//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the operating system Host concept. // //===----------------------------------------------------------------------===// #include "llvm/Support/Host.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/Config/config.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include #include // Include the platform-specific parts of this class. #ifdef LLVM_ON_UNIX #include "Unix/Host.inc" #endif #ifdef LLVM_ON_WIN32 #include "Windows/Host.inc" #endif #ifdef _MSC_VER #include #endif #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) #include #include #include #include #endif #define DEBUG_TYPE "host-detection" //===----------------------------------------------------------------------===// // // Implementations of the CPU detection routines // //===----------------------------------------------------------------------===// using namespace llvm; #if defined(__linux__) static ssize_t LLVM_ATTRIBUTE_UNUSED readCpuInfo(void *Buf, size_t Size) { // Note: We cannot mmap /proc/cpuinfo here and then process the resulting // memory buffer because the 'file' has 0 size (it can be read from only // as a stream). int FD; std::error_code EC = sys::fs::openFileForRead("/proc/cpuinfo", FD); if (EC) { DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << EC.message() << "\n"); return -1; } int Ret = read(FD, Buf, Size); int CloseStatus = close(FD); if (CloseStatus) return -1; return Ret; } #endif #if defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64__) || defined(_M_X64) enum VendorSignatures { SIG_INTEL = 0x756e6547 /* Genu */, SIG_AMD = 0x68747541 /* Auth */ }; enum ProcessorVendors { VENDOR_INTEL = 1, VENDOR_AMD, VENDOR_OTHER, VENDOR_MAX }; enum ProcessorTypes { INTEL_ATOM = 1, INTEL_CORE2, INTEL_COREI7, AMDFAM10H, AMDFAM15H, INTEL_i386, INTEL_i486, INTEL_PENTIUM, INTEL_PENTIUM_PRO, INTEL_PENTIUM_II, INTEL_PENTIUM_III, INTEL_PENTIUM_IV, INTEL_PENTIUM_M, INTEL_CORE_DUO, INTEL_XEONPHI, INTEL_X86_64, INTEL_NOCONA, INTEL_PRESCOTT, AMD_i486, AMDPENTIUM, AMDATHLON, AMDFAM14H, AMDFAM16H, AMDFAM17H, CPU_TYPE_MAX }; enum ProcessorSubtypes { INTEL_COREI7_NEHALEM = 1, INTEL_COREI7_WESTMERE, INTEL_COREI7_SANDYBRIDGE, AMDFAM10H_BARCELONA, AMDFAM10H_SHANGHAI, AMDFAM10H_ISTANBUL, AMDFAM15H_BDVER1, AMDFAM15H_BDVER2, INTEL_PENTIUM_MMX, INTEL_CORE2_65, INTEL_CORE2_45, INTEL_COREI7_IVYBRIDGE, INTEL_COREI7_HASWELL, INTEL_COREI7_BROADWELL, INTEL_COREI7_SKYLAKE, INTEL_COREI7_SKYLAKE_AVX512, INTEL_ATOM_BONNELL, INTEL_ATOM_SILVERMONT, INTEL_KNIGHTS_LANDING, AMDPENTIUM_K6, AMDPENTIUM_K62, AMDPENTIUM_K63, AMDPENTIUM_GEODE, AMDATHLON_TBIRD, AMDATHLON_MP, AMDATHLON_XP, AMDATHLON_K8SSE3, AMDATHLON_OPTERON, AMDATHLON_FX, AMDATHLON_64, AMD_BTVER1, AMD_BTVER2, AMDFAM15H_BDVER3, AMDFAM15H_BDVER4, AMDFAM17H_ZNVER1, CPU_SUBTYPE_MAX }; enum ProcessorFeatures { FEATURE_CMOV = 0, FEATURE_MMX, FEATURE_POPCNT, FEATURE_SSE, FEATURE_SSE2, FEATURE_SSE3, FEATURE_SSSE3, FEATURE_SSE4_1, FEATURE_SSE4_2, FEATURE_AVX, FEATURE_AVX2, FEATURE_AVX512, FEATURE_AVX512SAVE, FEATURE_MOVBE, FEATURE_ADX, FEATURE_EM64T }; // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max). // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID // support. Consequently, for i386, the presence of CPUID is checked first // via the corresponding eflags bit. // Removal of cpuid.h header motivated by PR30384 // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp // or test-suite, but are used in external projects e.g. libstdcxx static bool isCpuIdSupported() { #if defined(__GNUC__) || defined(__clang__) #if defined(__i386__) int __cpuid_supported; __asm__(" pushfl\n" " popl %%eax\n" " movl %%eax,%%ecx\n" " xorl $0x00200000,%%eax\n" " pushl %%eax\n" " popfl\n" " pushfl\n" " popl %%eax\n" " movl $0,%0\n" " cmpl %%eax,%%ecx\n" " je 1f\n" " movl $1,%0\n" "1:" : "=r"(__cpuid_supported) : : "eax", "ecx"); if (!__cpuid_supported) return false; #endif return true; #endif return true; } /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in /// the specified arguments. If we can't run cpuid on the host, return true. static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER) #if defined(__GNUC__) || defined(__clang__) #if defined(__x86_64__) // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. // FIXME: should we save this for Clang? __asm__("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) : "a"(value)); #elif defined(__i386__) __asm__("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) : "a"(value)); #else assert(0 && "This method is defined only for x86."); #endif #elif defined(_MSC_VER) // The MSVC intrinsic is portable across x86 and x64. int registers[4]; __cpuid(registers, value); *rEAX = registers[0]; *rEBX = registers[1]; *rECX = registers[2]; *rEDX = registers[3]; #endif return false; #else return true; #endif } /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return /// the 4 values in the specified arguments. If we can't run cpuid on the host, /// return true. static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER) #if defined(__x86_64__) || defined(_M_X64) #if defined(__GNUC__) || defined(__clang__) // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. // FIXME: should we save this for Clang? __asm__("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) : "a"(value), "c"(subleaf)); #elif defined(_MSC_VER) int registers[4]; __cpuidex(registers, value, subleaf); *rEAX = registers[0]; *rEBX = registers[1]; *rECX = registers[2]; *rEDX = registers[3]; #endif #elif defined(__i386__) || defined(_M_IX86) #if defined(__GNUC__) || defined(__clang__) __asm__("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) : "a"(value), "c"(subleaf)); #elif defined(_MSC_VER) __asm { mov eax,value mov ecx,subleaf cpuid mov esi,rEAX mov dword ptr [esi],eax mov esi,rEBX mov dword ptr [esi],ebx mov esi,rECX mov dword ptr [esi],ecx mov esi,rEDX mov dword ptr [esi],edx } #endif #else assert(0 && "This method is defined only for x86."); #endif return false; #else return true; #endif } static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) { #if defined(__GNUC__) || defined(__clang__) // Check xgetbv; this uses a .byte sequence instead of the instruction // directly because older assemblers do not include support for xgetbv and // there is no easy way to conditionally compile based on the assembler used. __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0)); return false; #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK) unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); *rEAX = Result; *rEDX = Result >> 32; return false; #else return true; #endif } static void detectX86FamilyModel(unsigned EAX, unsigned *Family, unsigned *Model) { *Family = (EAX >> 8) & 0xf; // Bits 8 - 11 *Model = (EAX >> 4) & 0xf; // Bits 4 - 7 if (*Family == 6 || *Family == 0xf) { if (*Family == 0xf) // Examine extended family ID if family ID is F. *Family += (EAX >> 20) & 0xff; // Bits 20 - 27 // Examine extended model ID if family ID is 6 or F. *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 } } static void getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model, unsigned int Brand_id, unsigned int Features, unsigned *Type, unsigned *Subtype) { if (Brand_id != 0) return; switch (Family) { case 3: *Type = INTEL_i386; break; case 4: switch (Model) { case 0: // Intel486 DX processors case 1: // Intel486 DX processors case 2: // Intel486 SX processors case 3: // Intel487 processors, IntelDX2 OverDrive processors, // IntelDX2 processors case 4: // Intel486 SL processor case 5: // IntelSX2 processors case 7: // Write-Back Enhanced IntelDX2 processors case 8: // IntelDX4 OverDrive processors, IntelDX4 processors default: *Type = INTEL_i486; break; } break; case 5: switch (Model) { case 1: // Pentium OverDrive processor for Pentium processor (60, 66), // Pentium processors (60, 66) case 2: // Pentium OverDrive processor for Pentium processor (75, 90, // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133, // 150, 166, 200) case 3: // Pentium OverDrive processors for Intel486 processor-based // systems *Type = INTEL_PENTIUM; break; case 4: // Pentium OverDrive processor with MMX technology for Pentium // processor (75, 90, 100, 120, 133), Pentium processor with // MMX technology (166, 200) *Type = INTEL_PENTIUM; *Subtype = INTEL_PENTIUM_MMX; break; default: *Type = INTEL_PENTIUM; break; } break; case 6: switch (Model) { case 0x01: // Pentium Pro processor *Type = INTEL_PENTIUM_PRO; break; case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor, // model 03 case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor, // model 05, and Intel Celeron processor, model 05 case 0x06: // Celeron processor, model 06 *Type = INTEL_PENTIUM_II; break; case 0x07: // Pentium III processor, model 07, and Pentium III Xeon // processor, model 07 case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor, // model 08, and Celeron processor, model 08 case 0x0a: // Pentium III Xeon processor, model 0Ah case 0x0b: // Pentium III processor, model 0Bh *Type = INTEL_PENTIUM_III; break; case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09. case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model // 0Dh. All processors are manufactured using the 90 nm process. case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579 // Integrated Processor with Intel QuickAssist Technology *Type = INTEL_PENTIUM_M; break; case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model // 0Eh. All processors are manufactured using the 65 nm process. *Type = INTEL_CORE_DUO; break; // yonah case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile // processor, Intel Core 2 Quad processor, Intel Core 2 Quad // mobile processor, Intel Core 2 Extreme processor, Intel // Pentium Dual-Core processor, Intel Xeon processor, model // 0Fh. All processors are manufactured using the 65 nm process. case 0x16: // Intel Celeron processor model 16h. All processors are // manufactured using the 65 nm process *Type = INTEL_CORE2; // "core2" *Subtype = INTEL_CORE2_65; break; case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model // 17h. All processors are manufactured using the 45 nm process. // // 45nm: Penryn , Wolfdale, Yorkfield (XE) case 0x1d: // Intel Xeon processor MP. All processors are manufactured using // the 45 nm process. *Type = INTEL_CORE2; // "penryn" *Subtype = INTEL_CORE2_45; break; case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All // processors are manufactured using the 45 nm process. case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz. // As found in a Summer 2010 model iMac. case 0x1f: case 0x2e: // Nehalem EX *Type = INTEL_COREI7; // "nehalem" *Subtype = INTEL_COREI7_NEHALEM; break; case 0x25: // Intel Core i7, laptop version. case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All // processors are manufactured using the 32 nm process. case 0x2f: // Westmere EX *Type = INTEL_COREI7; // "westmere" *Subtype = INTEL_COREI7_WESTMERE; break; case 0x2a: // Intel Core i7 processor. All processors are manufactured // using the 32 nm process. case 0x2d: *Type = INTEL_COREI7; //"sandybridge" *Subtype = INTEL_COREI7_SANDYBRIDGE; break; case 0x3a: case 0x3e: // Ivy Bridge EP *Type = INTEL_COREI7; // "ivybridge" *Subtype = INTEL_COREI7_IVYBRIDGE; break; // Haswell: case 0x3c: case 0x3f: case 0x45: case 0x46: *Type = INTEL_COREI7; // "haswell" *Subtype = INTEL_COREI7_HASWELL; break; // Broadwell: case 0x3d: case 0x47: case 0x4f: case 0x56: *Type = INTEL_COREI7; // "broadwell" *Subtype = INTEL_COREI7_BROADWELL; break; // Skylake: case 0x4e: // Skylake mobile case 0x5e: // Skylake desktop case 0x8e: // Kaby Lake mobile case 0x9e: // Kaby Lake desktop *Type = INTEL_COREI7; // "skylake" *Subtype = INTEL_COREI7_SKYLAKE; break; // Skylake Xeon: case 0x55: *Type = INTEL_COREI7; // Check that we really have AVX512 if (Features & (1 << FEATURE_AVX512)) { *Subtype = INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512" } else { *Subtype = INTEL_COREI7_SKYLAKE; // "skylake" } break; case 0x1c: // Most 45 nm Intel Atom processors case 0x26: // 45 nm Atom Lincroft case 0x27: // 32 nm Atom Medfield case 0x35: // 32 nm Atom Midview case 0x36: // 32 nm Atom Midview *Type = INTEL_ATOM; *Subtype = INTEL_ATOM_BONNELL; break; // "bonnell" // Atom Silvermont codes from the Intel software optimization guide. case 0x37: case 0x4a: case 0x4d: case 0x5a: case 0x5d: case 0x4c: // really airmont *Type = INTEL_ATOM; *Subtype = INTEL_ATOM_SILVERMONT; break; // "silvermont" case 0x57: *Type = INTEL_XEONPHI; // knl *Subtype = INTEL_KNIGHTS_LANDING; break; default: // Unknown family 6 CPU, try to guess. if (Features & (1 << FEATURE_AVX512)) { *Type = INTEL_XEONPHI; // knl *Subtype = INTEL_KNIGHTS_LANDING; break; } if (Features & (1 << FEATURE_ADX)) { *Type = INTEL_COREI7; *Subtype = INTEL_COREI7_BROADWELL; break; } if (Features & (1 << FEATURE_AVX2)) { *Type = INTEL_COREI7; *Subtype = INTEL_COREI7_HASWELL; break; } if (Features & (1 << FEATURE_AVX)) { *Type = INTEL_COREI7; *Subtype = INTEL_COREI7_SANDYBRIDGE; break; } if (Features & (1 << FEATURE_SSE4_2)) { if (Features & (1 << FEATURE_MOVBE)) { *Type = INTEL_ATOM; *Subtype = INTEL_ATOM_SILVERMONT; } else { *Type = INTEL_COREI7; *Subtype = INTEL_COREI7_NEHALEM; } break; } if (Features & (1 << FEATURE_SSE4_1)) { *Type = INTEL_CORE2; // "penryn" *Subtype = INTEL_CORE2_45; break; } if (Features & (1 << FEATURE_SSSE3)) { if (Features & (1 << FEATURE_MOVBE)) { *Type = INTEL_ATOM; *Subtype = INTEL_ATOM_BONNELL; // "bonnell" } else { *Type = INTEL_CORE2; // "core2" *Subtype = INTEL_CORE2_65; } break; } if (Features & (1 << FEATURE_EM64T)) { *Type = INTEL_X86_64; break; // x86-64 } if (Features & (1 << FEATURE_SSE2)) { *Type = INTEL_PENTIUM_M; break; } if (Features & (1 << FEATURE_SSE)) { *Type = INTEL_PENTIUM_III; break; } if (Features & (1 << FEATURE_MMX)) { *Type = INTEL_PENTIUM_II; break; } *Type = INTEL_PENTIUM_PRO; break; } break; case 15: { switch (Model) { case 0: // Pentium 4 processor, Intel Xeon processor. All processors are // model 00h and manufactured using the 0.18 micron