//===- IRSymtab.cpp - implementation of IR symbol tables ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Object/IRSymtab.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/ObjectUtils.h" #include "llvm/IR/Comdat.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalObject.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/Object/IRObjectFile.h" #include "llvm/Object/ModuleSymbolTable.h" #include "llvm/Object/SymbolicFile.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Error.h" #include "llvm/Support/StringSaver.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace llvm; using namespace irsymtab; namespace { /// Stores the temporary state that is required to build an IR symbol table. struct Builder { SmallVector &Symtab; SmallVector &Strtab; Builder(SmallVector &Symtab, SmallVector &Strtab) : Symtab(Symtab), Strtab(Strtab) {} StringTableBuilder StrtabBuilder{StringTableBuilder::RAW}; BumpPtrAllocator Alloc; StringSaver Saver{Alloc}; DenseMap ComdatMap; Mangler Mang; Triple TT; std::vector Comdats; std::vector Mods; std::vector Syms; std::vector Uncommons; std::string COFFLinkerOpts; raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts}; void setStr(storage::Str &S, StringRef Value) { S.Offset = StrtabBuilder.add(Value); S.Size = Value.size(); } template void writeRange(storage::Range &R, const std::vector &Objs) { R.Offset = Symtab.size(); R.Size = Objs.size(); Symtab.insert(Symtab.end(), reinterpret_cast(Objs.data()), reinterpret_cast(Objs.data() + Objs.size())); } Error addModule(Module *M); Error addSymbol(const ModuleSymbolTable &Msymtab, const SmallPtrSet &Used, ModuleSymbolTable::Symbol Sym); Error build(ArrayRef Mods); }; Error Builder::addModule(Module *M) { if (M->getDataLayoutStr().empty()) return make_error("input module has no datalayout", inconvertibleErrorCode()); SmallPtrSet Used; collectUsedGlobalVariables(*M, Used, /*CompilerUsed*/ false); ModuleSymbolTable Msymtab; Msymtab.addModule(M); storage::Module Mod; Mod.Begin = Syms.size(); Mod.End = Syms.size() + Msymtab.symbols().size(); Mod.UncBegin = Uncommons.size(); Mods.push_back(Mod); if (TT.isOSBinFormatCOFF()) { if (auto E = M->materializeMetadata()) return E; if (Metadata *Val = M->getModuleFlag("Linker Options")) { MDNode *LinkerOptions = cast(Val); for (const MDOperand &MDOptions : LinkerOptions->operands()) for (const MDOperand &MDOption : cast(MDOptions)->operands()) COFFLinkerOptsOS << " " << cast(MDOption)->getString(); } } for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols()) if (Error Err = addSymbol(Msymtab, Used, Msym)) return Err; return Error::success(); } Error Builder::addSymbol(const ModuleSymbolTable &Msymtab, const SmallPtrSet &Used, ModuleSymbolTable::Symbol Msym) { Syms.emplace_back(); storage::Symbol &Sym = Syms.back(); Sym = {}; storage::Uncommon *Unc = nullptr; auto Uncommon = [&]() -> storage::Uncommon & { if (Unc) return *Unc; Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon; Uncommons.emplace_back(); Unc = &Uncommons.back(); *Unc = {}; setStr(Unc->COFFWeakExternFallbackName, ""); return *Unc; }; SmallString<64> Name; { raw_svector_ostream OS(Name); Msymtab.printSymbolName(OS, Msym); } setStr(Sym.Name, Saver.save(StringRef(Name))); auto Flags = Msymtab.getSymbolFlags(Msym); if (Flags & object::BasicSymbolRef::SF_Undefined) Sym.Flags |= 1 << storage::Symbol::FB_undefined; if (Flags & object::BasicSymbolRef::SF_Weak) Sym.Flags |= 1 << storage::Symbol::FB_weak; if (Flags & object::BasicSymbolRef::SF_Common) Sym.Flags |= 1 << storage::Symbol::FB_common; if (Flags & object::BasicSymbolRef::SF_Indirect) Sym.Flags |= 1 << storage::Symbol::FB_indirect; if (Flags & object::BasicSymbolRef::SF_Global) Sym.Flags |= 1 << storage::Symbol::FB_global; if (Flags & object::BasicSymbolRef::SF_FormatSpecific) Sym.Flags |= 1 << storage::Symbol::FB_format_specific; if (Flags & object::BasicSymbolRef::SF_Executable) Sym.Flags |= 1 << storage::Symbol::FB_executable; Sym.ComdatIndex = -1; auto *GV = Msym.dyn_cast(); if (!GV) { // Undefined module asm symbols act as GC roots and are implicitly used. if (Flags & object::BasicSymbolRef::SF_Undefined) Sym.Flags |= 1 << storage::Symbol::FB_used; setStr(Sym.IRName, ""); return Error::success(); } setStr(Sym.IRName, GV->getName()); if (Used.count(GV)) Sym.Flags |= 1 << storage::Symbol::FB_used; if (GV->isThreadLocal()) Sym.Flags |= 1 << storage::Symbol::FB_tls; if (GV->hasGlobalUnnamedAddr()) Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr; if (canBeOmittedFromSymbolTable(GV)) Sym.Flags |= 1 << storage::Symbol::FB_may_omit; Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility; if (Flags & object::BasicSymbolRef::SF_Common) { Uncommon().CommonSize = GV->getParent()->getDataLayout().getTypeAllocSize( GV->getType()->getElementType()); Uncommon().CommonAlign = GV->getAlignment(); } const GlobalObject *Base = GV->getBaseObject(); if (!Base) return make_error("Unable to determine comdat of alias!", inconvertibleErrorCode()); if (const Comdat *C = Base->getComdat()) { auto P = ComdatMap.insert(std::make_pair(C, Comdats.size())); Sym.ComdatIndex = P.first->second; if (P.second) { storage::Comdat Comdat; setStr(Comdat.Name, C->getName()); Comdats.push_back(Comdat); } } if (TT.isOSBinFormatCOFF()) { emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang); if ((Flags & object::BasicSymbolRef::SF_Weak) && (Flags & object::BasicSymbolRef::SF_Indirect)) { std::string FallbackName; raw_string_ostream OS(FallbackName); Msymtab.printSymbolName( OS, cast( cast(GV)->getAliasee()->stripPointerCasts())); OS.flush(); setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName)); } } return Error::success(); } Error Builder::build(ArrayRef IRMods) { storage::Header Hdr; assert(!IRMods.empty()); setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple()); setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName()); TT = Triple(IRMods[0]->getTargetTriple()); for (auto *M : IRMods) if (Error Err = addModule(M)) return Err; COFFLinkerOptsOS.flush(); setStr(Hdr.COFFLinkerOpts, COFFLinkerOpts); // We are about to fill in the header's range fields, so reserve space for it // and copy it in afterwards. Symtab.resize(sizeof(storage::Header)); writeRange(Hdr.Modules, Mods); writeRange(Hdr.Comdats, Comdats); writeRange(Hdr.Symbols, Syms); writeRange(Hdr.Uncommons, Uncommons); *reinterpret_cast(Symtab.data()) = Hdr; raw_svector_ostream OS(Strtab); StrtabBuilder.finalizeInOrder(); StrtabBuilder.write(OS); return Error::success(); } } // end anonymous namespace Error irsymtab::build(ArrayRef Mods, SmallVector &Symtab, SmallVector &Strtab) { return Builder(Symtab, Strtab).build(Mods); } // Upgrade a vector of bitcode modules created by an old version of LLVM by // creating an irsymtab for them in the current format. static Expected upgrade(ArrayRef BMs) { FileContents FC; LLVMContext Ctx; std::vector Mods; std::vector> OwnedMods; for (auto BM : BMs) { Expected> MOrErr = BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true, /*IsImporting*/ false); if (!MOrErr) return MOrErr.takeError(); Mods.push_back(MOrErr->get()); OwnedMods.push_back(std::move(*MOrErr)); } if (Error E = build(Mods, FC.Symtab, FC.Strtab)) return std::move(E); FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()}, {FC.Strtab.data(), FC.Strtab.size()}}; return std::move(FC); } Expected irsymtab::readBitcode(const BitcodeFileContents &BFC) { if (BFC.Mods.empty()) return make_error("Bitcode file does not contain any modules", inconvertibleErrorCode()); // Right now we have no on-disk representation of symbol tables, so we always // upgrade. return upgrade(BFC.Mods); }