//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// /// The AMDGPUAsmPrinter is used to print both assembly string and also binary /// code. When passed an MCAsmStreamer it prints assembly and when passed /// an MCObjectStreamer it outputs binary code. // //===----------------------------------------------------------------------===// // #include "AMDGPUAsmPrinter.h" #include "MCTargetDesc/AMDGPUTargetStreamer.h" #include "InstPrinter/AMDGPUInstPrinter.h" #include "Utils/AMDGPUBaseInfo.h" #include "AMDGPU.h" #include "AMDKernelCodeT.h" #include "AMDGPUSubtarget.h" #include "R600Defines.h" #include "R600MachineFunctionInfo.h" #include "R600RegisterInfo.h" #include "SIDefines.h" #include "SIMachineFunctionInfo.h" #include "SIInstrInfo.h" #include "SIRegisterInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/Support/ELF.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetLoweringObjectFile.h" using namespace llvm; // TODO: This should get the default rounding mode from the kernel. We just set // the default here, but this could change if the OpenCL rounding mode pragmas // are used. // // The denormal mode here should match what is reported by the OpenCL runtime // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but // can also be override to flush with the -cl-denorms-are-zero compiler flag. // // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double // precision, and leaves single precision to flush all and does not report // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports // CL_FP_DENORM for both. // // FIXME: It seems some instructions do not support single precision denormals // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, // and sin_f32, cos_f32 on most parts). // We want to use these instructions, and using fp32 denormals also causes // instructions to run at the double precision rate for the device so it's // probably best to just report no single precision denormals. static uint32_t getFPMode(const MachineFunction &F) { const SISubtarget& ST = F.getSubtarget(); // TODO: Is there any real use for the flush in only / flush out only modes? uint32_t FP32Denormals = ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; uint32_t FP64Denormals = ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | FP_DENORM_MODE_SP(FP32Denormals) | FP_DENORM_MODE_DP(FP64Denormals); } static AsmPrinter * createAMDGPUAsmPrinterPass(TargetMachine &tm, std::unique_ptr &&Streamer) { return new AMDGPUAsmPrinter(tm, std::move(Streamer)); } extern "C" void LLVMInitializeAMDGPUAsmPrinter() { TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(), createAMDGPUAsmPrinterPass); TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(), createAMDGPUAsmPrinterPass); } AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, std::unique_ptr Streamer) : AsmPrinter(TM, std::move(Streamer)) {} StringRef AMDGPUAsmPrinter::getPassName() const { return "AMDGPU Assembly Printer"; } void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) { if (TM.getTargetTriple().getOS() != Triple::AMDHSA) return; // Need to construct an MCSubtargetInfo here in case we have no functions // in the module. std::unique_ptr STI(TM.getTarget().createMCSubtargetInfo( TM.getTargetTriple().str(), TM.getTargetCPU(), TM.getTargetFeatureString())); AMDGPUTargetStreamer *TS = static_cast(OutStreamer->getTargetStreamer()); TS->EmitDirectiveHSACodeObjectVersion(2, 1); AMDGPU::IsaVersion ISA = AMDGPU::getIsaVersion(STI->getFeatureBits()); TS->EmitDirectiveHSACodeObjectISA(ISA.Major, ISA.Minor, ISA.Stepping, "AMD", "AMDGPU"); // Emit runtime metadata. TS->EmitRuntimeMetadata(M); } bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough( const MachineBasicBlock *MBB) const { if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB)) return false; if (MBB->empty()) return true; // If this is a block implementing a long branch, an expression relative to // the start of the block is needed. to the start of the block. // XXX - Is there a smarter way to check this? return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64); } void AMDGPUAsmPrinter::EmitFunctionBodyStart() { const AMDGPUSubtarget &STM = MF->getSubtarget(); SIProgramInfo KernelInfo; if (STM.isAmdCodeObjectV2(*MF)) { getSIProgramInfo(KernelInfo, *MF); EmitAmdKernelCodeT(*MF, KernelInfo); } } void AMDGPUAsmPrinter::EmitFunctionEntryLabel() { const SIMachineFunctionInfo *MFI = MF->getInfo(); const AMDGPUSubtarget &STM = MF->getSubtarget(); if (MFI->isKernel() && STM.isAmdCodeObjectV2(*MF)) { AMDGPUTargetStreamer *TS = static_cast(OutStreamer->getTargetStreamer()); SmallString<128> SymbolName; getNameWithPrefix(SymbolName, MF->getFunction()), TS->EmitAMDGPUSymbolType(SymbolName, ELF::STT_AMDGPU_HSA_KERNEL); } AsmPrinter::EmitFunctionEntryLabel(); } void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { // Group segment variables aren't emitted in HSA. if (AMDGPU::isGroupSegment(GV)) return; AsmPrinter::EmitGlobalVariable(GV); } bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { // The starting address of all shader programs must be 256 bytes aligned. MF.setAlignment(8); SetupMachineFunction(MF); const AMDGPUSubtarget &STM = MF.getSubtarget(); MCContext &Context = getObjFileLowering().getContext(); if (!STM.isAmdHsaOS()) { MCSectionELF *ConfigSection = Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); OutStreamer->SwitchSection(ConfigSection); } SIProgramInfo KernelInfo; if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { getSIProgramInfo(KernelInfo, MF); if (!STM.isAmdHsaOS()) { EmitProgramInfoSI(MF, KernelInfo); } } else { EmitProgramInfoR600(MF); } DisasmLines.clear(); HexLines.clear(); DisasmLineMaxLen = 0; EmitFunctionBody(); if (isVerbose()) { MCSectionELF *CommentSection = Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); OutStreamer->SwitchSection(CommentSection); if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { OutStreamer->emitRawComment(" Kernel info:", false); OutStreamer->emitRawComment(" codeLenInByte = " + Twine(KernelInfo.CodeLen), false); OutStreamer->emitRawComment(" NumSgprs: " + Twine(KernelInfo.NumSGPR), false); OutStreamer->emitRawComment(" NumVgprs: " + Twine(KernelInfo.NumVGPR), false); OutStreamer->emitRawComment(" FloatMode: " + Twine(KernelInfo.FloatMode), false); OutStreamer->emitRawComment(" IeeeMode: " + Twine(KernelInfo.IEEEMode), false); OutStreamer->emitRawComment(" ScratchSize: " + Twine(KernelInfo.ScratchSize), false); OutStreamer->emitRawComment(" LDSByteSize: " + Twine(KernelInfo.LDSSize) + " bytes/workgroup (compile time only)", false); OutStreamer->emitRawComment(" SGPRBlocks: " + Twine(KernelInfo.SGPRBlocks), false); OutStreamer->emitRawComment(" VGPRBlocks: " + Twine(KernelInfo.VGPRBlocks), false); OutStreamer->emitRawComment(" NumSGPRsForWavesPerEU: " + Twine(KernelInfo.NumSGPRsForWavesPerEU), false); OutStreamer->emitRawComment(" NumVGPRsForWavesPerEU: " + Twine(KernelInfo.NumVGPRsForWavesPerEU), false); OutStreamer->emitRawComment(" ReservedVGPRFirst: " + Twine(KernelInfo.ReservedVGPRFirst), false); OutStreamer->emitRawComment(" ReservedVGPRCount: " + Twine(KernelInfo.ReservedVGPRCount), false); if (MF.getSubtarget().debuggerEmitPrologue()) { OutStreamer->emitRawComment(" DebuggerWavefrontPrivateSegmentOffsetSGPR: s" + Twine(KernelInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false); OutStreamer->emitRawComment(" DebuggerPrivateSegmentBufferSGPR: s" + Twine(KernelInfo.DebuggerPrivateSegmentBufferSGPR), false); } OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:USER_SGPR: " + Twine(G_00B84C_USER_SGPR(KernelInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_X_EN: " + Twine(G_00B84C_TGID_X_EN(KernelInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_Y_EN: " + Twine(G_00B84C_TGID_Y_EN(KernelInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_Z_EN: " + Twine(G_00B84C_TGID_Z_EN(KernelInfo.ComputePGMRSrc2)), false); OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " + Twine(G_00B84C_TIDIG_COMP_CNT(KernelInfo.ComputePGMRSrc2)), false); } else { R600MachineFunctionInfo *MFI = MF.getInfo(); OutStreamer->emitRawComment( Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->CFStackSize))); } } if (STM.dumpCode()) { OutStreamer->SwitchSection( Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0)); for (size_t i = 0; i < DisasmLines.size(); ++i) { std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' '); Comment += " ; " + HexLines[i] + "\n"; OutStreamer->EmitBytes(StringRef(DisasmLines[i])); OutStreamer->EmitBytes(StringRef(Comment)); } } return false; } void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) { unsigned MaxGPR = 0; bool killPixel = false; const R600Subtarget &STM = MF.getSubtarget(); const R600RegisterInfo *RI = STM.getRegisterInfo(); const R600MachineFunctionInfo *MFI = MF.getInfo(); for (const MachineBasicBlock &MBB : MF) { for (const MachineInstr &MI : MBB) { if (MI.getOpcode() == AMDGPU::KILLGT) killPixel = true; unsigned numOperands = MI.getNumOperands(); for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) { const MachineOperand &MO = MI.getOperand(op_idx); if (!MO.isReg()) continue; unsigned HWReg = RI->getEncodingValue(MO.getReg()) & 0xff; // Register with value > 127 aren't GPR if (HWReg > 127) continue; MaxGPR = std::max(MaxGPR, HWReg); } } } unsigned RsrcReg; if (STM.getGeneration() >= R600Subtarget::EVERGREEN) { // Evergreen / Northern Islands switch (MF.getFunction()->getCallingConv()) { default: LLVM_FALLTHROUGH; case CallingConv::AMDGPU_CS: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break; case CallingConv::AMDGPU_GS: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break; case CallingConv::AMDGPU_PS: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break; case CallingConv::AMDGPU_VS: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break; } } else { // R600 / R700 switch (MF.getFunction()->getCallingConv()) { default: LLVM_FALLTHROUGH; case CallingConv::AMDGPU_GS: LLVM_FALLTHROUGH; case CallingConv::AMDGPU_CS: LLVM_FALLTHROUGH; case CallingConv::AMDGPU_VS: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break; case CallingConv::AMDGPU_PS: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break; } } OutStreamer->EmitIntValue(RsrcReg, 4); OutStreamer->EmitIntValue(S_NUM_GPRS(MaxGPR + 1) | S_STACK_SIZE(MFI->CFStackSize), 4); OutStreamer->EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4); OutStreamer->EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4); if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) { OutStreamer->EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4); OutStreamer->EmitIntValue(alignTo(MFI->getLDSSize(), 4) >> 2, 4); } } void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, const MachineFunction &MF) const { const SISubtarget &STM = MF.getSubtarget(); const SIMachineFunctionInfo *MFI = MF.getInfo(); uint64_t CodeSize = 0; unsigned MaxSGPR = 0; unsigned MaxVGPR = 0; bool VCCUsed = false; bool FlatUsed = false; const SIRegisterInfo *RI = STM.getRegisterInfo(); const SIInstrInfo *TII = STM.getInstrInfo(); for (const MachineBasicBlock &MBB : MF) { for (const MachineInstr &MI : MBB) { // TODO: CodeSize should account for multiple functions. // TODO: Should we count size of debug info? if (MI.isDebugValue()) continue; if (isVerbose()) CodeSize += TII->getInstSizeInBytes(MI); unsigned numOperands = MI.getNumOperands(); for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) { const MachineOperand &MO = MI.getOperand(op_idx); unsigned width = 0; bool isSGPR = false; if (!MO.isReg()) continue; unsigned reg = MO.getReg(); switch (reg) { case AMDGPU::EXEC: case AMDGPU::EXEC_LO: case AMDGPU::EXEC_HI: case AMDGPU::SCC: case AMDGPU::M0: continue; case AMDGPU::VCC: case AMDGPU::VCC_LO: case AMDGPU::VCC_HI: VCCUsed = true; continue; case AMDGPU::FLAT_SCR: case AMDGPU::FLAT_SCR_LO: case AMDGPU::FLAT_SCR_HI: // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat // instructions aren't used to access the scratch buffer. if (MFI->hasFlatScratchInit()) FlatUsed = true; continue; case AMDGPU::TBA: case AMDGPU::TBA_LO: case AMDGPU::TBA_HI: case AMDGPU::TMA: case AMDGPU::TMA_LO: case AMDGPU::TMA_HI: llvm_unreachable("trap handler registers should not be used"); default: break; } if (AMDGPU::SReg_32RegClass.contains(reg)) { assert(!AMDGPU::TTMP_32RegClass.contains(reg) && "trap handler registers should not be used"); isSGPR = true; width = 1; } else if (AMDGPU::VGPR_32RegClass.contains(reg)) { isSGPR = false; width = 1; } else if (AMDGPU::SReg_64RegClass.contains(reg)) { assert(!AMDGPU::TTMP_64RegClass.contains(reg) && "trap handler registers should