//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief Implements the AMDGPU specific subclass of TargetSubtarget. // //===----------------------------------------------------------------------===// #include "AMDGPUSubtarget.h" #include "llvm/ADT/SmallString.h" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/Target/TargetFrameLowering.h" #include using namespace llvm; #define DEBUG_TYPE "amdgpu-subtarget" #define GET_SUBTARGETINFO_ENUM #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #include "AMDGPUGenSubtargetInfo.inc" AMDGPUSubtarget::~AMDGPUSubtarget() = default; AMDGPUSubtarget & AMDGPUSubtarget::initializeSubtargetDependencies(const Triple &TT, StringRef GPU, StringRef FS) { // Determine default and user-specified characteristics // On SI+, we want FP64 denormals to be on by default. FP32 denormals can be // enabled, but some instructions do not respect them and they run at the // double precision rate, so don't enable by default. // // We want to be able to turn these off, but making this a subtarget feature // for SI has the unhelpful behavior that it unsets everything else if you // disable it. SmallString<256> FullFS("+promote-alloca,+fp64-denormals,+load-store-opt,"); if (isAmdHsaOS()) // Turn on FlatForGlobal for HSA. FullFS += "+flat-for-global,+unaligned-buffer-access,"; FullFS += FS; ParseSubtargetFeatures(GPU, FullFS); // FIXME: I don't think think Evergreen has any useful support for // denormals, but should be checked. Should we issue a warning somewhere // if someone tries to enable these? if (getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { FP16Denormals = false; FP32Denormals = false; FP64Denormals = false; } // Set defaults if needed. if (MaxPrivateElementSize == 0) MaxPrivateElementSize = 4; return *this; } AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT, StringRef GPU, StringRef FS, const TargetMachine &TM) : AMDGPUGenSubtargetInfo(TT, GPU, FS), TargetTriple(TT), Gen(TT.getArch() == Triple::amdgcn ? SOUTHERN_ISLANDS : R600), IsaVersion(ISAVersion0_0_0), WavefrontSize(64), LocalMemorySize(0), LDSBankCount(0), MaxPrivateElementSize(0), FastFMAF32(false), HalfRate64Ops(false), FP16Denormals(false), FP32Denormals(false), FP64Denormals(false), FPExceptions(false), FlatForGlobal(false), UnalignedScratchAccess(false), UnalignedBufferAccess(false), EnableXNACK(false), DebuggerInsertNops(false), DebuggerReserveRegs(false), DebuggerEmitPrologue(false), EnableVGPRSpilling(false), EnablePromoteAlloca(false), EnableLoadStoreOpt(false), EnableUnsafeDSOffsetFolding(false), EnableSIScheduler(false), DumpCode(false), FP64(false), IsGCN(false), GCN1Encoding(false), GCN3Encoding(false), CIInsts(false), SGPRInitBug(false), HasSMemRealTime(false), Has16BitInsts(false), HasMovrel(false), HasVGPRIndexMode(false), HasScalarStores(false), HasInv2PiInlineImm(false), FlatAddressSpace(false), R600ALUInst(false), CaymanISA(false), CFALUBug(false), HasVertexCache(false), TexVTXClauseSize(0), ScalarizeGlobal(false), FeatureDisable(false), InstrItins(getInstrItineraryForCPU(GPU)) { initializeSubtargetDependencies(TT, GPU, FS); } // FIXME: These limits are for SI. Did they change with the larger maximum LDS // size? unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves) const { switch (NWaves) { case 10: return 1638; case 9: return 1820; case 8: return 2048; case 7: return 2340; case 6: return 2730; case 5: return 3276; case 4: return 4096; case 3: return 5461; case 2: return 8192; default: return getLocalMemorySize(); } } unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes) const { if (Bytes <= 1638) return 10; if (Bytes <= 1820) return 9; if (Bytes <= 2048) return 8; if (Bytes <= 2340) return 7; if (Bytes <= 2730) return 6; if (Bytes <= 3276) return 5; if (Bytes <= 4096) return 4; if (Bytes <= 5461) return 3; if (Bytes <= 8192) return 2; return 1; } std::pair AMDGPUSubtarget::getFlatWorkGroupSizes( const Function &F) const { // Default minimum/maximum flat work group sizes. std::pair Default = AMDGPU::isCompute(F.getCallingConv()) ? std::pair(getWavefrontSize() * 2, getWavefrontSize() * 4) : std::pair(1, getWavefrontSize()); // TODO: Do not process "amdgpu-max-work-group-size" attribute once mesa // starts using "amdgpu-flat-work-group-size" attribute. Default.second = AMDGPU::getIntegerAttribute( F, "amdgpu-max-work-group-size", Default.second); Default.first = std::min(Default.first, Default.second); // Requested minimum/maximum flat work group sizes. std::pair Requested = AMDGPU::getIntegerPairAttribute( F, "amdgpu-flat-work-group-size", Default); // Make