//=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // // This pass removes unnecessary zero copies in BBs that are targets of // cbz/cbnz instructions. For instance, the copy instruction in the code below // can be removed because the CBZW jumps to BB#2 when W0 is zero. // BB#1: // CBZW %W0, // BB#2: // %W0 = COPY %WZR // Similarly, this pass also handles non-zero copies. // BB#0: // cmp x0, #1 // b.eq .LBB0_1 // .LBB0_1: // orr x0, xzr, #0x1 // // This pass should be run after register allocation. // // FIXME: This could also be extended to check the whole dominance subtree below // the comparison if the compile time regression is acceptable. // //===----------------------------------------------------------------------===// #include "AArch64.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/Debug.h" using namespace llvm; #define DEBUG_TYPE "aarch64-copyelim" STATISTIC(NumCopiesRemoved, "Number of copies removed."); namespace { class AArch64RedundantCopyElimination : public MachineFunctionPass { const MachineRegisterInfo *MRI; const TargetRegisterInfo *TRI; BitVector ClobberedRegs; public: static char ID; AArch64RedundantCopyElimination() : MachineFunctionPass(ID) { initializeAArch64RedundantCopyEliminationPass( *PassRegistry::getPassRegistry()); } struct RegImm { MCPhysReg Reg; int32_t Imm; RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {} }; Optional knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB, MachineBasicBlock::iterator &FirstUse); bool optimizeCopy(MachineBasicBlock *MBB); bool runOnMachineFunction(MachineFunction &MF) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } StringRef getPassName() const override { return "AArch64 Redundant Copy Elimination"; } }; char AArch64RedundantCopyElimination::ID = 0; } INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim", "AArch64 redundant copy elimination pass", false, false) /// Remember what registers the specified instruction modifies. static void trackRegDefs(const MachineInstr &MI, BitVector &ClobberedRegs, const TargetRegisterInfo *TRI) { for (const MachineOperand &MO : MI.operands()) { if (MO.isRegMask()) { ClobberedRegs.setBitsNotInMask(MO.getRegMask()); continue; } if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; if (!MO.isDef()) continue; for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) ClobberedRegs.set(*AI); } } /// It's possible to determine the value of a register based on a dominating /// condition. To do so, this function checks to see if the basic block \p MBB /// is the target to which a conditional branch \p CondBr jumps and whose /// equality comparison is against a constant. If so, return a known physical /// register and constant value pair. Otherwise, return None. Optional AArch64RedundantCopyElimination::knownRegValInBlock( MachineInstr &CondBr, MachineBasicBlock *MBB, MachineBasicBlock::iterator &FirstUse) { unsigned Opc = CondBr.getOpcode(); // Check if the current basic block is the target block to which the // CBZ/CBNZ instruction jumps when its Wt/Xt is zero. if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) && MBB == CondBr.getOperand(1).getMBB()) || ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) && MBB != CondBr.getOperand(1).getMBB())) { FirstUse = CondBr; return RegImm(CondBr.getOperand(0).getReg(), 0); } // Otherwise, must be a conditional branch. if (Opc != AArch64::Bcc) return None; // Must be an equality check (i.e., == or !=). AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(0).getImm(); if (CC != AArch64CC::EQ && CC != AArch64CC::NE) return None; MachineBasicBlock *BrTarget = CondBr.getOperand(1).getMBB(); if ((CC == AArch64CC::EQ && BrTarget != MBB) || (CC == AArch64CC::NE && BrTarget == MBB)) return None; // Stop if we get to the beginning of PredMBB. MachineBasicBlock *PredMBB = *MBB->pred_begin(); assert(PredMBB == CondBr.getParent() && "Conditional branch not in predecessor block!"); if (CondBr == PredMBB->begin()) return None; // Registers clobbered in PredMBB between CondBr instruction and current // instruction being checked in loop. ClobberedRegs.reset(); // Find compare instruction that sets NZCV used by CondBr. MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator(); for (MachineInstr &PredI : make_range(std::next(RIt), PredMBB->rend())) { // Track clobbered registers. trackRegDefs(PredI, ClobberedRegs, TRI); bool IsCMN = false; switch (PredI.getOpcode()) { default: break; // CMN is an alias for ADDS with a dead destination register. case AArch64::ADDSWri: case AArch64::ADDSXri: IsCMN = true; LLVM_FALLTHROUGH; // CMP is an alias for SUBS with a dead destination register. case AArch64::SUBSWri: case AArch64::SUBSXri: { // Sometimes the first operand is a FrameIndex. Bail if tht happens. if (!PredI.getOperand(1).isReg()) return None; MCPhysReg SrcReg = PredI.getOperand(1).getReg(); // Must not be a symbolic immediate. if (!PredI.getOperand(2).isImm()) return None; // The src register must not be modified between the cmp and conditional // branch. This includes a self-clobbering compare. if (ClobberedRegs[SrcReg]) return None; // We've found the Cmp that sets NZCV. int32_t KnownImm = PredI.getOperand(2).getImm(); int32_t Shift = PredI.getOperand(3).getImm(); KnownImm <<= Shift; if (IsCMN) KnownImm = -KnownImm; FirstUse = PredI; return RegImm(SrcReg, KnownImm); } } // Bail if we see an instruction that defines NZCV that we don't handle. if (PredI.definesRegister(AArch64::NZCV)) return None; } return None; } bool AArch64RedundantCopyElimination::optimizeCopy(MachineBasicBlock *MBB) { // Check if the current basic block has a single predecessor. if (MBB->pred_size() != 1) return false; // Check if the predecessor has two successors, implying the block ends in a // conditional branch. MachineBasicBlock *PredMBB = *MBB->pred_begin(); if (PredMBB->succ_size() != 2) return false; MachineBasicBlock::iterator CondBr = PredMBB->getLastNonDebugInstr(); if (CondBr == PredMBB->end()) return false; // Keep track of the earliest point in the PredMBB block where kill markers // need to be removed if a COPY is removed. MachineBasicBlock::iterator FirstUse; // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ // or a compare (i.e., SUBS). In the latter case, we must take care when // updating FirstUse when scanning for COPY instructions. In particular, if // there's a COPY in between the compare and branch the COPY should not // update FirstUse. bool SeenFirstUse = false; // Registers that contain a known value at the start of MBB. SmallVector KnownRegs; MachineBasicBlock::iterator Itr = std::next(CondBr); do { --Itr; Optional KnownRegImm = knownRegValInBlock(*Itr, MBB, FirstUse); if (KnownRegImm == None) continue; KnownRegs.push_back(*KnownRegImm); // Reset the clobber list, which is used by knownRegValInBlock. ClobberedRegs.reset(); // Look backward in PredMBB for COPYs from the known reg to find other // registers that are known to be a constant value. for (auto PredI = Itr;; --PredI) { if (FirstUse == PredI) SeenFirstUse = true; if (PredI->isCopy()) { MCPhysReg CopyDstReg = PredI->getOperand(0).getReg(); MCPhysReg CopySrcReg = PredI->getOperand(1).getReg(); for (auto &KnownReg : KnownRegs) { if (ClobberedRegs[KnownReg.Reg]) continue; // If we have X = COPY Y, and Y is known to be zero, then now X is // known to be zero. if (CopySrcReg == KnownReg.Reg && !ClobberedRegs[CopyDstReg]) { KnownRegs.push_back(RegImm(CopyDstReg, KnownReg.Imm)); if (SeenFirstUse) FirstUse = PredI; break; } // If we have X = COPY Y, and X is known to be zero, then now Y is // known to be zero. if (CopyDstReg == KnownReg.Reg && !ClobberedRegs[CopySrcReg]) { KnownRegs.push_back(RegImm(CopySrcReg, KnownReg.Imm)); if (SeenFirstUse) FirstUse = PredI; break; } } } // Stop if we get to the beginning of PredMBB. if (PredI == PredMBB->begin()) break; trackRegDefs(*PredI, ClobberedRegs, TRI); // Stop if all of the known-zero regs have been clobbered. if (all_of(KnownRegs, [&](RegImm KnownReg) { return ClobberedRegs[KnownReg.Reg]; })) break; } break; } while (Itr != PredMBB->begin() && Itr->isTerminator()); // We've not found a registers with a known value, time to bail out. if (KnownRegs.empty()) return false; bool Changed = false; // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB. SmallSetVector UsedKnownRegs; MachineBasicBlock::iterator LastChange = MBB->begin(); // Remove redundant Copy instructions unless KnownReg is modified. for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { MachineInstr *MI = &*I; ++I; bool RemovedMI = false; bool IsCopy = MI->isCopy(); bool IsMoveImm = MI->isMoveImmediate(); if (IsCopy || IsMoveImm) { MCPhysReg DefReg = MI->getOperand(0).getReg(); MCPhysReg SrcReg = IsCopy ? MI->getOperand(1).getReg() : 0; int64_t SrcImm = IsMoveImm ? MI->getOperand(1).getImm() : 0; if (!MRI->isReserved(DefReg) && ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) || IsMoveImm)) { for (RegImm &KnownReg : KnownRegs) { if (KnownReg.Reg != DefReg && !TRI->isSuperRegister(DefReg, KnownReg.Reg)) continue; // For a copy, the known value must be a zero. if (IsCopy && KnownReg.Imm != 0) continue; if (IsMoveImm) { // For a move immediate, the known immediate must match the source // immediate. if (KnownReg.Imm != SrcImm) continue; // Don't remove a move immediate that implicitly defines the upper // bits when only the lower 32 bits are known. MCPhysReg CmpReg = KnownReg.Reg; if (any_of(MI->implicit_operands(), [CmpReg](MachineOperand &O) { return !O.isDead() && O.isReg() && O.isDef() && O.getReg() != CmpReg; })) continue; } if (IsCopy) DEBUG(dbgs() << "Remove redundant Copy : " << *MI); else DEBUG(dbgs() << "Remove redundant Move : " << *MI); MI->eraseFromParent(); Changed = true; LastChange = I; NumCopiesRemoved++; UsedKnownRegs.insert(KnownReg.Reg); RemovedMI = true; break; } } } // Skip to the next instruction if we removed the COPY/MovImm. if (RemovedMI) continue; // Remove any regs the MI clobbers from the KnownConstRegs set. for (unsigned RI = 0; RI < KnownRegs.size();) if (MI->modifiesRegister(KnownRegs[RI].Reg, TRI)) { std::swap(KnownRegs[RI], KnownRegs[KnownRegs.size() - 1]); KnownRegs.pop_back(); // Don't increment RI since we need to now check the swapped-in // KnownRegs[RI]. } else { ++RI; } // Continue until the KnownRegs set is empty. if (KnownRegs.empty()) break; } if (!Changed) return false; // Add newly used regs to the block's live-in list if they aren't there // already. for (MCPhysReg KnownReg : UsedKnownRegs) if (!MBB->isLiveIn(KnownReg)) MBB->addLiveIn(KnownReg); // Clear kills in the range where changes were made. This is conservative, // but should be okay since kill markers are being phased out. DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse << "\tLastChange: " << *LastChange); for (MachineInstr &MMI : make_range(FirstUse, PredMBB->end())) MMI.clearKillInfo(); for (MachineInstr &MMI : make_range(MBB->begin(), LastChange)) MMI.clearKillInfo(); return true; } bool AArch64RedundantCopyElimination::runOnMachineFunction( MachineFunction &MF) { if (skipFunction(*MF.getFunction())) return false; TRI = MF.getSubtarget().getRegisterInfo(); MRI = &MF.getRegInfo(); // Resize the clobber register bitfield tracker. We do this once per // function and then clear the bitfield each time we optimize a copy. ClobberedRegs.resize(TRI->getNumRegs()); bool Changed = false; for (MachineBasicBlock &MBB : MF) Changed |= optimizeCopy(&MBB); return Changed; } FunctionPass *llvm::createAArch64RedundantCopyEliminationPass() { return new AArch64RedundantCopyElimination(); }