//===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// This file implements the targeting of the Machinelegalizer class for /// AArch64. /// \todo This should be generated by TableGen. //===----------------------------------------------------------------------===// #include "AArch64LegalizerInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Type.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/Target/TargetOpcodes.h" using namespace llvm; #ifndef LLVM_BUILD_GLOBAL_ISEL #error "You shouldn't build this" #endif AArch64LegalizerInfo::AArch64LegalizerInfo() { using namespace TargetOpcode; const LLT p0 = LLT::pointer(0, 64); const LLT s1 = LLT::scalar(1); const LLT s8 = LLT::scalar(8); const LLT s16 = LLT::scalar(16); const LLT s32 = LLT::scalar(32); const LLT s64 = LLT::scalar(64); const LLT v2s32 = LLT::vector(2, 32); const LLT v4s32 = LLT::vector(4, 32); const LLT v2s64 = LLT::vector(2, 64); for (auto BinOp : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR, G_SHL}) { // These operations naturally get the right answer when used on // GPR32, even if the actual type is narrower. for (auto Ty : {s1, s8, s16, s32, s64, v2s32, v4s32, v2s64}) setAction({BinOp, Ty}, Legal); } setAction({G_GEP, p0}, Legal); setAction({G_GEP, 1, s64}, Legal); for (auto Ty : {s1, s8, s16, s32}) setAction({G_GEP, 1, Ty}, WidenScalar); for (auto BinOp : {G_LSHR, G_ASHR, G_SDIV, G_UDIV}) { for (auto Ty : {s32, s64}) setAction({BinOp, Ty}, Legal); for (auto Ty : {s1, s8, s16}) setAction({BinOp, Ty}, WidenScalar); } for (auto BinOp : { G_SREM, G_UREM }) for (auto Ty : { s1, s8, s16, s32, s64 }) setAction({BinOp, Ty}, Lower); for (auto Op : { G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_SMULO, G_UMULO }) { for (auto Ty : { s32, s64 }) setAction({Op, Ty}, Legal); setAction({Op, 1, s1}, Legal); } for (auto BinOp : {G_FADD, G_FSUB, G_FMUL, G_FDIV}) for (auto Ty : {s32, s64}) setAction({BinOp, Ty}, Legal); setAction({G_FREM, s32}, Libcall); setAction({G_FREM, s64}, Libcall); for (auto MemOp : {G_LOAD, G_STORE}) { for (auto Ty : {s8, s16, s32, s64, p0, v2s32}) setAction({MemOp, Ty}, Legal); setAction({MemOp, s1}, WidenScalar); // And everything's fine in addrspace 0. setAction({MemOp, 1, p0}, Legal); } // Constants for (auto Ty : {s32, s64}) { setAction({TargetOpcode::G_CONSTANT, Ty}, Legal); setAction({TargetOpcode::G_FCONSTANT, Ty}, Legal); } setAction({G_CONSTANT, p0}, Legal); for (auto Ty : {s1, s8, s16}) setAction({TargetOpcode::G_CONSTANT, Ty}, WidenScalar); setAction({TargetOpcode::G_FCONSTANT, s16}, WidenScalar); setAction({G_ICMP, s1}, Legal); setAction({G_ICMP, 1, s32}, Legal); setAction({G_ICMP, 1, s64}, Legal); setAction({G_ICMP, 1, p0}, Legal); for (auto Ty : {s1, s8, s16}) { setAction({G_ICMP, 1, Ty}, WidenScalar); } setAction({G_FCMP, s1}, Legal); setAction({G_FCMP, 1, s32}, Legal); setAction({G_FCMP, 1, s64}, Legal); // Extensions for (auto Ty : { s1, s8, s16, s32, s64 }) { setAction({G_ZEXT, Ty}, Legal); setAction({G_SEXT, Ty}, Legal); setAction({G_ANYEXT, Ty}, Legal); } for (auto Ty : { s1, s8, s16, s32 }) { setAction({G_ZEXT, 1, Ty}, Legal); setAction({G_SEXT, 1, Ty}, Legal); setAction({G_ANYEXT, 1, Ty}, Legal); } setAction({G_FPEXT, s64}, Legal); setAction({G_FPEXT, 1, s32}, Legal); // Truncations for (auto Ty : { s16, s32 }) setAction({G_FPTRUNC, Ty}, Legal); for (auto Ty : { s32, s64 }) setAction({G_FPTRUNC, 1, Ty}, Legal); for (auto Ty : { s1, s8, s16, s32 }) setAction({G_TRUNC, Ty}, Legal); for (auto Ty : { s8, s16, s32, s64 }) setAction({G_TRUNC, 1, Ty}, Legal); // Conversions for (auto Ty : { s1, s8, s16, s32, s64 }) { setAction({G_FPTOSI, 0, Ty}, Legal); setAction({G_FPTOUI, 0, Ty}, Legal); setAction({G_SITOFP, 1, Ty}, Legal); setAction({G_UITOFP, 1, Ty}, Legal); } for (auto Ty : { s32, s64 }) { setAction({G_FPTOSI, 1, Ty}, Legal); setAction({G_FPTOUI, 1, Ty}, Legal); setAction({G_SITOFP, 0, Ty}, Legal); setAction({G_UITOFP, 0, Ty}, Legal); } // Control-flow for (auto Ty : {s1, s8, s16, s32}) setAction({G_BRCOND, Ty}, Legal); // Select for (auto Ty : {s1, s8, s16, s32, s64}) setAction({G_SELECT, Ty}, Legal); setAction({G_SELECT, 1, s1}, Legal); // Pointer-handling setAction({G_FRAME_INDEX, p0}, Legal); setAction({G_GLOBAL_VALUE, p0}, Legal); for (auto Ty : {s1, s8, s16, s32, s64}) setAction({G_PTRTOINT, 0, Ty}, Legal); setAction({G_PTRTOINT, 1, p0}, Legal); setAction({G_INTTOPTR, 0, p0}, Legal); setAction({G_INTTOPTR, 1, s64}, Legal); // Casts for 32 and 64-bit width type are just copies. for (auto Ty : {s1, s8, s16, s32, s64}) { setAction({G_BITCAST, 0, Ty}, Legal); setAction({G_BITCAST, 1, Ty}, Legal); } // For the sake of copying bits around, the type does not really // matter as long as it fits a register. for (int EltSize = 8; EltSize <= 64; EltSize *= 2) { setAction({G_BITCAST, 0, LLT::vector(128/EltSize, EltSize)}, Legal); setAction({G_BITCAST, 1, LLT::vector(128/EltSize, EltSize)}, Legal); if (EltSize >= 64) continue; setAction({G_BITCAST, 0, LLT::vector(64/EltSize, EltSize)}, Legal); setAction({G_BITCAST, 1, LLT::vector(64/EltSize, EltSize)}, Legal); if (EltSize >= 32) continue; setAction({G_BITCAST, 0, LLT::vector(32/EltSize, EltSize)}, Legal); setAction({G_BITCAST, 1, LLT::vector(32/EltSize, EltSize)}, Legal); } computeTables(); }