sure requested minimum is less than requested maximum. if (Requested.first > Requested.second) return Default; // Make sure requested values do not violate subtarget's specifications. if (Requested.first < getMinFlatWorkGroupSize()) return Default; if (Requested.second > getMaxFlatWorkGroupSize()) return Default; return Requested; } std::pair AMDGPUSubtarget::getWavesPerEU( const Function &F) const { // Default minimum/maximum number of waves per execution unit. std::pair Default(1, 0); // Default/requested minimum/maximum flat work group sizes. std::pair FlatWorkGroupSizes = getFlatWorkGroupSizes(F); // If minimum/maximum flat work group sizes were explicitly requested using // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum // number of waves per execution unit to values implied by requested // minimum/maximum flat work group sizes. unsigned MinImpliedByFlatWorkGroupSize = getMaxWavesPerEU(FlatWorkGroupSizes.second); bool RequestedFlatWorkGroupSize = false; // TODO: Do not process "amdgpu-max-work-group-size" attribute once mesa // starts using "amdgpu-flat-work-group-size" attribute. if (F.hasFnAttribute("amdgpu-max-work-group-size") || F.hasFnAttribute("amdgpu-flat-work-group-size")) { Default.first = MinImpliedByFlatWorkGroupSize; RequestedFlatWorkGroupSize = true; } // Requested minimum/maximum number of waves per execution unit. std::pair Requested = AMDGPU::getIntegerPairAttribute( F, "amdgpu-waves-per-eu", Default, true); // Make sure requested minimum is less than requested maximum. if (Requested.second && Requested.first > Requested.second) return Default; // Make sure requested values do not violate subtarget's specifications. if (Requested.first < getMinWavesPerEU() || Requested.first > getMaxWavesPerEU()) return Default; if (Requested.second > getMaxWavesPerEU()) return Default; // Make sure requested values are compatible with values implied by requested // minimum/maximum flat work group sizes. if (RequestedFlatWorkGroupSize && Requested.first > MinImpliedByFlatWorkGroupSize) return Default; return Requested; } R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS, const TargetMachine &TM) : AMDGPUSubtarget(TT, GPU, FS, TM), InstrInfo(*this), FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0), TLInfo(TM, *this) {} SISubtarget::SISubtarget(const Triple &TT, StringRef GPU, StringRef FS, const TargetMachine &TM) : AMDGPUSubtarget(TT, GPU, FS, TM), InstrInfo(*this), FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0), TLInfo(TM, *this) {} void SISubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, unsigned NumRegionInstrs) const { // Track register pressure so the scheduler can try to decrease // pressure once register usage is above the threshold defined by // SIRegisterInfo::getRegPressureSetLimit() Policy.ShouldTrackPressure = true; // Enabling both top down and bottom up scheduling seems to give us less // register spills than just using one of these approaches on its own. Policy.OnlyTopDown = false; Policy.OnlyBottomUp = false; // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler. if (!enableSIScheduler()) Policy.ShouldTrackLaneMasks = true; } bool SISubtarget::isVGPRSpillingEnabled(const Function& F) const { return EnableVGPRSpilling || !AMDGPU::isShader(F.getCallingConv()); } unsigned SISubtarget::getKernArgSegmentSize(unsigned ExplicitArgBytes) const { unsigned ImplicitBytes = getImplicitArgNumBytes(); if (ImplicitBytes == 0) return ExplicitArgBytes; unsigned Alignment = getAlignmentForImplicitArgPtr(); return alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes; } unsigned SISubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const { if (getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { if (SGPRs <= 80) return 10; if (SGPRs <= 88) return 9; if (SGPRs <= 100) return 8; return 7; } if (SGPRs <= 48) return 10; if (SGPRs <= 56) return 9; if (SGPRs <= 64) return 8; if (SGPRs <= 72) return 7; if (SGPRs <= 80) return 6; return 5; } unsigned SISubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const { if (VGPRs <= 24) return 10; if (VGPRs <= 28) return 9; if (VGPRs <= 32) return 8; if (VGPRs <= 36) return 7; if (VGPRs <= 40) return 6; if (VGPRs <= 48) return 5; if (VGPRs <= 64) return 4; if (VGPRs <= 84) return 3; if (VGPRs <= 128) return 2; return 1; } unsigned SISubtarget::getMaxNumSGPRs() const { if (hasSGPRInitBug()) return SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG; if (getGeneration() >= VOLCANIC_ISLANDS) return 102; return 104; }