not be used"); isSGPR = true; width = 2; } else if (AMDGPU::VReg_64RegClass.contains(reg)) { isSGPR = false; width = 2; } else if (AMDGPU::VReg_96RegClass.contains(reg)) { isSGPR = false; width = 3; } else if (AMDGPU::SReg_128RegClass.contains(reg)) { isSGPR = true; width = 4; } else if (AMDGPU::VReg_128RegClass.contains(reg)) { isSGPR = false; width = 4; } else if (AMDGPU::SReg_256RegClass.contains(reg)) { isSGPR = true; width = 8; } else if (AMDGPU::VReg_256RegClass.contains(reg)) { isSGPR = false; width = 8; } else if (AMDGPU::SReg_512RegClass.contains(reg)) { isSGPR = true; width = 16; } else if (AMDGPU::VReg_512RegClass.contains(reg)) { isSGPR = false; width = 16; } else { llvm_unreachable("Unknown register class"); } unsigned hwReg = RI->getEncodingValue(reg) & 0xff; unsigned maxUsed = hwReg + width - 1; if (isSGPR) { MaxSGPR = maxUsed > MaxSGPR ? maxUsed : MaxSGPR; } else { MaxVGPR = maxUsed > MaxVGPR ? maxUsed : MaxVGPR; } } } } unsigned ExtraSGPRs = 0; if (VCCUsed) ExtraSGPRs = 2; if (STM.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) { if (FlatUsed) ExtraSGPRs = 4; } else { if (STM.isXNACKEnabled()) ExtraSGPRs = 4; if (FlatUsed) ExtraSGPRs = 6; } // Record first reserved register and reserved register count fields, and // update max register counts if "amdgpu-debugger-reserve-regs" attribute was // requested. ProgInfo.ReservedVGPRFirst = STM.debuggerReserveRegs() ? MaxVGPR + 1 : 0; ProgInfo.ReservedVGPRCount = RI->getNumDebuggerReservedVGPRs(STM); // Update DebuggerWavefrontPrivateSegmentOffsetSGPR and // DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue" // attribute was requested. if (STM.debuggerEmitPrologue()) { ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR = RI->getHWRegIndex(MFI->getScratchWaveOffsetReg()); ProgInfo.DebuggerPrivateSegmentBufferSGPR = RI->getHWRegIndex(MFI->getScratchRSrcReg()); } // Check the addressable register limit before we add ExtraSGPRs. if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && !STM.hasSGPRInitBug()) { unsigned MaxAddressableNumSGPRs = STM.getMaxNumSGPRs(); if (MaxSGPR + 1 > MaxAddressableNumSGPRs) { // This can happen due to a compiler bug or when using inline asm. LLVMContext &Ctx = MF.getFunction()->getContext(); DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "addressable scalar registers", MaxSGPR + 1, DS_Error, DK_ResourceLimit, MaxAddressableNumSGPRs); Ctx.diagnose(Diag); MaxSGPR = MaxAddressableNumSGPRs - 1; } } // Account for extra SGPRs and VGPRs reserved for debugger use. MaxSGPR += ExtraSGPRs; MaxVGPR += RI->getNumDebuggerReservedVGPRs(STM); // We found the maximum register index. They start at 0, so add one to get the // number of registers. ProgInfo.NumVGPR = MaxVGPR + 1; ProgInfo.NumSGPR = MaxSGPR + 1; // Adjust number of registers used to meet default/requested minimum/maximum // number of waves per execution unit request. ProgInfo.NumSGPRsForWavesPerEU = std::max( ProgInfo.NumSGPR, RI->getMinNumSGPRs(STM, MFI->getMaxWavesPerEU())); ProgInfo.NumVGPRsForWavesPerEU = std::max( ProgInfo.NumVGPR, RI->getMinNumVGPRs(MFI->getMaxWavesPerEU())); if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS || STM.hasSGPRInitBug()) { unsigned MaxNumSGPRs = STM.getMaxNumSGPRs(); if (ProgInfo.NumSGPR > MaxNumSGPRs) { // This can happen due to a compiler bug or when using inline asm to use the // registers which are usually reserved for vcc etc. LLVMContext &Ctx = MF.getFunction()->getContext(); DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "scalar registers", ProgInfo.NumSGPR, DS_Error, DK_ResourceLimit, MaxNumSGPRs); Ctx.diagnose(Diag); ProgInfo.NumSGPR = MaxNumSGPRs; ProgInfo.NumSGPRsForWavesPerEU = MaxNumSGPRs; } } if (STM.hasSGPRInitBug()) { ProgInfo.NumSGPR = SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG; ProgInfo.NumSGPRsForWavesPerEU = SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG; } if (MFI->NumUserSGPRs > STM.getMaxNumUserSGPRs()) { LLVMContext &Ctx = MF.getFunction()->getContext(); DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "user SGPRs", MFI->NumUserSGPRs, DS_Error); Ctx.diagnose(Diag); } if (MFI->getLDSSize() > static_cast(STM.getLocalMemorySize())) { LLVMContext &Ctx = MF.getFunction()->getContext(); DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "local memory", MFI->getLDSSize(), DS_Error); Ctx.diagnose(Diag); } // SGPRBlocks is actual number of SGPR blocks minus 1. ProgInfo.SGPRBlocks = alignTo(ProgInfo.NumSGPRsForWavesPerEU, RI->getSGPRAllocGranule()); ProgInfo.SGPRBlocks = ProgInfo.SGPRBlocks / RI->getSGPRAllocGranule() - 1; // VGPRBlocks is actual number of VGPR blocks minus 1. ProgInfo.VGPRBlocks = alignTo(ProgInfo.NumVGPRsForWavesPerEU, RI->getVGPRAllocGranule()); ProgInfo.VGPRBlocks = ProgInfo.VGPRBlocks / RI->getVGPRAllocGranule() - 1; // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode // register. ProgInfo.FloatMode = getFPMode(MF); ProgInfo.IEEEMode = STM.enableIEEEBit(MF); // Make clamp modifier on NaN input returns 0. ProgInfo.DX10Clamp = 1; const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); ProgInfo.ScratchSize = FrameInfo.getStackSize(); ProgInfo.FlatUsed = FlatUsed; ProgInfo.VCCUsed = VCCUsed; ProgInfo.CodeLen = CodeSize; unsigned LDSAlignShift; if (STM.getGeneration() < SISubtarget::SEA_ISLANDS) { // LDS is allocated in 64 dword blocks. LDSAlignShift = 8; } else { // LDS is allocated in 128 dword blocks. LDSAlignShift = 9; } unsigned LDSSpillSize = MFI->LDSWaveSpillSize * MFI->getMaxFlatWorkGroupSize(); ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize; ProgInfo.LDSBlocks = alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift; // Scratch is allocated in 256 dword blocks. unsigned ScratchAlignShift = 10; // We need to program the hardware with the amount of scratch memory that // is used by the entire wave. ProgInfo.ScratchSize is the amount of // scratch memory used per thread. ProgInfo.ScratchBlocks = alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(), 1ULL << ScratchAlignShift) >> ScratchAlignShift; ProgInfo.ComputePGMRSrc1 = S_00B848_VGPRS(ProgInfo.VGPRBlocks) | S_00B848_SGPRS(ProgInfo.SGPRBlocks) | S_00B848_PRIORITY(ProgInfo.Priority) | S_00B848_FLOAT_MODE(ProgInfo.FloatMode) | S_00B848_PRIV(ProgInfo.Priv) | S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) | S_00B848_DEBUG_MODE(ProgInfo.DebugMode) | S_00B848_IEEE_MODE(ProgInfo.IEEEMode); // 0 = X, 1 = XY, 2 = XYZ unsigned TIDIGCompCnt = 0; if (MFI->hasWorkItemIDZ()) TIDIGCompCnt = 2; else if (MFI->hasWorkItemIDY()) TIDIGCompCnt = 1; ProgInfo.ComputePGMRSrc2 = S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) | S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) | S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) | S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) | S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) | S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) | S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) | S_00B84C_EXCP_EN_MSB(0) | S_00B84C_LDS_SIZE(ProgInfo.LDSBlocks) | S_00B84C_EXCP_EN(0); } static unsigned getRsrcReg(CallingConv::ID CallConv) { switch (CallConv) { default: LLVM_FALLTHROUGH; case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1; case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; } } void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, const SIProgramInfo &KernelInfo) { const SISubtarget &STM = MF.getSubtarget(); const SIMachineFunctionInfo *MFI = MF.getInfo(); unsigned RsrcReg = getRsrcReg(MF.getFunction()->getCallingConv()); if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) { OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4); OutStreamer->EmitIntValue(KernelInfo.ComputePGMRSrc1, 4); OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4); OutStreamer->EmitIntValue(KernelInfo.ComputePGMRSrc2, 4); OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4); OutStreamer->EmitIntValue(S_00B860_WAVESIZE(KernelInfo.ScratchBlocks), 4); // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = // 0" comment but I don't see a corresponding field in the register spec. } else { OutStreamer->EmitIntValue(RsrcReg, 4); OutStreamer->EmitIntValue(S_00B028_VGPRS(KernelInfo.VGPRBlocks) | S_00B028_SGPRS(KernelInfo.SGPRBlocks), 4); if (STM.isVGPRSpillingEnabled(*MF.getFunction())) { OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4); OutStreamer->EmitIntValue(S_0286E8_WAVESIZE(KernelInfo.ScratchBlocks), 