was found. Just return it. FT = *Insertion.first; } return FT; } FunctionType *FunctionType::get(Type *Result, bool isVarArg) { return get(Result, None, isVarArg); } bool FunctionType::isValidReturnType(Type *RetTy) { return !RetTy->isFunctionTy() && !RetTy->isLabelTy() && !RetTy->isMetadataTy(); } bool FunctionType::isValidArgumentType(Type *ArgTy) { return ArgTy->isFirstClassType(); } //===----------------------------------------------------------------------===// // StructType Implementation //===----------------------------------------------------------------------===// // Primitive Constructors. StructType *StructType::get(LLVMContext &Context, ArrayRef ETypes, bool isPacked) { LLVMContextImpl *pImpl = Context.pImpl; const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked); StructType *ST; // Since we only want to allocate a fresh struct type in case none is found // and we don't want to perform two lookups (one for checking if existent and // one for inserting the newly allocated one), here we instead lookup based on // Key and update the reference to the struct type in-place to a newly // allocated one if not found. auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key); if (Insertion.second) { // The struct type was not found. Allocate one and update AnonStructTypes // in-place. ST = new (Context.pImpl->TypeAllocator) StructType(Context); ST->setSubclassData(SCDB_IsLiteral); // Literal struct. ST->setBody(ETypes, isPacked); *Insertion.first = ST; } else { // The struct type was found. Just return it. ST = *Insertion.first; } return ST; } void StructType::setBody(ArrayRef Elements, bool isPacked) { assert(isOpaque() && "Struct body already set!"); setSubclassData(getSubclassData() | SCDB_HasBody); if (isPacked) setSubclassData(getSubclassData() | SCDB_Packed); NumContainedTys = Elements.size(); if (Elements.empty()) { ContainedTys = nullptr; return; } ContainedTys = Elements.copy(getContext().pImpl->TypeAllocator).data(); } void StructType::setName(StringRef Name) { if (Name == getName()) return; StringMap &SymbolTable = getContext().pImpl->NamedStructTypes; using EntryTy = StringMap::MapEntryTy; // If this struct already had a name, remove its symbol table entry. Don't // delete the data yet because it may be part of the new name. if (SymbolTableEntry) SymbolTable.remove((EntryTy *)SymbolTableEntry); // If this is just removing the name, we're done. if (Name.empty()) { if (SymbolTableEntry) { // Delete the old string data. ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); SymbolTableEntry = nullptr; } return; } // Look up the entry for the name. auto IterBool = getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this)); // While we have a name collision, try a random rename. if (!IterBool.second) { SmallString<64> TempStr(Name); TempStr.push_back('.'); raw_svector_ostream TmpStream(TempStr); unsigned NameSize = Name.size(); do { TempStr.resize(NameSize + 1); TmpStream << getContext().pImpl->NamedStructTypesUniqueID++; IterBool = getContext().pImpl->NamedStructTypes.insert( std::make_pair(TmpStream.str(), this)); } while (!IterBool.second); } // Delete the old string data. if (SymbolTableEntry) ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator()); SymbolTableEntry = &*IterBool.first; } //===----------------------------------------------------------------------===// // StructType Helper functions. StructType *StructType::create(LLVMContext &Context, StringRef Name) { StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context); if (!Name.empty()) ST->setName(Name); return ST; } StructType *StructType::get(LLVMContext &Context, bool isPacked) { return get(Context, None, isPacked); } StructType *StructType::create(LLVMContext &Context, ArrayRef Elements, StringRef Name, bool isPacked) { StructType *ST = create(Context, Name); ST->setBody(Elements, isPacked); return ST; } StructType *StructType::create(LLVMContext &Context, ArrayRef Elements) { return create(Context, Elements, StringRef()); } StructType *StructType::create(LLVMContext &Context) { return create(Context, StringRef()); } StructType *StructType::create(ArrayRef Elements, StringRef Name, bool isPacked) { assert(!Elements.empty() && "This method may not be invoked with an empty list"); return create(Elements[0]->getContext(), Elements, Name, isPacked); } StructType *StructType::create(ArrayRef Elements) { assert(!Elements.empty() && "This method may not be invoked with an empty list"); return create(Elements[0]->getContext(), Elements, StringRef()); } bool StructType::isSized(SmallPtrSetImpl *Visited) const { if ((getSubclassData() & SCDB_IsSized) != 0) return true; if (isOpaque()) return false; if (Visited && !Visited->insert(const_cast(this)).second) return false; // Okay, our struct is sized if all of the elements are, but if one of the // elements is opaque, the struct isn't sized *yet*, but may become sized in // the future, so just bail out without caching. for (element_iterator I = element_begin(), E = element_end(); I != E; ++I) if (!