process. case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon // processor MP, and Intel Celeron processor. All processors are // model 01h and manufactured using the 0.18 micron process. case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M, // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron // processor, and Mobile Intel Celeron processor. All processors // are model 02h and manufactured using the 0.13 micron process. *Type = ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV); break; case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D // processor. All processors are model 03h and manufactured using // the 90 nm process. case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition, // Pentium D processor, Intel Xeon processor, Intel Xeon // processor MP, Intel Celeron D processor. All processors are // model 04h and manufactured using the 90 nm process. case 6: // Pentium 4 processor, Pentium D processor, Pentium processor // Extreme Edition, Intel Xeon processor, Intel Xeon processor // MP, Intel Celeron D processor. All processors are model 06h // and manufactured using the 65 nm process. *Type = ((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT); break; default: *Type = ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV); break; } break; } default: break; /*"generic"*/ } } static void getAMDProcessorTypeAndSubtype(unsigned int Family, unsigned int Model, unsigned int Features, unsigned *Type, unsigned *Subtype) { // FIXME: this poorly matches the generated SubtargetFeatureKV table. There // appears to be no way to generate the wide variety of AMD-specific targets // from the information returned from CPUID. switch (Family) { case 4: *Type = AMD_i486; break; case 5: *Type = AMDPENTIUM; switch (Model) { case 6: case 7: *Subtype = AMDPENTIUM_K6; break; // "k6" case 8: *Subtype = AMDPENTIUM_K62; break; // "k6-2" case 9: case 13: *Subtype = AMDPENTIUM_K63; break; // "k6-3" case 10: *Subtype = AMDPENTIUM_GEODE; break; // "geode" } break; case 6: *Type = AMDATHLON; switch (Model) { case 4: *Subtype = AMDATHLON_TBIRD; break; // "athlon-tbird" case 6: case 7: case 8: *Subtype = AMDATHLON_MP; break; // "athlon-mp" case 10: *Subtype = AMDATHLON_XP; break; // "athlon-xp" } break; case 15: *Type = AMDATHLON; if (Features & (1 << FEATURE_SSE3)) { *Subtype = AMDATHLON_K8SSE3; break; // "k8-sse3" } switch (Model) { case 1: *Subtype = AMDATHLON_OPTERON; break; // "opteron" case 5: *Subtype = AMDATHLON_FX; break; // "athlon-fx"; also opteron default: *Subtype = AMDATHLON_64; break; // "athlon64" } break; case 16: *Type = AMDFAM10H; // "amdfam10" switch (Model) { case 2: *Subtype = AMDFAM10H_BARCELONA; break; case 4: *Subtype = AMDFAM10H_SHANGHAI; break; case 8: *Subtype = AMDFAM10H_ISTANBUL; break; } break; case 20: *Type = AMDFAM14H; *Subtype = AMD_BTVER1; break; // "btver1"; case 21: *Type = AMDFAM15H; if (!(Features & (1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback. *Subtype = AMD_BTVER1; break; // "btver1" } if (Model >= 0x50 && Model <= 0x6f) { *Subtype = AMDFAM15H_BDVER4; break; // "bdver4"; 50h-6Fh: Excavator } if (Model >= 0x30 && Model <= 0x3f) { *Subtype = AMDFAM15H_BDVER3; break; // "bdver3"; 30h-3Fh: Steamroller } if (Model >= 0x10 && Model <= 0x1f) { *Subtype = AMDFAM15H_BDVER2; break; // "bdver2"; 10h-1Fh: Piledriver } if (Model <= 0x0f) { *Subtype = AMDFAM15H_BDVER1; break; // "bdver1"; 00h-0Fh: Bulldozer } break; case 22: *Type = AMDFAM16H; if (!(Features & (1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback. *Subtype = AMD_BTVER1; break; // "btver1"; } *Subtype = AMD_BTVER2; break; // "btver2" case 23: *Type = AMDFAM17H; if (Features & (1 << FEATURE_ADX)) { *Subtype = AMDFAM17H_ZNVER1; break; // "znver1" } *Subtype = AMD_BTVER1; break; default: break; // "generic" } } static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX, unsigned MaxLeaf) { unsigned Features = 0; unsigned int EAX, EBX; Features |= (((EDX >> 23) & 1) << FEATURE_MMX); Features |= (((EDX >> 25) & 1) << FEATURE_SSE); Features |= (((EDX >> 26) & 1) << FEATURE_SSE2); Features |= (((ECX >> 0) & 1) << FEATURE_SSE3); Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3); Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1); Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2); Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE); // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV // indicates that the AVX registers will be saved and restored on context // switch, then we have full AVX support. const unsigned AVXBits = (1 << 27) | (1 << 28); bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0); bool HasLeaf7 = MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); bool HasADX = HasLeaf7 && ((EBX >> 19) & 1); bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20); bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1); Features |= (HasAVX << FEATURE_AVX); Features |= (HasAVX2 << FEATURE_AVX2); Features |= (HasAVX512 << FEATURE_AVX512); Features |= (HasAVX512Save << FEATURE_AVX512SAVE); Features |= (HasADX << FEATURE_ADX); getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T); return Features; } StringRef sys::getHostCPUName() { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; unsigned MaxLeaf, Vendor; #if defined(__GNUC__) || defined(__clang__) //FIXME: include cpuid.h from clang or copy __get_cpuid_max here // and simplify it to not invoke __cpuid (like cpu_model.c in // compiler-rt/lib/builtins/cpu_model.c? // Opting for the second option. if(!isCpuIdSupported()) return "generic"; #endif if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX)) return "generic"; if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) return "generic"; unsigned Brand_id = EBX & 0xff; unsigned Family = 0, Model = 0; unsigned Features = 0; detectX86FamilyModel(EAX, &Family, &Model); Features = getAvailableFeatures(ECX, EDX, MaxLeaf); unsigned Type; unsigned Subtype; if (Vendor == SIG_INTEL) { getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type, &Subtype); switch (Type) { case INTEL_i386: return "i386"; case INTEL_i486: return "i486"; case INTEL_PENTIUM: if (Subtype == INTEL_PENTIUM_MMX) return "pentium-mmx"; return "pentium"; case INTEL_PENTIUM_PRO: return "pentiumpro"; case INTEL_PENTIUM_II: return "pentium2"; case INTEL_PENTIUM_III: return "pentium3"; case INTEL_PENTIUM_IV: return "pentium4"; case INTEL_PENTIUM_M: return "pentium-m"; case INTEL_CORE_DUO: return "yonah"; case INTEL_CORE2: switch (Subtype) { case INTEL_CORE2_65: return "core2"; case INTEL_CORE2_45: return "penryn"; default: return "core2"; } case INTEL_COREI7: switch (Subtype) { case INTEL_COREI7_NEHALEM: return "nehalem"; case INTEL_COREI7_WESTMERE: return "westmere"; case INTEL_COREI7_SANDYBRIDGE: return "sandybridge"; case INTEL_COREI7_IVYBRIDGE: return "ivybridge"; case INTEL_COREI7_HASWELL: return "haswell"; case INTEL_COREI7_BROADWELL: return "broadwell"; case INTEL_COREI7_SKYLAKE: return "skylake"; case INTEL_COREI7_SKYLAKE_AVX512: return "skylake-avx512"; default: return "corei7"; } case INTEL_ATOM: switch (Subtype) { case INTEL_ATOM_BONNELL: return "bonnell"; case INTEL_ATOM_SILVERMONT: return "silvermont"; default: return "atom"; } case INTEL_XEONPHI: return "knl"; /*update for more variants added*/ case INTEL_X86_64: return "x86-64"; case INTEL_NOCONA: return "nocona"; case INTEL_PRESCOTT: return "prescott"; default: return "generic"; } } else if (Vendor == SIG_AMD) { getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype); switch (Type) { case AMD_i486: return "i486"; case AMDPENTIUM: switch (Subtype) { case AMDPENTIUM_K6: return "k6"; case AMDPENTIUM_K62: return "k6-2"; case AMDPENTIUM_K63: return "k6-3"; case AMDPENTIUM_GEODE: return "geode"; default: return "pentium"; } case AMDATHLON: switch (Subtype) { case AMDATHLON_TBIRD: return "athlon-tbird"; case AMDATHLON_MP: return "athlon-mp"; case AMDATHLON_XP: return "athlon-xp"; case AMDATHLON_K8SSE3: return "k8-sse3"; case AMDATHLON_OPTERON: return "opteron"; case AMDATHLON_FX: return "athlon-fx"; case AMDATHLON_64: return "athlon64"; default: return "athlon"; } case AMDFAM10H: if(Subtype == AMDFAM10H_BARCELONA) return "barcelona"; return "amdfam10"; case AMDFAM14H: return "btver1"; case AMDFAM15H: switch (Subtype) { case AMDFAM15H_BDVER1: return "bdver1"; case AMDFAM15H_BDVER2: return "bdver2"; case AMDFAM15H_BDVER3: return "bdver3"; case AMDFAM15H_BDVER4: return "bdver4"; case AMD_BTVER1: return "btver1"; default: return "amdfam15"; } case AMDFAM16H: switch (Subtype) { case AMD_BTVER1: return "btver1"; case AMD_BTVER2: return "btver2"; default: return "amdfam16"; } case AMDFAM17H: switch (Subtype) { case AMD_BTVER1: return "btver1"; case AMDFAM17H_ZNVER1: return "znver1"; default: return "amdfam17"; } default: return "generic"; } } return "generic"; } #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) StringRef sys::getHostCPUName() { host_basic_info_data_t hostInfo; mach_msg_type_number_t infoCount; infoCount = HOST_BASIC_INFO_COUNT; host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo, &infoCount); if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic"; switch (hostInfo.cpu_subtype) { case CPU_SUBTYPE_POWERPC_601: return "601"; case CPU_SUBTYPE_POWERPC_602: return "602"; case CPU_SUBTYPE_POWERPC_603: return "603"; case CPU_SUBTYPE_POWERPC_603e: return "603e"; case CPU_SUBTYPE_POWERPC_603ev: return "603ev"; case CPU_SUBTYPE_POWERPC_604: