//===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements functions and classes used to support LTO. // //===----------------------------------------------------------------------===// #include "llvm/LTO/LTO.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/IR/AutoUpgrade.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Metadata.h" #include "llvm/LTO/LTOBackend.h" #include "llvm/Linker/IRMover.h" #include "llvm/Object/IRObjectFile.h" #include "llvm/Object/ModuleSummaryIndexObjectFile.h" #include "llvm/Support/Error.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/SHA1.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/ThreadPool.h" #include "llvm/Support/Threading.h" #include "llvm/Support/VCSRevision.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/Utils/SplitModule.h" #include using namespace llvm; using namespace lto; using namespace object; #define DEBUG_TYPE "lto" // The values are (type identifier, summary) pairs. typedef DenseMap< GlobalValue::GUID, TinyPtrVector *>> TypeIdSummariesByGuidTy; // Returns a unique hash for the Module considering the current list of // export/import and other global analysis results. // The hash is produced in \p Key. static void computeCacheKey( SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, const FunctionImporter::ExportSetTy &ExportList, const std::map &ResolvedODR, const GVSummaryMapTy &DefinedGlobals, const TypeIdSummariesByGuidTy &TypeIdSummariesByGuid) { // Compute the unique hash for this entry. // This is based on the current compiler version, the module itself, the // export list, the hash for every single module in the import list, the // list of ResolvedODR for the module, and the list of preserved symbols. SHA1 Hasher; // Start with the compiler revision Hasher.update(LLVM_VERSION_STRING); #ifdef LLVM_REVISION Hasher.update(LLVM_REVISION); #endif // Include the parts of the LTO configuration that affect code generation. auto AddString = [&](StringRef Str) { Hasher.update(Str); Hasher.update(ArrayRef{0}); }; auto AddUnsigned = [&](unsigned I) { uint8_t Data[4]; Data[0] = I; Data[1] = I >> 8; Data[2] = I >> 16; Data[3] = I >> 24; Hasher.update(ArrayRef{Data, 4}); }; auto AddUint64 = [&](uint64_t I) { uint8_t Data[8]; Data[0] = I; Data[1] = I >> 8; Data[2] = I >> 16; Data[3] = I >> 24; Data[4] = I >> 32; Data[5] = I >> 40; Data[6] = I >> 48; Data[7] = I >> 56; Hasher.update(ArrayRef{Data, 8}); }; AddString(Conf.CPU); // FIXME: Hash more of Options. For now all clients initialize Options from // command-line flags (which is unsupported in production), but may set // RelaxELFRelocations. The clang driver can also pass FunctionSections, // DataSections and DebuggerTuning via command line flags. AddUnsigned(Conf.Options.RelaxELFRelocations); AddUnsigned(Conf.Options.FunctionSections); AddUnsigned(Conf.Options.DataSections); AddUnsigned((unsigned)Conf.Options.DebuggerTuning); for (auto &A : Conf.MAttrs) AddString(A); AddUnsigned(Conf.RelocModel); AddUnsigned(Conf.CodeModel); AddUnsigned(Conf.CGOptLevel); AddUnsigned(Conf.CGFileType); AddUnsigned(Conf.OptLevel); AddString(Conf.OptPipeline); AddString(Conf.AAPipeline); AddString(Conf.OverrideTriple); AddString(Conf.DefaultTriple); // Include the hash for the current module auto ModHash = Index.getModuleHash(ModuleID); Hasher.update(ArrayRef((uint8_t *)&ModHash[0], sizeof(ModHash))); for (auto F : ExportList) // The export list can impact the internalization, be conservative here Hasher.update(ArrayRef((uint8_t *)&F, sizeof(F))); // Include the hash for every module we import functions from. The set of // imported symbols for each module may affect code generation and is // sensitive to link order, so include that as well. for (auto &Entry : ImportList) { auto ModHash = Index.getModuleHash(Entry.first()); Hasher.update(ArrayRef((uint8_t *)&ModHash[0], sizeof(ModHash))); AddUint64(Entry.second.size()); for (auto &Fn : Entry.second) AddUint64(Fn.first); } // Include the hash for the resolved ODR. for (auto &Entry : ResolvedODR) { Hasher.update(ArrayRef((const uint8_t *)&Entry.first, sizeof(GlobalValue::GUID))); Hasher.update(ArrayRef((const uint8_t *)&Entry.second, sizeof(GlobalValue::LinkageTypes))); } std::set UsedTypeIds; auto AddUsedTypeIds = [&](GlobalValueSummary *GS) { auto *FS = dyn_cast_or_null(GS); if (!FS) return; for (auto &TT : FS->type_tests()) UsedTypeIds.insert(TT); for (auto &TT : FS->type_test_assume_vcalls()) UsedTypeIds.insert(TT.GUID); for (auto &TT : FS->type_checked_load_vcalls()) UsedTypeIds.insert(TT.GUID); for (auto &TT : FS->type_test_assume_const_vcalls()) UsedTypeIds.insert(TT.VFunc.GUID); for (auto &TT : FS->type_checked_load_const_vcalls()) UsedTypeIds.insert(TT.VFunc.GUID); }; // Include the hash for the linkage type to reflect internalization and weak // resolution, and collect any used type identifier resolutions. for (auto &GS : DefinedGlobals) { GlobalValue::LinkageTypes Linkage = GS.second->linkage(); Hasher.update( ArrayRef((const uint8_t *)&Linkage, sizeof(Linkage))); AddUsedTypeIds(GS.second); } // Imported functions may introduce new uses of type identifier resolutions, // so we need to collect their used resolutions as well. for (auto &ImpM : ImportList) for (auto &ImpF : ImpM.second) AddUsedTypeIds(Index.findSummaryInModule(ImpF.first, ImpM.first())); auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { AddString(TId); AddUnsigned(S.TTRes.TheKind); AddUnsigned(S.TTRes.SizeM1BitWidth); AddUint64(S.WPDRes.size()); for (auto &WPD : S.WPDRes) { AddUnsigned(WPD.first); AddUnsigned(WPD.second.TheKind); AddString(WPD.second.SingleImplName); AddUint64(WPD.second.ResByArg.size()); for (auto &ByArg : WPD.second.ResByArg) { AddUint64(ByArg.first.size()); for (uint64_t Arg : ByArg.first) AddUint64(Arg); AddUnsigned(ByArg.second.TheKind); AddUint64(ByArg.second.Info); } } }; // Include the hash for all type identifiers used by this module. for (GlobalValue::GUID TId : UsedTypeIds) { auto SummariesI = TypeIdSummariesByGuid.find(TId); if (SummariesI != TypeIdSummariesByGuid.end()) for (auto *Summary : SummariesI->second) AddTypeIdSummary(Summary->first, Summary->second); } if (!Conf.SampleProfile.empty()) { auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile); if (FileOrErr) Hasher.update(FileOrErr.get()->getBuffer()); } Key = toHex(Hasher.result()); } static void thinLTOResolveWeakForLinkerGUID( GlobalValueSummaryList &GVSummaryList, GlobalValue::GUID GUID, DenseSet &GlobalInvolvedWithAlias, function_ref isPrevailing, function_ref recordNewLinkage) { for (auto &S : GVSummaryList) { GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); if (!GlobalValue::isWeakForLinker(OriginalLinkage)) continue; // We need to emit only one of these. The prevailing module will keep it, // but turned into a weak, while the others will drop it when possible. // This is both a compile-time optimization and a correctness // transformation. This is necessary for correctness when we have exported // a reference - we need to convert the linkonce to weak to // ensure a copy is kept to satisfy the exported reference. // FIXME: We may want to split the compile time and correctness // aspects into separate routines. if (isPrevailing(GUID, S.get())) { if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) S->setLinkage(GlobalValue::getWeakLinkage( GlobalValue::isLinkOnceODRLinkage(OriginalLinkage))); } // Alias and aliasee can't be turned into available_externally. else if (!isa(S.get()) && !GlobalInvolvedWithAlias.count(S.get())) S->setLinkage(GlobalValue::AvailableExternallyLinkage); if (S->linkage() != OriginalLinkage) recordNewLinkage(S->modulePath(), GUID, S->linkage()); } } // Resolve Weak and LinkOnce values in the \p Index. // // We'd like to drop these functions if they are no longer referenced in the // current module. However there is a chance that another module is still // referencing them because of the import. We make sure we always emit at least // one copy. void llvm::thinLTOResolveWeakForLinkerInIndex( ModuleSummaryIndex &Index, function_ref isPrevailing, function_ref recordNewLinkage) { // We won't optimize the globals that are referenced by an alias for now // Ideally we should turn the alias into a global and duplicate the definition // when needed. DenseSet GlobalInvolvedWithAlias; for (auto &I : Index) for (auto &S : I.second) if (auto AS = dyn_cast(S.get())) GlobalInvolvedWithAlias.insert(&AS->getAliasee()); for (auto &I : Index) thinLTOResolveWeakForLinkerGUID(I.second, I.first, GlobalInvolvedWithAlias, isPrevailing, recordNewLinkage); } static void thinLTOInternalizeAndPromoteGUID( GlobalValueSummaryList &GVSummaryList, GlobalValue::GUID GUID, function_ref isExported) { for (auto &S : GVSummaryList) { if (isExported(S->modulePath(), GUID)) { if (GlobalValue::isLocalLinkage(S->linkage())) S->setLinkage(GlobalValue::ExternalLinkage); } else if (!GlobalValue::isLocalLinkage(S->linkage())) S->setLinkage(GlobalValue::InternalLinkage); } } // Update the linkages in the given \p Index to mark exported values // as external and non-exported values as internal. void llvm::thinLTOInternalizeAndPromoteInIndex( ModuleSummaryIndex &Index, function_ref isExported) { for (auto &I : Index) thinLTOInternalizeAndPromoteGUID(I.second, I.first, isExported); } // Requires a destructor for std::vector. InputFile::~InputFile() = default; Expected> InputFile::create(MemoryBufferRef Object) { std::unique_ptr File(new InputFile); ErrorOr BCOrErr = IRObjectFile::findBitcodeInMemBuffer(Object); if (!BCOrErr) return errorCodeToError(BCOrErr.getError()); Expected> BMsOrErr = getBitcodeModuleList(*BCOrErr); if (!BMsOrErr) return BMsOrErr.takeError(); if (BMsOrErr->empty()) return make_error("Bitcode file does not contain any modules", inconvertibleErrorCode()); File->Mods = *BMsOrErr; LLVMContext Ctx; std::vector Mods; std::vector> OwnedMods; for (auto BM : *BMsOrErr) { Expected> MOrErr = BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true, /*IsImporting*/ false); if (!MOrErr) return MOrErr.takeError(); if ((*MOrErr)->getDataLayoutStr().empty()) return make_error("input module has no datalayout", inconvertibleErrorCode()); Mods.push_back(MOrErr->get()); OwnedMods.push_back(std::move(*MOrErr)); } SmallVector Symtab; if (Error E = irsymtab::build(Mods, Symtab, File->Strtab)) return std::move(E); irsymtab::Reader R({Symtab.data(), Symtab.size()}, {File->Strtab.data(), File->Strtab.size()}); File->TargetTriple = R.getTargetTriple(); File->SourceFileName = R.getSourceFileName(); File->COFFLinkerOpts = R.getCOFFLinkerOpts(); File->ComdatTable = R.getComdatTable(); for (unsigned I = 0; I != Mods.size(); ++I) { size_t Begin = File->Symbols.size(); for (const irsymtab::Reader::SymbolRef &Sym : R.module_symbols(I)) // Skip symbols that are irrelevant to LTO. Note that this condition needs // to match the one in Skip() in LTO::addRegularLTO(). if (Sym.isGlobal() && !Sym.isFormatSpecific()) File->Symbols.push_back(Sym); File->ModuleSymIndices.push_back({Begin, File->Symbols.size()}); } return std::move(File); } StringRef InputFile::getName() const { return Mods[0].getModuleIdentifier(); } LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, Config &Conf) : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), Ctx(Conf) {} LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) : Backend(Backend) { if (!Backend) this->Backend = createInProcessThinBackend(llvm::heavyweight_hardware_concurrency()); } LTO::LTO(Config Conf, ThinBackend Backend, unsigned ParallelCodeGenParallelismLevel) : Conf(std::move(Conf)), RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), ThinLTO(std::move(Backend)) {} // Requires a destructor for MapVector. LTO::~LTO() = default; // Add the given symbol to the GlobalResolutions map, and resolve its partition. void LTO::addSymbolToGlobalRes(const InputFile::Symbol &Sym, SymbolResolution Res, unsigned Partition) { auto &GlobalRes = GlobalResolutions[Sym.getName()]; GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); if (Res.Prevailing) GlobalRes.IRName = Sym.getIRName(); // Set the partition to external if we know it is used elsewhere, e.g. // it is visible to a regular object, is referenced from llvm.compiler_used, // or was already recorded as being referenced from a different partition. if (Res.VisibleToRegularObj || Sym.isUsed() || (GlobalRes.Partition != GlobalResolution::Unknown && GlobalRes.Partition != Partition)) { GlobalRes.Partition = GlobalResolution::External; } else // First recorded