(*I)->isSized(Visited)) return false; // Here we cheat a bit and cast away const-ness. The goal is to memoize when // we find a sized type, as types can only move from opaque to sized, not the // other way. const_cast(this)->setSubclassData( getSubclassData() | SCDB_IsSized); return true; } StringRef StructType::getName() const { assert(!isLiteral() && "Literal structs never have names"); if (!SymbolTableEntry) return StringRef(); return ((StringMapEntry *)SymbolTableEntry)->getKey(); } bool StructType::isValidElementType(Type *ElemTy) { return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() && !ElemTy->isTokenTy(); } bool StructType::isLayoutIdentical(StructType *Other) const { if (this == Other) return true; if (isPacked() != Other->isPacked()) return false; return elements() == Other->elements(); } StructType *Module::getTypeByName(StringRef Name) const { return getContext().pImpl->NamedStructTypes.lookup(Name); } //===----------------------------------------------------------------------===// // CompositeType Implementation //===----------------------------------------------------------------------===// Type *CompositeType::getTypeAtIndex(const Value *V) const { if (auto *STy = dyn_cast(this)) { unsigned Idx = (unsigned)cast(V)->getUniqueInteger().getZExtValue(); assert(indexValid(Idx) && "Invalid structure index!"); return STy->getElementType(Idx); } return cast(this)->getElementType(); } Type *CompositeType::getTypeAtIndex(unsigned Idx) const{ if (auto *STy = dyn_cast(this)) { assert(indexValid(Idx) && "Invalid structure index!"); return STy->getElementType(Idx); } return cast(this)->getElementType(); } bool CompositeType::indexValid(const Value *V) const { if (auto *STy = dyn_cast(this)) { // Structure indexes require (vectors of) 32-bit integer constants. In the // vector case all of the indices must be equal. if (!V->getType()->isIntOrIntVectorTy(32)) return false; const Constant *C = dyn_cast(V); if (C && V->getType()->isVectorTy()) C = C->getSplatValue(); const ConstantInt *CU = dyn_cast_or_null(C); return CU && CU->getZExtValue() < STy->getNumElements(); } // Sequential types can be indexed by any integer. return V->getType()->isIntOrIntVectorTy(); } bool CompositeType::indexValid(unsigned Idx) const { if (auto *STy = dyn_cast(this)) return Idx < STy->getNumElements(); // Sequential types can be indexed by any integer. return true; } //===----------------------------------------------------------------------===// // ArrayType Implementation //===----------------------------------------------------------------------===// ArrayType::ArrayType(Type *ElType, uint64_t NumEl) : SequentialType(ArrayTyID, ElType, NumEl) {} ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) { assert(isValidElementType(ElementType) && "Invalid type for array element!"); LLVMContextImpl *pImpl = ElementType->getContext().pImpl; ArrayType *&Entry = pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)]; if (!Entry) Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements); return Entry; } bool ArrayType::isValidElementType(Type *ElemTy) { return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() && !ElemTy->isTokenTy(); } //===----------------------------------------------------------------------===// // VectorType Implementation //===----------------------------------------------------------------------===// VectorType::VectorType(Type *ElType, unsigned NumEl) : SequentialType(VectorTyID, ElType, NumEl) {} VectorType *VectorType::get(Type *ElementType, unsigned NumElements) { assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0"); assert(isValidElementType(ElementType) && "Element type of a VectorType must " "be an integer, floating point, or " "pointer type."); LLVMContextImpl *pImpl = ElementType->getContext().pImpl; VectorType *&Entry = ElementType->getContext().pImpl ->VectorTypes[std::make_pair(ElementType, NumElements)]; if (!Entry) Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements); return Entry; } bool VectorType::isValidElementType(Type *ElemTy) { return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() || ElemTy->isPointerTy(); } //===----------------------------------------------------------------------===// // PointerType Implementation //===----------------------------------------------------------------------===// PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) { assert(EltTy && "Can't get a pointer to type!"); assert(isValidElementType(EltTy) && "Invalid type for pointer element!"); LLVMContextImpl *CImpl = EltTy->getContext().pImpl; // Since AddressSpace #0 is the common case, we special case it. PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy] : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)]; if (!Entry) Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace); return Entry; } PointerType::PointerType(Type *E, unsigned AddrSpace) : Type(E->getContext(), PointerTyID), PointeeTy(E) { ContainedTys = &PointeeTy; NumContainedTys = 1; setSubclassData(AddrSpace); } PointerType *Type::getPointerTo(unsigned addrs) const { return PointerType::get(const_cast(this), addrs); } bool PointerType::isValidElementType(Type *ElemTy) { return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() && !ElemTy->isMetadataTy() && !ElemTy->isTokenTy(); } bool PointerType::isLoadableOrStorableType(Type *ElemTy) { return isValidElementType(ElemTy) && !ElemTy->isFunctionTy(); }