return "604"; case CPU_SUBTYPE_POWERPC_604e: return "604e"; case CPU_SUBTYPE_POWERPC_620: return "620"; case CPU_SUBTYPE_POWERPC_750: return "750"; case CPU_SUBTYPE_POWERPC_7400: return "7400"; case CPU_SUBTYPE_POWERPC_7450: return "7450"; case CPU_SUBTYPE_POWERPC_970: return "970"; default:; } return "generic"; } #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) StringRef sys::getHostCPUName() { // Access to the Processor Version Register (PVR) on PowerPC is privileged, // and so we must use an operating-system interface to determine the current // processor type. On Linux, this is exposed through the /proc/cpuinfo file. const char *generic = "generic"; // The cpu line is second (after the 'processor: 0' line), so if this // buffer is too small then something has changed (or is wrong). char buffer[1024]; ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer)); if (CPUInfoSize == -1) return generic; const char *CPUInfoStart = buffer; const char *CPUInfoEnd = buffer + CPUInfoSize; const char *CIP = CPUInfoStart; const char *CPUStart = 0; size_t CPULen = 0; // We need to find the first line which starts with cpu, spaces, and a colon. // After the colon, there may be some additional spaces and then the cpu type. while (CIP < CPUInfoEnd && CPUStart == 0) { if (CIP < CPUInfoEnd && *CIP == '\n') ++CIP; if (CIP < CPUInfoEnd && *CIP == 'c') { ++CIP; if (CIP < CPUInfoEnd && *CIP == 'p') { ++CIP; if (CIP < CPUInfoEnd && *CIP == 'u') { ++CIP; while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) ++CIP; if (CIP < CPUInfoEnd && *CIP == ':') { ++CIP; while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) ++CIP; if (CIP < CPUInfoEnd) { CPUStart = CIP; while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && *CIP != ',' && *CIP != '\n')) ++CIP; CPULen = CIP - CPUStart; } } } } } if (CPUStart == 0) while (CIP < CPUInfoEnd && *CIP != '\n') ++CIP; } if (CPUStart == 0) return generic; return StringSwitch(StringRef(CPUStart, CPULen)) .Case("604e", "604e") .Case("604", "604") .Case("7400", "7400") .Case("7410", "7400") .Case("7447", "7400") .Case("7455", "7450") .Case("G4", "g4") .Case("POWER4", "970") .Case("PPC970FX", "970") .Case("PPC970MP", "970") .Case("G5", "g5") .Case("POWER5", "g5") .Case("A2", "a2") .Case("POWER6", "pwr6") .Case("POWER7", "pwr7") .Case("POWER8", "pwr8") .Case("POWER8E", "pwr8") .Case("POWER8NVL", "pwr8") .Case("POWER9", "pwr9") .Default(generic); } #elif defined(__linux__) && defined(__arm__) StringRef sys::getHostCPUName() { // The cpuid register on arm is not accessible from user space. On Linux, // it is exposed through the /proc/cpuinfo file. // Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line // in all cases. char buffer[1024]; ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer)); if (CPUInfoSize == -1) return "generic"; StringRef Str(buffer, CPUInfoSize); SmallVector Lines; Str.split(Lines, "\n"); // Look for the CPU implementer line. StringRef Implementer; for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("CPU implementer")) Implementer = Lines[I].substr(15).ltrim("\t :"); if (Implementer == "0x41") // ARM Ltd. // Look for the CPU part line. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("CPU part")) // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The // values correspond to the "Part number" in the CP15/c0 register. The // contents are specified in the various processor manuals. return StringSwitch(Lines[I].substr(8).ltrim("\t :")) .Case("0x926", "arm926ej-s") .Case("0xb02", "mpcore") .Case("0xb36", "arm1136j-s") .Case("0xb56", "arm1156t2-s") .Case("0xb76", "arm1176jz-s") .Case("0xc08", "cortex-a8") .Case("0xc09", "cortex-a9") .Case("0xc0f", "cortex-a15") .Case("0xc20", "cortex-m0") .Case("0xc23", "cortex-m3") .Case("0xc24", "cortex-m4") .Default("generic"); if (Implementer == "0x51") // Qualcomm Technologies, Inc. // Look for the CPU part line. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("CPU part")) // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The // values correspond to the "Part number" in the CP15/c0 register. The // contents are specified in the various processor manuals. return StringSwitch(Lines[I].substr(8).ltrim("\t :")) .Case("0x06f", "krait") // APQ8064 .Default("generic"); return "generic"; } #elif defined(__linux__) && defined(__s390x__) StringRef sys::getHostCPUName() { // STIDP is a privileged operation, so use /proc/cpuinfo instead. // The "processor 0:" line comes after a fair amount of other information, // including a cache breakdown, but this should be plenty. char buffer[2048]; ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer)); if (CPUInfoSize == -1) return "generic"; StringRef