reference, save the current partition. GlobalRes.Partition = Partition; // Flag as visible outside of ThinLTO if visible from a regular object or // if this is a reference in the regular LTO partition. GlobalRes.VisibleOutsideThinLTO |= (Res.VisibleToRegularObj || (Partition == GlobalResolution::RegularLTO)); } static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, ArrayRef Res) { StringRef Path = Input->getName(); OS << Path << '\n'; auto ResI = Res.begin(); for (const InputFile::Symbol &Sym : Input->symbols()) { assert(ResI != Res.end()); SymbolResolution Res = *ResI++; OS << "-r=" << Path << ',' << Sym.getName() << ','; if (Res.Prevailing) OS << 'p'; if (Res.FinalDefinitionInLinkageUnit) OS << 'l'; if (Res.VisibleToRegularObj) OS << 'x'; OS << '\n'; } OS.flush(); assert(ResI == Res.end()); } Error LTO::add(std::unique_ptr Input, ArrayRef Res) { assert(!CalledGetMaxTasks); if (Conf.ResolutionFile) writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res); const SymbolResolution *ResI = Res.begin(); for (unsigned I = 0; I != Input->Mods.size(); ++I) if (Error Err = addModule(*Input, I, ResI, Res.end())) return Err; assert(ResI == Res.end()); return Error::success(); } Error LTO::addModule(InputFile &Input, unsigned ModI, const SymbolResolution *&ResI, const SymbolResolution *ResE) { Expected HasThinLTOSummary = Input.Mods[ModI].hasSummary(); if (!HasThinLTOSummary) return HasThinLTOSummary.takeError(); auto ModSyms = Input.module_symbols(ModI); if (*HasThinLTOSummary) return addThinLTO(Input.Mods[ModI], ModSyms, ResI, ResE); else return addRegularLTO(Input.Mods[ModI], ModSyms, ResI, ResE); } // Add a regular LTO object to the link. Error LTO::addRegularLTO(BitcodeModule BM, ArrayRef Syms, const SymbolResolution *&ResI, const SymbolResolution *ResE) { if (!RegularLTO.CombinedModule) { RegularLTO.CombinedModule = llvm::make_unique("ld-temp.o", RegularLTO.Ctx); RegularLTO.Mover = llvm::make_unique(*RegularLTO.CombinedModule); } Expected> MOrErr = BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, /*IsImporting*/ false); if (!MOrErr) return MOrErr.takeError(); Module &M = **MOrErr; if (Error Err = M.materializeMetadata()) return Err; UpgradeDebugInfo(M); ModuleSymbolTable SymTab; SymTab.addModule(&M); std::vector Keep; for (GlobalVariable &GV : M.globals()) if (GV.hasAppendingLinkage()) Keep.push_back(&GV); DenseSet AliasedGlobals; for (auto &GA : M.aliases()) if (GlobalObject *GO = GA.getBaseObject()) AliasedGlobals.insert(GO); // In this function we need IR GlobalValues matching the symbols in Syms // (which is not backed by a module), so we need to enumerate them in the same // order. The symbol enumeration order of a ModuleSymbolTable intentionally // matches the order of an irsymtab, but when we read the irsymtab in // InputFile::create we omit some symbols that are irrelevant to LTO. The // Skip() function skips the same symbols from the module as InputFile does // from the symbol table. auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); auto Skip = [&]() { while (MsymI != MsymE) { auto Flags = SymTab.getSymbolFlags(*MsymI); if ((Flags & object::BasicSymbolRef::SF_Global) && !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) return; ++MsymI; } }; Skip(); for (const InputFile::Symbol &Sym : Syms) { assert(ResI != ResE); SymbolResolution Res = *ResI++; addSymbolToGlobalRes(Sym, Res, 0); assert(MsymI != MsymE); ModuleSymbolTable::Symbol Msym = *MsymI++; Skip(); if (GlobalValue *GV = Msym.dyn_cast()) { if (Res.Prevailing) { if (Sym.isUndefined()) continue; Keep.push_back(GV); switch (GV->getLinkage()) { default: break; case GlobalValue::LinkOnceAnyLinkage: GV->setLinkage(GlobalValue::WeakAnyLinkage); break; case GlobalValue::LinkOnceODRLinkage: GV->setLinkage(GlobalValue::WeakODRLinkage); break; } } else if (isa(GV) && (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || GV->hasAvailableExternallyLinkage()) && !AliasedGlobals.count(cast(GV))) { // Either of the above three types of linkage indicates that the // chosen prevailing symbol will have the same semantics as this copy of // the symbol, so we can link it with available_externally linkage. We // only need to do