//===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief The AMDGPU target machine contains all of the hardware specific /// information needed to emit code for R600 and SI GPUs. // //===----------------------------------------------------------------------===// #include "AMDGPUTargetMachine.h" #include "AMDGPU.h" #include "AMDGPUCallLowering.h" #include "AMDGPUTargetObjectFile.h" #include "AMDGPUTargetTransformInfo.h" #include "R600ISelLowering.h" #include "R600InstrInfo.h" #include "R600MachineScheduler.h" #include "SIISelLowering.h" #include "SIInstrInfo.h" #include "llvm/Analysis/Passes.h" #include "llvm/CodeGen/GlobalISel/IRTranslator.h" #include "llvm/CodeGen/MachineFunctionAnalysis.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/Verifier.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_os_ostream.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/GVN.h" #include "llvm/Transforms/Vectorize.h" using namespace llvm; static cl::opt EnableR600StructurizeCFG( "r600-ir-structurize", cl::desc("Use StructurizeCFG IR pass"), cl::init(true)); static cl::opt EnableSROA( "amdgpu-sroa", cl::desc("Run SROA after promote alloca pass"), cl::ReallyHidden, cl::init(true)); static cl::opt EnableR600IfConvert( "r600-if-convert", cl::desc("Use if conversion pass"), cl::ReallyHidden, cl::init(true)); // Option to disable vectorizer for tests. static cl::opt EnableLoadStoreVectorizer( "amdgpu-load-store-vectorizer", cl::desc("Enable load store vectorizer"), cl::init(false), cl::Hidden); extern "C" void LLVMInitializeAMDGPUTarget() { // Register the target RegisterTargetMachine X(TheAMDGPUTarget); RegisterTargetMachine Y(TheGCNTarget); PassRegistry *PR = PassRegistry::getPassRegistry(); initializeSILowerI1CopiesPass(*PR); initializeSIFixSGPRCopiesPass(*PR); initializeSIFoldOperandsPass(*PR); initializeSIShrinkInstructionsPass(*PR); initializeSIFixControlFlowLiveIntervalsPass(*PR); initializeSILoadStoreOptimizerPass(*PR); initializeAMDGPUAnnotateKernelFeaturesPass(*PR); initializeAMDGPUAnnotateUniformValuesPass(*PR); initializeAMDGPUPromoteAllocaPass(*PR); initializeAMDGPUCodeGenPreparePass(*PR); initializeSIAnnotateControlFlowPass(*PR); initializeSIDebuggerInsertNopsPass(*PR); initializeSIInsertWaitsPass(*PR); initializeSIWholeQuadModePass(*PR); initializeSILowerControlFlowPass(*PR); initializeSIDebuggerInsertNopsPass(*PR); } static std::unique_ptr createTLOF(const Triple &TT) { return make_unique(); } static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { return new ScheduleDAGMILive(C, make_unique()); } static MachineSchedRegistry R600SchedRegistry("r600", "Run R600's custom scheduler", createR600MachineScheduler); static MachineSchedRegistry SISchedRegistry("si", "Run SI's custom scheduler", createSIMachineScheduler); static StringRef computeDataLayout(const Triple &TT) { if (TT.getArch() == Triple::r600) { // 32-bit pointers. return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; } // 32-bit private, local, and region pointers. 64-bit global, constant and // flat. return "e-p:32:32-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32" "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; } LLVM_READNONE static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { if (!GPU.empty()) return GPU; // HSA only supports CI+, so change the default GPU to a CI for HSA. if (TT.getArch() == Triple::amdgcn) return (TT.getOS() == Triple::AMDHSA) ? "kaveri" : "tahiti"; return "r600"; } static Reloc::Model getEffectiveRelocModel(Optional RM) { // The AMDGPU toolchain only supports generating shared objects, so we // must always use PIC. return Reloc::PIC_; } AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, TargetOptions Options, Optional RM, CodeModel::Model CM, CodeGenOpt::Level OptLevel) : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), FS, Options, getEffectiveRelocModel(RM), CM, OptLevel), TLOF(createTLOF(getTargetTriple())), IntrinsicInfo() { setRequiresStructuredCFG(true); initAsmInfo(); } AMDGPUTargetMachine::~AMDGPUTargetMachine() { } StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { Attribute GPUAttr = F.getFnAttribute("target-cpu"); return GPUAttr.hasAttribute(Attribute::None) ? getTargetCPU() : GPUAttr.getValueAsString(); } StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { Attribute FSAttr = F.getFnAttribute("target-features"); return FSAttr.hasAttribute(Attribute::None) ? getTargetFeatureString() : FSAttr.getValueAsString(); } //===----------------------------------------------------------------------===// // R600 Target Machine (R600 -> Cayman) //===----------------------------------------------------------------------===// R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, TargetOptions Options, Optional RM, CodeModel::Model CM, CodeGenOpt::Level OL) : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} const R600Subtarget *R600TargetMachine::getSubtargetImpl( const Function &F) const { StringRef GPU = getGPUName(F); StringRef FS = getFeatureString(F); SmallString<128> SubtargetKey(GPU); SubtargetKey.append(FS); auto &I = SubtargetMap[SubtargetKey]; if (!I) { // This needs to be done before we create a new subtarget since any // creation will depend on the TM and the code generation flags on the // function that reside in TargetOptions. resetTargetOptions(F); I = llvm::make_unique(TargetTriple, GPU, FS, *this); } return I.get(); } //===----------------------------------------------------------------------===// // GCN Target Machine (SI+) //===----------------------------------------------------------------------===// #ifdef LLVM_BUILD_GLOBAL_ISEL namespace { struct SIGISelActualAccessor : public GISelAccessor { std::unique_ptr CallLoweringInfo; const AMDGPUCallLowering *getCallLowering() const override { return CallLoweringInfo.get(); } }; } // End anonymous namespace. #endif GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, TargetOptions Options, Optional RM, CodeModel::Model CM, CodeGenOpt::Level OL) : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { StringRef GPU = getGPUName(F); StringRef FS = getFeatureString(F); SmallString<128> SubtargetKey(GPU); SubtargetKey.append(FS); auto &I = SubtargetMap[SubtargetKey]; if (!I) { // This needs to be done before we create a new subtarget since any // creation will depend on the TM and the code generation flags on the // function that reside in TargetOptions. resetTargetOptions(F); I = llvm::make_unique(TargetTriple, GPU, FS, *this); #ifndef LLVM_BUILD_GLOBAL_ISEL GISelAccessor *GISel = new GISelAccessor(); #else SIGISelActualAccessor *GISel = new SIGISelActualAccessor(); GISel->CallLoweringInfo.reset( new AMDGPUCallLowering(*I->getTargetLowering())); #endif I->setGISelAccessor(*GISel); } return I.get(); } //===----------------------------------------------------------------------===// // AMDGPU Pass Setup //===----------------------------------------------------------------------===// namespace { class AMDGPUPassConfig : public TargetPassConfig { public: AMDGPUPassConfig(TargetMachine *TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) { // Exceptions and StackMaps are not supported, so these passes will never do // anything. disablePass(&StackMapLivenessID); disablePass(&FuncletLayoutID); } AMDGPUTargetMachine &getAMDGPUTargetMachine() const { return getTM(); } void addEarlyCSEOrGVNPass(); void addStraightLineScalarOptimizationPasses(); void addIRPasses() override; void addCodeGenPrepare() override; bool addPreISel() override; bool addInstSelector() override; bool addGCPasses() override; }; class R600PassConfig final : public AMDGPUPassConfig { public: R600PassConfig(TargetMachine *TM, PassManagerBase &PM) : AMDGPUPassConfig(TM, PM) { } ScheduleDAGInstrs *createMachineScheduler( MachineSchedContext *C) const override { return createR600MachineScheduler(C); } bool addPreISel() override; void addPreRegAlloc() override; void addPreSched2() override; void addPreEmitPass() override; }; class GCNPassConfig final : public AMDGPUPassConfig { public: GCNPassConfig(TargetMachine *TM, PassManagerBase &PM) : AMDGPUPassConfig(TM, PM) { } GCNTargetMachine &getGCNTargetMachine() const { return getTM(); } ScheduleDAGInstrs * createMachineScheduler(MachineSchedContext *C) const override; bool addPreISel() override; void addMachineSSAOptimization() override; bool addInstSelector() override; #ifdef LLVM_BUILD_GLOBAL_ISEL bool addIRTranslator() override; bool addRegBankSelect() override; #endif void addFastRegAlloc(FunctionPass *RegAllocPass) override; void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; void addPreRegAlloc() override; void addPreSched2() override; void addPreEmitPass() override; }; } // End of anonymous namespace TargetIRAnalysis AMDGPUTargetMachine::getTargetIRAnalysis() { return TargetIRAnalysis([this](const Function &F) { return TargetTransformInfo(AMDGPUTTIImpl(this, F)); }); } void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { if (getOptLevel() == CodeGenOpt::Aggressive) addPass(createGVNPass()); else addPass(createEarlyCSEPass()); } void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { addPass(createSeparateConstOffsetFromGEPPass()); addPass(createSpeculativeExecutionPass()); // ReassociateGEPs exposes more opportunites for SLSR. See // the example in reassociate-geps-and-slsr.ll. addPass(createStraightLineStrengthReducePass()); // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or // EarlyCSE can reuse. addEarlyCSEOrGVNPass(); // Run NaryReassociate after EarlyCSE/GVN to be more effective. addPass(createNaryReassociatePass()); // NaryReassociate on GEPs creates redundant common expressions, so run // EarlyCSE after it. addPass(createEarlyCSEPass()); } void AMDGPUPassConfig::addIRPasses() { // There is no reason to run these. disablePass(&StackMapLivenessID); disablePass(&FuncletLayoutID); disablePass(&PatchableFunctionID); // Function calls are not supported, so make sure we inline everything. addPass(createAMDGPUAlwaysInlinePass()); addPass(createAlwaysInlinerPass()); // We need to add the barrier noop pass, otherwise adding the function // inlining pass will cause all of the PassConfigs passes to be run // one function at a time, which means if we have a nodule with two // functions, then we will generate code for the first function // without ever running any passes on the second. addPass(createBarrierNoopPass()); // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. addPass(createAMDGPUOpenCLImageTypeLoweringPass()); const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); if (TM.getOptLevel() > CodeGenOpt::None) { addPass(createAMDGPUPromoteAlloca(&TM)); if (EnableSROA) addPass(createSROAPass()); } addStraightLineScalarOptimizationPasses(); TargetPassConfig::addIRPasses(); // EarlyCSE is not always strong enough to clean up what LSR produces. For // example, GVN can combine // // %0 = add %a, %b // %1 = add %b, %a // // and // // %0 = shl nsw %a, 2 // %1 = shl %a, 2 // // but EarlyCSE can do neither of them. if (getOptLevel() != CodeGenOpt::None) addEarlyCSEOrGVNPass(); } void AMDGPUPassConfig::addCodeGenPrepare() { TargetPassConfig::addCodeGenPrepare(); if (EnableLoadStoreVectorizer) addPass(createLoadStoreVectorizerPass()); } bool AMDGPUPassConfig::addPreISel() { addPass(createFlattenCFGPass()); return false; } bool AMDGPUPassConfig::addInstSelector() { addPass(createAMDGPUISelDag(getAMDGPUTargetMachine())); return false; } bool AMDGPUPassConfig::addGCPasses() { // Do nothing. GC is not supported. return false; } //===----------------------------------------------------------------------===// // R600 Pass Setup //===----------------------------------------------------------------------===// bool R600PassConfig::addPreISel() { AMDGPUPassConfig::addPreISel(); if (EnableR600StructurizeCFG) addPass(createStructurizeCFGPass()); return false; } void R600PassConfig::addPreRegAlloc() { addPass(createR600VectorRegMerger(*TM)); } void R600PassConfig::addPreSched2() { addPass(createR600EmitClauseMarkers(), false); if (EnableR600IfConvert) addPass(&IfConverterID, false); addPass(createR600ClauseMergePass(*TM), false); } void