Str(buffer, CPUInfoSize); SmallVector Lines; Str.split(Lines, "\n"); // Look for the CPU features. SmallVector CPUFeatures; for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("features")) { size_t Pos = Lines[I].find(":"); if (Pos != StringRef::npos) { Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' '); break; } } // We need to check for the presence of vector support independently of // the machine type, since we may only use the vector register set when // supported by the kernel (and hypervisor). bool HaveVectorSupport = false; for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { if (CPUFeatures[I] == "vx") HaveVectorSupport = true; } // Now check the processor machine type. for (unsigned I = 0, E = Lines.size(); I != E; ++I) { if (Lines[I].startswith("processor ")) { size_t Pos = Lines[I].find("machine = "); if (Pos != StringRef::npos) { Pos += sizeof("machine = ") - 1; unsigned int Id; if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) { if (Id >= 2964 && HaveVectorSupport) return "z13"; if (Id >= 2827) return "zEC12"; if (Id >= 2817) return "z196"; } } break; } } return "generic"; } #else StringRef sys::getHostCPUName() { return "generic"; } #endif #if defined(__linux__) && defined(__x86_64__) // On Linux, the number of physical cores can be computed from /proc/cpuinfo, // using the number of unique physical/core id pairs. The following // implementation reads the /proc/cpuinfo format on an x86_64 system. static int computeHostNumPhysicalCores() { // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be // mmapped because it appears to have 0 size. llvm::ErrorOr> Text = llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); if (std::error_code EC = Text.getError()) { llvm::errs() << "Can't read " << "/proc/cpuinfo: " << EC.message() << "\n"; } SmallVector strs; (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1, /*KeepEmpty=*/false); int CurPhysicalId = -1; int CurCoreId = -1; SmallSet, 32> UniqueItems; for (auto &Line : strs) { Line = Line.trim(); if (!Line.startswith("physical id") && !Line.startswith("core id")) continue; std::pair Data = Line.split(':'); auto Name = Data.first.trim(); auto Val = Data.second.trim(); if (Name == "physical id") { assert(CurPhysicalId == -1 && "Expected a core id before seeing another physical id"); Val.getAsInteger(10, CurPhysicalId); } if (Name == "core id") { assert(CurCoreId == -1 && "Expected a physical id before seeing another core id"); Val.getAsInteger(10, CurCoreId); } if (CurPhysicalId != -1 && CurCoreId != -1) { UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId)); CurPhysicalId = -1; CurCoreId = -1; } } return UniqueItems.size(); } #elif defined(__APPLE__) && defined(__x86_64__) #include #include // Gets the number of *physical cores* on the machine. static int computeHostNumPhysicalCores() { uint32_t count; size_t len = sizeof(count); sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0); if (count < 1) { int nm[2]; nm[0] = CTL_HW; nm[1] = HW_AVAILCPU; sysctl(nm, 2, &count, &len, NULL, 0); if (count < 1) return -1; } return count; } #else // On other systems, return -1 to indicate unknown. static int computeHostNumPhysicalCores() { return -1; } #endif int sys::getHostNumPhysicalCores() { static int NumCores = computeHostNumPhysicalCores(); return NumCores; } #if defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64__) || defined(_M_X64) bool sys::getHostCPUFeatures(StringMap &Features) { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; unsigned MaxLevel; union { unsigned u[3]; char c[12]; } text; if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) || MaxLevel < 1) return false; getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX); Features["cmov"] = (EDX >> 15) & 1; Features["mmx"] = (EDX >> 23) & 1; Features["sse"] = (EDX >> 25) & 1; Features["sse2"] = (EDX >> 26) & 1; Features["sse3"] = (ECX >> 0) & 1; Features["ssse3"] = (ECX >> 9) & 1; Features["sse4.1"] = (ECX >> 19) & 1; Features["sse4.2"] = (ECX >> 20) & 1; Features["pclmul"] = (ECX >> 1) & 1; Features["cx16"] = (ECX >> 13) & 1; Features["movbe"] = (ECX >> 22) & 1; Features["popcnt"] = (ECX >> 23) & 1; Features["aes"] = (ECX >> 25) & 1; Features["rdrnd"] = (ECX >> 30) & 1; // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV // indicates that the AVX registers will be saved and restored on context // switch, then we have full AVX support. bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) && !