this if the symbol is undefined. GlobalValue *CombinedGV = RegularLTO.CombinedModule->getNamedValue(GV->getName()); if (!CombinedGV || CombinedGV->isDeclaration()) { Keep.push_back(GV); GV->setLinkage(GlobalValue::AvailableExternallyLinkage); cast(GV)->setComdat(nullptr); } } } // Common resolution: collect the maximum size/alignment over all commons. // We also record if we see an instance of a common as prevailing, so that // if none is prevailing we can ignore it later. if (Sym.isCommon()) { // FIXME: We should figure out what to do about commons defined by asm. // For now they aren't reported correctly by ModuleSymbolTable. auto &CommonRes = RegularLTO.Commons[Sym.getIRName()]; CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize()); CommonRes.Align = std::max(CommonRes.Align, Sym.getCommonAlignment()); CommonRes.Prevailing |= Res.Prevailing; } // FIXME: use proposed local attribute for FinalDefinitionInLinkageUnit. } assert(MsymI == MsymE); return RegularLTO.Mover->move(std::move(*MOrErr), Keep, [](GlobalValue &, IRMover::ValueAdder) {}, /* IsPerformingImport */ false); } // Add a ThinLTO object to the link. Error LTO::addThinLTO(BitcodeModule BM, ArrayRef Syms, const SymbolResolution *&ResI, const SymbolResolution *ResE) { Expected> SummaryOrErr = BM.getSummary(); if (!SummaryOrErr) return SummaryOrErr.takeError(); ThinLTO.CombinedIndex.mergeFrom(std::move(*SummaryOrErr), ThinLTO.ModuleMap.size()); for (const InputFile::Symbol &Sym : Syms) { assert(ResI != ResE); SymbolResolution Res = *ResI++; addSymbolToGlobalRes(Sym, Res, ThinLTO.ModuleMap.size() + 1); if (Res.Prevailing) { if (!Sym.getIRName().empty()) { auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier( Sym.getIRName(), GlobalValue::ExternalLinkage, "")); ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); } } } if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second) return make_error( "Expected at most one ThinLTO module per bitcode file", inconvertibleErrorCode()); return Error::success(); } unsigned LTO::getMaxTasks() const { CalledGetMaxTasks = true; return RegularLTO.ParallelCodeGenParallelismLevel + ThinLTO.ModuleMap.size(); } Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) { // Save the status of having a regularLTO combined module, as // this is needed for generating the ThinLTO Task ID, and // the CombinedModule will be moved at the end of runRegularLTO. bool HasRegularLTO = RegularLTO.CombinedModule != nullptr; // Invoke regular LTO if there was a regular LTO module to start with. if (HasRegularLTO) if (auto E = runRegularLTO(AddStream)) return E; return runThinLTO(AddStream, Cache, HasRegularLTO); } Error LTO::runRegularLTO(AddStreamFn AddStream) { // Make sure commons have the right size/alignment: we kept the largest from // all the prevailing when adding the inputs, and we apply it here. const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); for (auto &I : RegularLTO.Commons) { if (!I.second.Prevailing) // Don't do anything if no instance of this common was prevailing. continue; GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first); if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) { // Don't create a new global if the type is already correct, just make // sure the alignment is correct. OldGV->setAlignment(I.second.Align); continue; } ArrayType *Ty = ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size); auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, GlobalValue::CommonLinkage, ConstantAggregateZero::get(Ty), ""); GV->setAlignment(I.second.Align); if (OldGV) { OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType())); GV->takeName(OldGV); OldGV->eraseFromParent(); } else { GV->setName(I.first); } } if (Conf.PreOptModuleHook && !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) return Error::success(); if (!Conf.CodeGenOnly) { for (const auto &R : GlobalResolutions) { if (R.second.IRName.empty()) continue; if (R.second.Partition != 0 && R.second.Partition != GlobalResolution::External) continue; GlobalValue *GV = RegularLTO.CombinedModule->getNamedValue(R.second.IRName); // Ignore symbols defined in other partitions. if (!GV || GV->hasLocalLinkage()) continue; GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global : GlobalValue::UnnamedAddr::None); if (R.second.Partition == 0) GV->setLinkage(GlobalValue::InternalLinkage); } if (Conf.PostInternalizeModuleHook && !