4); } } if (MF.getFunction()->getCallingConv() == CallingConv::AMDGPU_PS) { OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4); OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(KernelInfo.LDSBlocks), 4); OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4); OutStreamer->EmitIntValue(MFI->PSInputEna, 4); OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4); OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4); } OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4); OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4); OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4); OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4); } // This is supposed to be log2(Size) static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) { switch (Size) { case 4: return AMD_ELEMENT_4_BYTES; case 8: return AMD_ELEMENT_8_BYTES; case 16: return AMD_ELEMENT_16_BYTES; default: llvm_unreachable("invalid private_element_size"); } } void AMDGPUAsmPrinter::EmitAmdKernelCodeT(const MachineFunction &MF, const SIProgramInfo &KernelInfo) const { const SIMachineFunctionInfo *MFI = MF.getInfo(); const SISubtarget &STM = MF.getSubtarget(); amd_kernel_code_t header; AMDGPU::initDefaultAMDKernelCodeT(header, STM.getFeatureBits()); header.compute_pgm_resource_registers = KernelInfo.ComputePGMRSrc1 | (KernelInfo.ComputePGMRSrc2 << 32); header.code_properties = AMD_CODE_PROPERTY_IS_PTR64; AMD_HSA_BITS_SET(header.code_properties, AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE, getElementByteSizeValue(STM.getMaxPrivateElementSize())); if (MFI->hasPrivateSegmentBuffer()) { header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; } if (MFI->hasDispatchPtr()) header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; if (MFI->hasQueuePtr()) header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; if (MFI->hasKernargSegmentPtr()) header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; if (MFI->hasDispatchID()) header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; if (MFI->hasFlatScratchInit()) header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; // TODO: Private segment size if (MFI->hasGridWorkgroupCountX()) { header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X; } if (MFI->hasGridWorkgroupCountY()) { header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y; } if (MFI->hasGridWorkgroupCountZ()) { header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z; } if (MFI->hasDispatchPtr()) header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; if (STM.debuggerSupported()) header.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED; if (STM.isXNACKEnabled()) header.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED; // FIXME: Should use getKernArgSize header.kernarg_segment_byte_size = STM.getKernArgSegmentSize(MF, MFI->getABIArgOffset()); header.wavefront_sgpr_count = KernelInfo.NumSGPR; header.workitem_vgpr_count = KernelInfo.NumVGPR; header.workitem_private_segment_byte_size = KernelInfo.ScratchSize; header.workgroup_group_segment_byte_size = KernelInfo.LDSSize; header.reserved_vgpr_first = KernelInfo.ReservedVGPRFirst; header.reserved_vgpr_count = KernelInfo.ReservedVGPRCount; // These alignment values are specified in powers of two, so alignment = // 2^n. The minimum alignment is 2^4 = 16. header.kernarg_segment_alignment = std::max((size_t)4, countTrailingZeros(MFI->getMaxKernArgAlign())); if (STM.debuggerEmitPrologue()) { header.debug_wavefront_private_segment_offset_sgpr = KernelInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR; header.debug_private_segment_buffer_sgpr = KernelInfo.DebuggerPrivateSegmentBufferSGPR; } AMDGPUTargetStreamer *TS = static_cast(OutStreamer->getTargetStreamer()); OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); TS->EmitAMDKernelCodeT(header); } bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O) { if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: // See if this is a generic print operand return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O); case 'r': break; } } AMDGPUInstPrinter::printRegOperand(MI->getOperand(OpNo).getReg(), O, *TM.getSubtargetImpl(*MF->getFunction())->getRegisterInfo()); return false; }