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); Features["avx"] = HasAVXSave; Features["fma"] = HasAVXSave && (ECX >> 12) & 1; Features["f16c"] = HasAVXSave && (ECX >> 29) & 1; // Only enable XSAVE if OS has enabled support for saving YMM state. Features["xsave"] = HasAVXSave && (ECX >> 26) & 1; // AVX512 requires additional context to be saved by the OS. bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0); unsigned MaxExtLevel; getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1); Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1); Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1); Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave; Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave; Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1); Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1); bool HasLeaf7 = MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); // AVX2 is only supported if we have the OS save support from AVX. Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1); Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1); Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1); Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1); Features["hle"] = HasLeaf7 && ((EBX >> 4) & 1); Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1); Features["invpcid"] = HasLeaf7 && ((EBX >> 10) & 1); Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1); Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1); Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1); Features["smap"] = HasLeaf7 && ((EBX >> 20) & 1); Features["pcommit"] = HasLeaf7 && ((EBX >> 22) & 1); Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1); Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1); Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1); // AVX512 is only supported if the OS supports the context save for it. Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save; Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save; Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save; Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save; Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save; Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save; Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save; Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save; Features["prefetchwt1"] = HasLeaf7 && (ECX & 1); Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save; // Enable protection keys Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1); bool HasLeafD = MaxLevel >= 0xd && !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX); // Only enable XSAVE if OS has enabled support for saving YMM state. Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1); Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1); Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1); return true; } #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) bool sys::getHostCPUFeatures(StringMap &Features) { // Read 1024 bytes from /proc/cpuinfo, which should contain the Features line // in all cases. char buffer[1024]; ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer)); if (CPUInfoSize == -1) return false; StringRef Str(buffer, CPUInfoSize); SmallVector Lines; Str.split(Lines, "\n"); SmallVector CPUFeatures; // Look for the CPU features. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("Features")) { Lines[I].split(CPUFeatures, ' '); break; } #if defined(__aarch64__) // Keep track of which crypto features we have seen enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 }; uint32_t crypto = 0; #endif for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { StringRef LLVMFeatureStr = StringSwitch(CPUFeatures[I]) #if defined(__aarch64__) .Case("asimd", "neon") .Case("fp", "fp-armv8") .Case("crc32", "crc") #else .Case("half", "fp16") .Case("neon", "neon") .Case("vfpv3", "vfp3") .Case("vfpv3d16", "d16") .Case("vfpv4", "vfp4") .Case("idiva", "hwdiv-arm") .Case("idivt", "hwdiv") #endif .Default(""); #if defined(__aarch64__) // We need to check crypto separately since we need all of the crypto // extensions to enable the subtarget feature if (CPUFeatures[I] == "aes") crypto |= CAP_AES; else if (CPUFeatures[I] == "pmull") crypto |= CAP_PMULL; else if (CPUFeatures[I] == "sha1") crypto |= CAP_SHA1; else if (CPUFeatures[I] == "sha2") crypto |= CAP_SHA2; #endif if (LLVMFeatureStr != "") Features[LLVMFeatureStr] = true; } #if defined(__aarch64__) // If we have all crypto bits we can add the feature if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2)) Features["crypto"] = true; #endif return true; } #else bool sys::getHostCPUFeatures(StringMap &Features) { return false; } #endif std::string sys::getProcessTriple() { Triple PT(Triple::normalize(LLVM_HOST_TRIPLE)); if (sizeof(void *) == 8 && PT.isArch32Bit()) PT = PT.get64BitArchVariant(); if (sizeof(void *) == 4 && PT.isArch64Bit()) PT = PT.get32BitArchVariant(); return PT.str(); }