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) return Error::success(); } return backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel, std::move(RegularLTO.CombinedModule), ThinLTO.CombinedIndex); } /// This class defines the interface to the ThinLTO backend. class lto::ThinBackendProc { protected: Config &Conf; ModuleSummaryIndex &CombinedIndex; const StringMap &ModuleToDefinedGVSummaries; public: ThinBackendProc(Config &Conf, ModuleSummaryIndex &CombinedIndex, const StringMap &ModuleToDefinedGVSummaries) : Conf(Conf), CombinedIndex(CombinedIndex), ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {} virtual ~ThinBackendProc() {} virtual Error start( unsigned Task, BitcodeModule BM, const FunctionImporter::ImportMapTy &ImportList, const FunctionImporter::ExportSetTy &ExportList, const std::map &ResolvedODR, MapVector &ModuleMap) = 0; virtual Error wait() = 0; }; namespace { class InProcessThinBackend : public ThinBackendProc { ThreadPool BackendThreadPool; AddStreamFn AddStream; NativeObjectCache Cache; TypeIdSummariesByGuidTy TypeIdSummariesByGuid; Optional Err; std::mutex ErrMu; public: InProcessThinBackend( Config &Conf, ModuleSummaryIndex &CombinedIndex, unsigned ThinLTOParallelismLevel, const StringMap &ModuleToDefinedGVSummaries, AddStreamFn AddStream, NativeObjectCache Cache) : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), BackendThreadPool(ThinLTOParallelismLevel), AddStream(std::move(AddStream)), Cache(std::move(Cache)) { // Create a mapping from type identifier GUIDs to type identifier summaries. // This allows backends to use the type identifier GUIDs stored in the // function summaries to determine which type identifier summaries affect // each function without needing to compute GUIDs in each backend. for (auto &TId : CombinedIndex.typeIds()) TypeIdSummariesByGuid[GlobalValue::getGUID(TId.first)].push_back(&TId); } Error runThinLTOBackendThread( AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task, BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, const FunctionImporter::ImportMapTy &ImportList, const FunctionImporter::ExportSetTy &ExportList, const std::map &ResolvedODR, const GVSummaryMapTy &DefinedGlobals, MapVector &ModuleMap, const TypeIdSummariesByGuidTy &TypeIdSummariesByGuid) { auto RunThinBackend = [&](AddStreamFn AddStream) { LTOLLVMContext BackendContext(Conf); Expected> MOrErr = BM.parseModule(BackendContext); if (!MOrErr) return MOrErr.takeError(); return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex, ImportList, DefinedGlobals, ModuleMap); }; auto ModuleID = BM.getModuleIdentifier(); if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) || all_of(CombinedIndex.getModuleHash(ModuleID), [](uint32_t V) { return V == 0; })) // Cache disabled or no entry for this module in the combined index or // no module hash. return RunThinBackend(AddStream); SmallString<40> Key; // The module may be cached, this helps handling it. computeCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList, ExportList, ResolvedODR, DefinedGlobals, TypeIdSummariesByGuid); if (AddStreamFn CacheAddStream = Cache(Task, Key)) return RunThinBackend(CacheAddStream); return Error::success(); } Error start( unsigned Task, BitcodeModule BM, const FunctionImporter::ImportMapTy &ImportList, const FunctionImporter::ExportSetTy &ExportList, const std::map &ResolvedODR, MapVector &ModuleMap) override { StringRef ModulePath = BM.getModuleIdentifier(); assert(ModuleToDefinedGVSummaries.count(ModulePath)); const GVSummaryMapTy &DefinedGlobals = ModuleToDefinedGVSummaries.find(ModulePath)->second; BackendThreadPool.async( [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, const FunctionImporter::ImportMapTy &ImportList, const FunctionImporter::ExportSetTy &ExportList, const std::map &ResolvedODR, const GVSummaryMapTy &DefinedGlobals, MapVector &ModuleMap, const TypeIdSummariesByGuidTy &TypeIdSummariesByGuid) { Error E = runThinLTOBackendThread( AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, ResolvedODR, DefinedGlobals, ModuleMap, TypeIdSummariesByGuid); if (E) { std::unique_lock L(ErrMu); if (Err) Err = joinErrors(std::move(*Err), std::move(E)); else Err = std::move(E); } }, BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList), std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap), std::ref(TypeIdSummariesByGuid)); return Error::success(); } Error wait() override { BackendThreadPool.wait(); if (Err) return std::move(*Err); else return Error::success(); } }; } // end anonymous namespace ThinBackend lto::createInProcessThinBackend(unsigned ParallelismLevel) { return [=](Config &Conf, ModuleSummaryIndex &CombinedIndex, const StringMap &ModuleToDefinedGVSummaries, AddStreamFn AddStream, NativeObjectCache Cache) { return llvm::make_unique( Conf, CombinedIndex, ParallelismLevel, ModuleToDefinedGVSummaries, AddStream, Cache); }; } // Given the original \p Path to an output file, replace any path // prefix matching \p OldPrefix with \p NewPrefix. Also, create the // resulting directory if it does not yet exist. std::string lto::getThinLTOOutputFile(const std::string &Path, const std::string &OldPrefix, const std::string &NewPrefix) { if (OldPrefix.empty() && NewPrefix.empty()) return Path; SmallString<128> NewPath(Path); llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix); StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str()); if (!ParentPath.empty()) { // Make sure the new directory exists, creating it if necessary. if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath)) llvm::errs() << "warning: could not create directory '" << ParentPath << "': " << EC.message() << '\n'; } return NewPath.str(); } namespace { class WriteIndexesThinBackend : public ThinBackendProc { std::string OldPrefix, NewPrefix; bool ShouldEmitImportsFiles; std::string LinkedObjectsFileName; std::unique_ptr LinkedObjectsFile; public: WriteIndexesThinBackend( Config &Conf, ModuleSummaryIndex &CombinedIndex, const StringMap &ModuleToDefinedGVSummaries, std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, std::string LinkedObjectsFileName) : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries), OldPrefix(OldPrefix), NewPrefix(NewPrefix), ShouldEmitImportsFiles(ShouldEmitImportsFiles), LinkedObjectsFileName(LinkedObjectsFileName) {} Error start( unsigned Task, BitcodeModule BM, const FunctionImporter::ImportMapTy &ImportList, const FunctionImporter::ExportSetTy &ExportList, const std::map &ResolvedODR, MapVector &ModuleMap) override { StringRef ModulePath = BM.getModuleIdentifier(); std::string NewModulePath = getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix); std::error_code EC; if (!LinkedObjectsFileName.empty()) { if (!LinkedObjectsFile) { LinkedObjectsFile = llvm::make_unique( LinkedObjectsFileName, EC, sys::fs::OpenFlags::F_None); if (EC) return errorCodeToError(EC); } *LinkedObjectsFile << NewModulePath << '\n'; } std::map ModuleToSummariesForIndex; gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, ImportList, ModuleToSummariesForIndex); raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC, sys::fs::OpenFlags::F_None); if (EC) return errorCodeToError(EC); WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex); if (ShouldEmitImportsFiles) return errorCodeToError( EmitImportsFiles(ModulePath, NewModulePath + ".imports", ImportList)); return Error::success(); } Error wait() override { return Error::success(); } }; } // end anonymous namespace ThinBackend lto::createWriteIndexesThinBackend(std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, std::string LinkedObjectsFile) { return [=](Config &Conf, ModuleSummaryIndex &CombinedIndex, const StringMap &ModuleToDefinedGVSummaries, AddStreamFn AddStream, NativeObjectCache Cache) { return llvm::make_unique( Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix, ShouldEmitImportsFiles, LinkedObjectsFile); }; } Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache, bool HasRegularLTO) { if (ThinLTO.ModuleMap.empty()) return Error::success(); if (Conf.CombinedIndexHook && !Conf.CombinedIndexHook(ThinLTO.CombinedIndex)) return