//===-- AMDGPUInstrInfo.cpp - Base class for AMD GPU InstrInfo ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief Implementation of the TargetInstrInfo class that is common to all /// AMD GPUs. // //===----------------------------------------------------------------------===// #include "AMDGPUInstrInfo.h" #include "AMDGPURegisterInfo.h" #include "AMDGPUTargetMachine.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" using namespace llvm; #define GET_INSTRINFO_CTOR_DTOR #define GET_INSTRMAP_INFO #include "AMDGPUGenInstrInfo.inc" // Pin the vtable to this file. void AMDGPUInstrInfo::anchor() {} AMDGPUInstrInfo::AMDGPUInstrInfo(const AMDGPUSubtarget &ST) : AMDGPUGenInstrInfo(-1, -1), ST(ST), AMDGPUASI(ST.getAMDGPUAS()) {} // FIXME: This behaves strangely. If, for example, you have 32 load + stores, // the first 16 loads will be interleaved with the stores, and the next 16 will // be clustered as expected. It should really split into 2 16 store batches. // // Loads are clustered until this returns false, rather than trying to schedule // groups of stores. This also means we have to deal with saying different // address space loads should be clustered, and ones which might cause bank // conflicts. // // This might be deprecated so it might not be worth that much effort to fix. bool AMDGPUInstrInfo::shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1, int64_t Offset0, int64_t Offset1, unsigned NumLoads) const { assert(Offset1 > Offset0 && "Second offset should be larger than first offset!"); // If we have less than 16 loads in a row, and the offsets are within 64 // bytes, then schedule together. // A cacheline is 64 bytes (for global memory). return (NumLoads <= 16 && (Offset1 - Offset0) < 64); } int AMDGPUInstrInfo::getMaskedMIMGOp(uint16_t Opcode, unsigned Channels) const { switch (Channels) { default: return Opcode; case 1: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_1); case 2: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_2); case 3: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_3); } } // This must be kept in sync with the SIEncodingFamily class in SIInstrInfo.td enum SIEncodingFamily { SI = 0, VI = 1, SDWA = 2, SDWA9 = 3 }; // Wrapper for Tablegen'd function. enum Subtarget is not defined in any // header files, so we need to wrap it in a function that takes unsigned // instead. namespace llvm { namespace AMDGPU { static int getMCOpcode(uint16_t Opcode, unsigned Gen) { return getMCOpcodeGen(Opcode, static_cast(Gen)); } } } static SIEncodingFamily subtargetEncodingFamily(const AMDGPUSubtarget &ST) { switch (ST.getGeneration()) { case AMDGPUSubtarget::SOUTHERN_ISLANDS: case AMDGPUSubtarget::SEA_ISLANDS: return SIEncodingFamily::SI; case AMDGPUSubtarget::VOLCANIC_ISLANDS: case AMDGPUSubtarget::GFX9: return SIEncodingFamily::VI; // FIXME: This should never be called for r600 GPUs. case AMDGPUSubtarget::R600: case AMDGPUSubtarget::R700: case AMDGPUSubtarget::EVERGREEN: case AMDGPUSubtarget::NORTHERN_ISLANDS: return SIEncodingFamily::SI; } llvm_unreachable("Unknown subtarget generation!"); } int AMDGPUInstrInfo::pseudoToMCOpcode(int Opcode) const { SIEncodingFamily Gen = subtargetEncodingFamily(ST); if (get(Opcode).TSFlags & SIInstrFlags::SDWA) Gen = ST.getGeneration() == AMDGPUSubtarget::GFX9 ? SIEncodingFamily::SDWA9 : SIEncodingFamily::SDWA; int MCOp = AMDGPU::getMCOpcode(Opcode, Gen); // -1 means that Opcode is already a native instruction. if (MCOp == -1) return Opcode; // (uint16_t)-1 means that Opcode is a pseudo instruction that has // no encoding in the given subtarget generation. if (MCOp == (uint16_t)-1) return -1; return MCOp; }