//===- AArch64MacroFusion.cpp - AArch64 Macro Fusion ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file This file contains the AArch64 implementation of the DAG scheduling /// mutation to pair instructions back to back. // //===----------------------------------------------------------------------===// #include "AArch64Subtarget.h" #include "llvm/CodeGen/MacroFusion.h" #include "llvm/CodeGen/TargetInstrInfo.h" using namespace llvm; namespace { // Fuse CMN, CMP, TST followed by Bcc. static bool isArithmeticBccPair(const MachineInstr *FirstMI, const MachineInstr &SecondMI) { if (SecondMI.getOpcode() == AArch64::Bcc) { // Assume the 1st instr to be a wildcard if it is unspecified. if (!FirstMI) return true; switch (FirstMI->getOpcode()) { case AArch64::ADDSWri: case AArch64::ADDSWrr: case AArch64::ADDSXri: case AArch64::ADDSXrr: case AArch64::ANDSWri: case AArch64::ANDSWrr: case AArch64::ANDSXri: case AArch64::ANDSXrr: case AArch64::SUBSWri: case AArch64::SUBSWrr: case AArch64::SUBSXri: case AArch64::SUBSXrr: case AArch64::BICSWrr: case AArch64::BICSXrr: return true; case AArch64::ADDSWrs: case AArch64::ADDSXrs: case AArch64::ANDSWrs: case AArch64::ANDSXrs: case AArch64::SUBSWrs: case AArch64::SUBSXrs: case AArch64::BICSWrs: case AArch64::BICSXrs: // Shift value can be 0 making these behave like the "rr" variant... return (!AArch64InstrInfo::hasShiftedReg(*FirstMI)); } } return false; } // Fuse ALU operations followed by CBZ/CBNZ. static bool isArithmeticCbzPair(const MachineInstr *FirstMI, const MachineInstr &SecondMI) { unsigned SecondOpcode = SecondMI.getOpcode(); if (SecondOpcode == AArch64::CBNZW || SecondOpcode == AArch64::CBNZX || SecondOpcode == AArch64::CBZW || SecondOpcode == AArch64::CBZX) { // Assume the 1st instr to be a wildcard if it is unspecified. if (!FirstMI) return true; switch (FirstMI->getOpcode()) { case AArch64::ADDWri: case AArch64::ADDWrr: case AArch64::ADDXri: case AArch64::ADDXrr: case AArch64::ANDWri: case AArch64::ANDWrr: case AArch64::ANDXri: case AArch64::ANDXrr: case AArch64::EORWri: case AArch64::EORWrr: case AArch64::EORXri: case AArch64::EORXrr: case AArch64::ORRWri: case AArch64::ORRWrr: case AArch64::ORRXri: case AArch64::ORRXrr: case AArch64::SUBWri: case AArch64::SUBWrr: case AArch64::SUBXri: case AArch64::SUBXrr: return true; case AArch64::ADDWrs: case AArch64::ADDXrs: case AArch64::ANDWrs: case AArch64::ANDXrs: case AArch64::SUBWrs: case AArch64::SUBXrs: case AArch64::BICWrs: case AArch64::BICXrs: // Shift value can be 0 making these behave like the "rr" variant... return (!AArch64InstrInfo::hasShiftedReg(*FirstMI)); } } return false; } // Fuse AES crypto encoding or decoding. static bool isAESPair(const MachineInstr *FirstMI, const MachineInstr &SecondMI) { // Assume the 1st instr to be a wildcard if it is unspecified. unsigned FirstOpcode = FirstMI ? FirstMI->getOpcode() : static_cast(AArch64::INSTRUCTION_LIST_END); unsigned SecondOpcode = SecondMI.getOpcode(); // AES encode. if ((FirstOpcode == AArch64::INSTRUCTION_LIST_END || FirstOpcode == AArch64::AESErr) && (SecondOpcode == AArch64::AESMCrr || SecondOpcode == AArch64::AESMCrrTied)) return true; // AES decode. else if ((FirstOpcode == AArch64::INSTRUCTION_LIST_END || FirstOpcode == AArch64::AESDrr) && (SecondOpcode == AArch64::AESIMCrr || SecondOpcode == AArch64::AESIMCrrTied)) return true; return false; } // Fuse literal generation. static bool isLiteralsPair(const MachineInstr *FirstMI, const MachineInstr &SecondMI) { // Assume the 1st instr to be a wildcard if it is unspecified. unsigned FirstOpcode = FirstMI ? FirstMI->getOpcode() : static_cast(AArch64::INSTRUCTION_LIST_END); unsigned SecondOpcode = SecondMI.getOpcode(); // PC relative address. if ((FirstOpcode == AArch64::INSTRUCTION_LIST_END || FirstOpcode == AArch64::ADRP) && SecondOpcode == AArch64::ADDXri) return true; // 32 bit immediate. else if ((FirstOpcode == AArch64::INSTRUCTION_LIST_END || FirstOpcode == AArch64::MOVZWi) && (SecondOpcode == AArch64::MOVKWi && SecondMI.getOperand(3).getImm() == 16)) return true; // Lower half of 64 bit immediate. else if((FirstOpcode == AArch64::INSTRUCTION_LIST_END || FirstOpcode == AArch64::MOVZXi) && (SecondOpcode == AArch64::MOVKXi && SecondMI.getOperand(3).getImm() == 16)) return true; // Upper half of 64 bit immediate. else if ((FirstOpcode == AArch64::INSTRUCTION_LIST_END || (FirstOpcode == AArch64::MOVKXi && FirstMI->getOperand(3).getImm() == 32)) && (SecondOpcode == AArch64::MOVKXi && SecondMI.getOperand(3).getImm() == 48)) return true; return false; } // Fuse address generation and loads or stores. static bool isAddressLdStPair(const MachineInstr *FirstMI, const MachineInstr &SecondMI) { unsigned SecondOpcode = SecondMI.getOpcode(); switch (SecondOpcode) { case AArch64::STRBBui: case AArch64::STRBui: case AArch64::STRDui: case AArch64::STRHHui: case AArch64::STRHui: case AArch64::STRQui: case AArch64::STRSui: case AArch64::STRWui: case AArch64::STRXui: case AArch64::LDRBBui: case AArch64::LDRBui: case AArch64::LDRDui: case AArch64::LDRHHui: case AArch64::LDRHui: case AArch64::LDRQui: case AArch64::LDRSui: case AArch64::LDRWui: case AArch64::LDRXui: case AArch64::LDRSBWui: case AArch64::LDRSBXui: case AArch64::LDRSHWui: case AArch64::LDRSHXui: case AArch64::LDRSWui: // Assume the 1st instr to be a wildcard if it is unspecified. if (!FirstMI) return true; switch (FirstMI->getOpcode()) { case AArch64::ADR: return (SecondMI.getOperand(2).getImm() == 0); case AArch64::ADRP: return true; } } return false; } // Fuse compare and conditional select. static bool isCCSelectPair(const MachineInstr *FirstMI, const MachineInstr &SecondMI) { unsigned SecondOpcode = SecondMI.getOpcode(); // 32 bits if (SecondOpcode == AArch64::CSELWr) { // Assume the 1st instr to be a wildcard if it is unspecified. if (!FirstMI) return true; if (FirstMI->definesRegister(AArch64::WZR)) switch (FirstMI->getOpcode()) { case AArch64::SUBSWrs: return (!AArch64InstrInfo::hasShiftedReg(*FirstMI)); case AArch64::SUBSWrx: return (!AArch64InstrInfo::hasExtendedReg(*FirstMI)); case AArch64::SUBSWrr: case AArch64::SUBSWri: return true; } } // 64 bits else if (SecondOpcode == AArch64::CSELXr) { // Assume the 1st instr to be a wildcard if it is unspecified. if (!FirstMI) return true; if (FirstMI->definesRegister(AArch64::XZR)) switch (FirstMI->getOpcode()) { case AArch64::SUBSXrs: return (!AArch64InstrInfo::hasShiftedReg(*FirstMI)); case AArch64::SUBSXrx: case AArch64::SUBSXrx64: return (!AArch64InstrInfo::hasExtendedReg(*FirstMI)); case AArch64::SUBSXrr: case AArch64::SUBSXri: return true; } } return false; } /// Check if the instr pair, FirstMI and SecondMI, should be fused /// together. Given SecondMI, when FirstMI is unspecified, then check if /// SecondMI may be part of a fused pair at all. static bool shouldScheduleAdjacent(const TargetInstrInfo &TII, const TargetSubtargetInfo &TSI, const MachineInstr *FirstMI, const MachineInstr &SecondMI) { const AArch64Subtarget &ST = static_cast(TSI); if (ST.hasArithmeticBccFusion() && isArithmeticBccPair(FirstMI, SecondMI)) return true; if (ST.hasArithmeticCbzFusion() && isArithmeticCbzPair(FirstMI, SecondMI)) return true; if (ST.hasFuseAES() && isAESPair(FirstMI, SecondMI)) return true; if (ST.hasFuseLiterals() && isLiteralsPair(FirstMI, SecondMI)) return true; if (ST.hasFuseAddress() && isAddressLdStPair(FirstMI, SecondMI)) return true; if (ST.hasFuseCCSelect() && isCCSelectPair(FirstMI, SecondMI)) return true; return false; } } // end namespace namespace llvm { std::unique_ptr createAArch64MacroFusionDAGMutation () { return createMacroFusionDAGMutation(shouldScheduleAdjacent); } } // end namespace llvm