Error::success(); // Collect for each module the list of function it defines (GUID -> // Summary). StringMap> ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size()); ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( ModuleToDefinedGVSummaries); // Create entries for any modules that didn't have any GV summaries // (either they didn't have any GVs to start with, or we suppressed // generation of the summaries because they e.g. had inline assembly // uses that couldn't be promoted/renamed on export). This is so // InProcessThinBackend::start can still launch a backend thread, which // is passed the map of summaries for the module, without any special // handling for this case. for (auto &Mod : ThinLTO.ModuleMap) if (!ModuleToDefinedGVSummaries.count(Mod.first)) ModuleToDefinedGVSummaries.try_emplace(Mod.first); StringMap ImportLists( ThinLTO.ModuleMap.size()); StringMap ExportLists( ThinLTO.ModuleMap.size()); StringMap> ResolvedODR; if (Conf.OptLevel > 0) { // Compute "dead" symbols, we don't want to import/export these! DenseSet GUIDPreservedSymbols; for (auto &Res : GlobalResolutions) { if (Res.second.VisibleOutsideThinLTO && // IRName will be defined if we have seen the prevailing copy of // this value. If not, no need to preserve any ThinLTO copies. !Res.second.IRName.empty()) GUIDPreservedSymbols.insert(GlobalValue::getGUID( GlobalValue::getRealLinkageName(Res.second.IRName))); } auto DeadSymbols = computeDeadSymbols(ThinLTO.CombinedIndex, GUIDPreservedSymbols); ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, ImportLists, ExportLists, &DeadSymbols); std::set ExportedGUIDs; for (auto &Res : GlobalResolutions) { // First check if the symbol was flagged as having external references. if (Res.second.Partition != GlobalResolution::External) continue; // IRName will be defined if we have seen the prevailing copy of // this value. If not, no need to mark as exported from a ThinLTO // partition (and we can't get the GUID). if (Res.second.IRName.empty()) continue; auto GUID = GlobalValue::getGUID( GlobalValue::getRealLinkageName(Res.second.IRName)); // Mark exported unless index-based analysis determined it to be dead. if (!DeadSymbols.count(GUID)) ExportedGUIDs.insert(GUID); } auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) { return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); }; auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) { const auto &ExportList = ExportLists.find(ModuleIdentifier); return (ExportList != ExportLists.end() && ExportList->second.count(GUID)) || ExportedGUIDs.count(GUID); }; thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported); auto recordNewLinkage = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID, GlobalValue::LinkageTypes NewLinkage) { ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; }; thinLTOResolveWeakForLinkerInIndex(ThinLTO.CombinedIndex, isPrevailing, recordNewLinkage); } std::unique_ptr BackendProc = ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, AddStream, Cache); // Task numbers start at ParallelCodeGenParallelismLevel if an LTO // module is present, as tasks 0 through ParallelCodeGenParallelismLevel-1 // are reserved for parallel code generation partitions. unsigned Task = HasRegularLTO ? RegularLTO.ParallelCodeGenParallelismLevel : 0; for (auto &Mod : ThinLTO.ModuleMap) { if (Error E = BackendProc->start(Task, Mod.second, ImportLists[Mod.first], ExportLists[Mod.first], ResolvedODR[Mod.first], ThinLTO.ModuleMap)) return E; ++Task; } return BackendProc->wait(); } Expected> lto::setupOptimizationRemarks(LLVMContext &Context, StringRef LTORemarksFilename, bool LTOPassRemarksWithHotness, int Count) { if (LTORemarksFilename.empty()) return nullptr; std::string Filename = LTORemarksFilename; if (Count != -1) Filename += ".thin." + llvm::utostr(Count) + ".yaml"; std::error_code EC; auto DiagnosticFile = llvm::make_unique(Filename, EC, sys::fs::F_None); if (EC) return errorCodeToError(EC); Context.setDiagnosticsOutputFile( llvm::make_unique(DiagnosticFile->os())); if (LTOPassRemarksWithHotness) Context.setDiagnosticHotnessRequested(true); DiagnosticFile->keep(); return std::move(DiagnosticFile); }