//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief Implements the AMDGPU specific subclass of TargetSubtarget. // //===----------------------------------------------------------------------===// #include "AMDGPUSubtarget.h" #include "SIMachineFunctionInfo.h" #include "llvm/ADT/SmallString.h" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/IR/MDBuilder.h" #include "llvm/Target/TargetFrameLowering.h" #include using namespace llvm; #define DEBUG_TYPE "amdgpu-subtarget" #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #include "AMDGPUGenSubtargetInfo.inc" AMDGPUSubtarget::~AMDGPUSubtarget() = default; AMDGPUSubtarget & AMDGPUSubtarget::initializeSubtargetDependencies(const Triple &TT, StringRef GPU, StringRef FS) { // Determine default and user-specified characteristics // On SI+, we want FP64 denormals to be on by default. FP32 denormals can be // enabled, but some instructions do not respect them and they run at the // double precision rate, so don't enable by default. // // We want to be able to turn these off, but making this a subtarget feature // for SI has the unhelpful behavior that it unsets everything else if you // disable it. SmallString<256> FullFS("+promote-alloca,+fp64-fp16-denormals,+dx10-clamp,+load-store-opt,"); if (isAmdHsaOS()) // Turn on FlatForGlobal for HSA. FullFS += "+flat-for-global,+unaligned-buffer-access,+trap-handler,"; FullFS += FS; ParseSubtargetFeatures(GPU, FullFS); // Unless +-flat-for-global is specified, turn on FlatForGlobal for all OS-es // on VI and newer hardware to avoid assertion failures due to missing ADDR64 // variants of MUBUF instructions. if (!hasAddr64() && !FS.contains("flat-for-global")) { FlatForGlobal = true; } // FIXME: I don't think think Evergreen has any useful support for // denormals, but should be checked. Should we issue a warning somewhere // if someone tries to enable these? if (getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { FP64FP16Denormals = false; FP32Denormals = false; } // Set defaults if needed. if (MaxPrivateElementSize == 0) MaxPrivateElementSize = 4; return *this; } AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT, StringRef GPU, StringRef FS, const TargetMachine &TM) : AMDGPUGenSubtargetInfo(TT, GPU, FS), TargetTriple(TT), Gen(TT.getArch() == Triple::amdgcn ? SOUTHERN_ISLANDS : R600), IsaVersion(ISAVersion0_0_0), WavefrontSize(64), LocalMemorySize(0), LDSBankCount(0), MaxPrivateElementSize(0), FastFMAF32(false), HalfRate64Ops(false), FP32Denormals(false), FP64FP16Denormals(false), FPExceptions(false), DX10Clamp(false), FlatForGlobal(false), AutoWaitcntBeforeBarrier(false), UnalignedScratchAccess(false), UnalignedBufferAccess(false), HasApertureRegs(false), EnableXNACK(false), TrapHandler(false), DebuggerInsertNops(false), DebuggerReserveRegs(false), DebuggerEmitPrologue(false), EnableVGPRSpilling(false), EnablePromoteAlloca(false), EnableLoadStoreOpt(false), EnableUnsafeDSOffsetFolding(false), EnableSIScheduler(false), DumpCode(false), FP64(false), IsGCN(false), GCN1Encoding(false), GCN3Encoding(false), CIInsts(false), GFX9Insts(false), SGPRInitBug(false), HasSMemRealTime(false), Has16BitInsts(false), HasVOP3PInsts(false), HasMovrel(false), HasVGPRIndexMode(false), HasScalarStores(false), HasInv2PiInlineImm(false), HasSDWA(false), HasDPP(false), FlatAddressSpace(false), FlatInstOffsets(false), FlatGlobalInsts(false), FlatScratchInsts(false), R600ALUInst(false), CaymanISA(false), CFALUBug(false), HasVertexCache(false), TexVTXClauseSize(0), ScalarizeGlobal(false), FeatureDisable(false), InstrItins(getInstrItineraryForCPU(GPU)) { AS = AMDGPU::getAMDGPUAS(TT); initializeSubtargetDependencies(TT, GPU, FS); } unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves, const Function &F) const { if (NWaves == 1) return getLocalMemorySize(); unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize); unsigned MaxWaves = getMaxWavesPerEU(); return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves; } unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes, const Function &F) const { unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize); unsigned MaxWaves = getMaxWavesPerEU(); unsigned Limit = getLocalMemorySize() * MaxWaves / WorkGroupsPerCu; unsigned NumWaves = Limit / (Bytes ? Bytes : 1u); NumWaves = std::min(NumWaves, MaxWaves); NumWaves = std::max(NumWaves, 1u); return NumWaves; } std::pair AMDGPUSubtarget::getFlatWorkGroupSizes( const Function &F) const { // Default minimum/maximum flat work group sizes. std::pair Default = AMDGPU::isCompute(F.getCallingConv()) ? std::pair(getWavefrontSize() * 2, getWavefrontSize() * 4) : std::pair(1, getWavefrontSize()); // TODO: Do not process "amdgpu-max-work-group-size" attribute once mesa // starts using "amdgpu-flat-work-group-size" attribute. Default.second = AMDGPU::getIntegerAttribute( F, "amdgpu-max-work-group-size", Default.second); Default.first = std::min(Default.first, Default.second); // Requested minimum/maximum flat work group sizes. std::pair Requested = AMDGPU::getIntegerPairAttribute( F, "amdgpu-flat-work-group-size", Default); // Make sure requested minimum is less than requested maximum. if (Requested.first > Requested.second) return Default; // Make sure requested values do not violate subtarget's specifications. if (Requested.first < getMinFlatWorkGroupSize()) return Default; if (Requested.second > getMaxFlatWorkGroupSize()) return Default; return Requested; } std::pair AMDGPUSubtarget::getWavesPerEU( const Function &F) const { // Default minimum/maximum number of waves per execution unit. std::pair Default(1, getMaxWavesPerEU()); // Default/requested minimum/maximum flat work group sizes. std::pair FlatWorkGroupSizes = getFlatWorkGroupSizes(F); // If minimum/maximum flat work group sizes were explicitly requested using // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum // number of waves per execution unit to values implied by requested // minimum/maximum flat work group sizes. unsigned MinImpliedByFlatWorkGroupSize = getMaxWavesPerEU(FlatWorkGroupSizes.second); bool RequestedFlatWorkGroupSize = false; // TODO: Do not process "amdgpu-max-work-group-size" attribute once mesa // starts using "amdgpu-flat-work-group-size" attribute. if (F.hasFnAttribute("amdgpu-max-work-group-size") || F.hasFnAttribute("amdgpu-flat-work-group-size")) { Default.first = MinImpliedByFlatWorkGroupSize; RequestedFlatWorkGroupSize = true; } // Requested minimum/maximum number of waves per execution unit. std::pair Requested = AMDGPU::getIntegerPairAttribute( F, "amdgpu-waves-per-eu", Default, true); // Make sure requested minimum is less than requested maximum. if (Requested.second && Requested.first > Requested.second) return Default; // Make sure requested values do not violate subtarget's specifications. if (Requested.first < getMinWavesPerEU() || Requested.first > getMaxWavesPerEU()) return Default; if (Requested.second > getMaxWavesPerEU()) return Default; // Make sure requested values are compatible with values implied by requested // minimum/maximum flat work group sizes. if (RequestedFlatWorkGroupSize && Requested.first > MinImpliedByFlatWorkGroupSize) return Default; return Requested; } bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const { Function *Kernel = I->getParent()->getParent(); unsigned MinSize = 0; unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second; bool IdQuery = false; // If reqd_work_group_size is present it narrows value down. if (auto *CI = dyn_cast(I)) { const Function *F = CI->getCalledFunction(); if (F) { unsigned Dim = UINT_MAX; switch (F->getIntrinsicID()) { case Intrinsic::amdgcn_workitem_id_x: case Intrinsic::r600_read_tidig_x: IdQuery = true; case Intrinsic::r600_read_local_size_x: Dim = 0; break; case Intrinsic::amdgcn_workitem_id_y: case Intrinsic::r600_read_tidig_y: IdQuery = true; case Intrinsic::r600_read_local_size_y: Dim = 1; break; case Intrinsic::amdgcn_workitem_id_z: case Intrinsic::r600_read_tidig_z: IdQuery = true; case Intrinsic::r600_read_local_size_z: Dim = 2; break; default: break; } if (Dim <= 3) { if (auto Node = Kernel->getMetadata("reqd_work_group_size")) if (Node->getNumOperands() == 3) MinSize = MaxSize = mdconst::extract( Node->getOperand(Dim))->getZExtValue(); } } } if (!MaxSize) return false; // Range metadata is [Lo, Hi). For ID query we need to pass max size // as Hi. For size query we need to pass Hi + 1. if (IdQuery) MinSize = 0; else ++MaxSize; MDBuilder MDB(I->getContext()); MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize), APInt(32, MaxSize)); I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); return true; } R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS, const TargetMachine &TM) : AMDGPUSubtarget(TT, GPU, FS, TM), InstrInfo(*this), FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0), TLInfo(TM, *this) {} SISubtarget::SISubtarget(const Triple &TT, StringRef GPU, StringRef FS, const TargetMachine &TM) : AMDGPUSubtarget(TT, GPU, FS, TM), InstrInfo(*this), FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0), TLInfo(TM, *this) {} void SISubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, unsigned NumRegionInstrs) const { // Track register pressure so the scheduler can try to decrease // pressure once register usage is above the threshold defined by // SIRegisterInfo::getRegPressureSetLimit() Policy.ShouldTrackPressure = true; // Enabling both top down and bottom up scheduling seems to give us less // register spills than just using one of these approaches on its own. Policy.OnlyTopDown = false; Policy.OnlyBottomUp = false; // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler. if (!enableSIScheduler()) Policy.ShouldTrackLaneMasks = true; } bool SISubtarget::isVGPRSpillingEnabled(const Function& F) const { return EnableVGPRSpilling || !AMDGPU::isShader(F.getCallingConv()); } unsigned SISubtarget::getKernArgSegmentSize(const MachineFunction &MF, unsigned ExplicitArgBytes) const { unsigned ImplicitBytes = getImplicitArgNumBytes(MF); if (ImplicitBytes == 0) return ExplicitArgBytes; unsigned Alignment = getAlignmentForImplicitArgPtr(); return alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes; } unsigned SISubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const { if (getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { if (SGPRs <= 80) return 10; if (SGPRs <= 88) return 9; if (SGPRs <= 100) return 8; return 7; } if (SGPRs <= 48) return 10; if (SGPRs <= 56) return 9; if (SGPRs <= 64) return 8; if (SGPRs <= 72) return 7; if (SGPRs <= 80) return 6; return 5; } unsigned SISubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const { if (VGPRs <= 24) return 10; if (VGPRs <= 28) return 9; if (VGPRs <= 32) return 8; if (VGPRs <= 36) return 7; if (VGPRs <= 40) return 6; if (VGPRs <= 48) return 5; if (VGPRs <= 64) return 4; if (VGPRs <= 84) return 3; if (VGPRs <= 128) return 2; return 1; } unsigned SISubtarget::getReservedNumSGPRs(const MachineFunction &MF) const { const SIMachineFunctionInfo &MFI = *MF.getInfo(); if (MFI.hasFlatScratchInit()) { if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) return 6; // FLAT_SCRATCH, XNACK, VCC (in that order). if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) return 4; // FLAT_SCRATCH, VCC (in that order). } if (isXNACKEnabled()) return 4; // XNACK, VCC (in that order). return 2; // VCC. } unsigned SISubtarget::getMaxNumSGPRs(const MachineFunction &MF) const { const Function &F = *MF.getFunction(); const SIMachineFunctionInfo &MFI = *MF.getInfo(); // Compute maximum number of SGPRs function can use using default/requested // minimum number of waves per execution unit. std::pair WavesPerEU = MFI.getWavesPerEU(); unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false); unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true); // Check if maximum number of SGPRs was explicitly requested using // "amdgpu-num-sgpr" attribute. if (F.hasFnAttribute("amdgpu-num-sgpr")) { unsigned Requested = AMDGPU::getIntegerAttribute( F, "amdgpu-num-sgpr", MaxNumSGPRs); // Make sure requested value does not violate subtarget's specifications. if (Requested && (Requested <= getReservedNumSGPRs(MF))) Requested = 0; // If more SGPRs are required to support the input user/system SGPRs, // increase to accommodate them. // // FIXME: This really ends up using the requested number of SGPRs + number // of reserved special registers in total. Theoretically you could re-use // the last input registers for these special registers, but this would // require a lot of complexity to deal with the weird aliasing. unsigned InputNumSGPRs = MFI.getNumPreloadedSGPRs(); if (Requested && Requested < InputNumSGPRs) Requested = InputNumSGPRs; // Make sure requested value is compatible with values implied by // default/requested minimum/maximum number of waves per execution unit. if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false)) Requested = 0; if (WavesPerEU.second && Requested && Requested < getMinNumSGPRs(WavesPerEU.second)) Requested = 0; if (Requested) MaxNumSGPRs = Requested; } if (hasSGPRInitBug()) MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; return std::min(MaxNumSGPRs - getReservedNumSGPRs(MF), MaxAddressableNumSGPRs); } unsigned SISubtarget::getMaxNumVGPRs(const MachineFunction &MF) const { const Function &F = *MF.getFunction(); const SIMachineFunctionInfo &MFI = *MF.getInfo(); // Compute maximum number of VGPRs function can use using default/requested // minimum number of waves per execution unit. std::pair WavesPerEU = MFI.getWavesPerEU(); unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first); // Check if maximum number of VGPRs was explicitly requested using // "amdgpu-num-vgpr" attribute. if (F.hasFnAttribute("amdgpu-num-vgpr")) { unsigned Requested = AMDGPU::getIntegerAttribute( F, "amdgpu-num-vgpr", MaxNumVGPRs); // Make sure requested value does not violate subtarget's specifications. if (Requested && Requested <= getReservedNumVGPRs(MF)) Requested = 0; // Make sure requested value is compatible with values implied by // default/requested minimum/maximum number of waves per execution unit. if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first)) Requested = 0; if (WavesPerEU.second && Requested && Requested < getMinNumVGPRs(WavesPerEU.second)) Requested = 0; if (Requested) MaxNumVGPRs = Requested; } return MaxNumVGPRs - getReservedNumVGPRs(MF); }