R600PassConfig::addPreEmitPass() { addPass(createAMDGPUCFGStructurizerPass(), false); addPass(createR600ExpandSpecialInstrsPass(*TM), false); addPass(&FinalizeMachineBundlesID, false); addPass(createR600Packetizer(*TM), false); addPass(createR600ControlFlowFinalizer(*TM), false); } TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { return new R600PassConfig(this, PM); } //===----------------------------------------------------------------------===// // GCN Pass Setup //===----------------------------------------------------------------------===// ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( MachineSchedContext *C) const { const SISubtarget &ST = C->MF->getSubtarget(); if (ST.enableSIScheduler()) return createSIMachineScheduler(C); return nullptr; } bool GCNPassConfig::addPreISel() { AMDGPUPassConfig::addPreISel(); // FIXME: We need to run a pass to propagate the attributes when calls are // supported. addPass(&AMDGPUAnnotateKernelFeaturesID); addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions addPass(createSinkingPass()); addPass(createSITypeRewriter()); addPass(createAMDGPUAnnotateUniformValues()); addPass(createSIAnnotateControlFlowPass()); return false; } void GCNPassConfig::addMachineSSAOptimization() { TargetPassConfig::addMachineSSAOptimization(); // We want to fold operands after PeepholeOptimizer has run (or as part of // it), because it will eliminate extra copies making it easier to fold the // real source operand. We want to eliminate dead instructions after, so that // we see fewer uses of the copies. We then need to clean up the dead // instructions leftover after the operands are folded as well. // // XXX - Can we get away without running DeadMachineInstructionElim again? addPass(&SIFoldOperandsID); addPass(&DeadMachineInstructionElimID); } bool GCNPassConfig::addInstSelector() { AMDGPUPassConfig::addInstSelector(); addPass(createSILowerI1CopiesPass()); addPass(&SIFixSGPRCopiesID); return false; } #ifdef LLVM_BUILD_GLOBAL_ISEL bool GCNPassConfig::addIRTranslator() { addPass(new IRTranslator()); return false; } bool GCNPassConfig::addRegBankSelect() { return false; } #endif void GCNPassConfig::addPreRegAlloc() { // This needs to be run directly before register allocation because // earlier passes might recompute live intervals. // TODO: handle CodeGenOpt::None; fast RA ignores spill weights set by the pass if (getOptLevel() > CodeGenOpt::None) { insertPass(&MachineSchedulerID, &SIFixControlFlowLiveIntervalsID); } if (getOptLevel() > CodeGenOpt::None) { // Don't do this with no optimizations since it throws away debug info by // merging nonadjacent loads. // This should be run after scheduling, but before register allocation. It // also need extra copies to the address operand to be eliminated. // FIXME: Move pre-RA and remove extra reg coalescer run. insertPass(&MachineSchedulerID, &SILoadStoreOptimizerID); insertPass(&MachineSchedulerID, &RegisterCoalescerID); } addPass(createSIShrinkInstructionsPass()); addPass(createSIWholeQuadModePass()); } void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { TargetPassConfig::addFastRegAlloc(RegAllocPass); } void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); } void GCNPassConfig::addPreSched2() { } void GCNPassConfig::addPreEmitPass() { // The hazard recognizer that runs as part of the post-ra scheduler does not // guarantee to be able handle all hazards correctly. This is because if there // are multiple scheduling regions in a basic block, the regions are scheduled // bottom up, so when we begin to schedule a region we don't know what // instructions were emitted directly before it. // // Here we add a stand-alone hazard recognizer pass which can handle all // cases. addPass(&PostRAHazardRecognizerID); addPass(createSIInsertWaitsPass()); addPass(createSIShrinkInstructionsPass()); addPass(createSILowerControlFlowPass()); addPass(createSIDebuggerInsertNopsPass()); } TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { return new GCNPassConfig(this, PM); }