//===---------------------------- GCNILPSched.cpp - -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/ScheduleDAG.h" using namespace llvm; #define DEBUG_TYPE "machine-scheduler" namespace { class GCNILPScheduler { struct Candidate : ilist_node { SUnit *SU; Candidate(SUnit *SU_) : SU(SU_) {} }; SpecificBumpPtrAllocator Alloc; typedef simple_ilist Queue; Queue PendingQueue; Queue AvailQueue; unsigned CurQueueId = 0; std::vector SUNumbers; /// CurCycle - The current scheduler state corresponds to this cycle. unsigned CurCycle = 0; unsigned getNodePriority(const SUnit *SU) const; const SUnit *pickBest(const SUnit *left, const SUnit *right); Candidate* pickCandidate(); void releasePending(); void advanceToCycle(unsigned NextCycle); void releasePredecessors(const SUnit* SU); public: std::vector schedule(ArrayRef TopRoots, const ScheduleDAG &DAG); }; } // namespace /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number. /// Smaller number is the higher priority. static unsigned CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector &SUNumbers) { unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum]; if (SethiUllmanNumber != 0) return SethiUllmanNumber; unsigned Extra = 0; for (const SDep &Pred : SU->Preds) { if (Pred.isCtrl()) continue; // ignore chain preds SUnit *PredSU = Pred.getSUnit(); unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers); if (PredSethiUllman > SethiUllmanNumber) { SethiUllmanNumber = PredSethiUllman; Extra = 0; } else if (PredSethiUllman == SethiUllmanNumber) ++Extra; } SethiUllmanNumber += Extra; if (SethiUllmanNumber == 0) SethiUllmanNumber = 1; return SethiUllmanNumber; } // Lower priority means schedule further down. For bottom-up scheduling, lower // priority SUs are scheduled before higher priority SUs. unsigned GCNILPScheduler::getNodePriority(const SUnit *SU) const { assert(SU->NodeNum < SUNumbers.size()); if (SU->NumSuccs == 0 && SU->NumPreds != 0) // If SU does not have a register use, i.e. it doesn't produce a value // that would be consumed (e.g. store), then it terminates a chain of // computation. Give it a large SethiUllman number so it will be // scheduled right before its predecessors that it doesn't lengthen // their live ranges. return 0xffff; if (SU->NumPreds == 0 && SU->NumSuccs != 0) // If SU does not have a register def, schedule it close to its uses // because it does not lengthen any live ranges. return 0; return SUNumbers[SU->NodeNum]; } /// closestSucc - Returns the scheduled cycle of the successor which is /// closest to the current cycle. static unsigned closestSucc(const SUnit *SU) { unsigned MaxHeight = 0; for (const SDep &Succ : SU->Succs) { if (Succ.isCtrl()) continue; // ignore chain succs unsigned Height = Succ.getSUnit()->getHeight(); // If there are bunch of CopyToRegs stacked up, they should be considered // to be at the same position. if (Height > MaxHeight) MaxHeight = Height; } return MaxHeight; } /// calcMaxScratches - Returns an cost estimate of the worse case requirement /// for scratch registers, i.e. number of data dependencies. static unsigned calcMaxScratches(const SUnit *SU) { unsigned Scratches = 0; for (const SDep &Pred : SU->Preds) { if (Pred.isCtrl()) continue; // ignore chain preds Scratches++; } return Scratches; } // Return -1 if left has higher priority, 1 if right has higher priority. // Return 0 if latency-based priority is equivalent. static int BUCompareLatency(const SUnit *left, const SUnit *right) { // Scheduling an instruction that uses a VReg whose postincrement has not yet // been scheduled will induce a copy. Model this as an extra cycle of latency. int LHeight = (int)left->getHeight(); int RHeight = (int)right->getHeight(); // If either node is scheduling for latency, sort them by height/depth // and latency. // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer // is enabled, grouping instructions by cycle, then its height is already // covered so only its depth matters. We also reach this point if both stall // but have the same height. if (LHeight != RHeight) return LHeight > RHeight ? 1 : -1; int LDepth = left->getDepth(); int RDepth = right->getDepth(); if (LDepth != RDepth) { DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNum << ") depth " << LDepth << " vs SU (" << right->NodeNum << ") depth " << RDepth << "\n"); return LDepth < RDepth ? 1 : -1; } if (left->Latency != right->Latency) return left->Latency > right->Latency ? 1 : -1; return 0; } const SUnit *GCNILPScheduler::pickBest(const SUnit *left, const SUnit *right) { // TODO: add register pressure lowering checks bool const DisableSchedCriticalPath = false; int MaxReorderWindow = 6; if (!DisableSchedCriticalPath) { int spread = (int)left->getDepth() - (int)right->getDepth(); if (std::abs(spread) > MaxReorderWindow) { DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): " << left->getDepth() << " != SU(" << right->NodeNum << "): " << right->getDepth() << "\n"); return left->getDepth() < right->getDepth() ? right : left; } } bool const DisableSchedHeight = false; if (!DisableSchedHeight && left->getHeight() != right->getHeight()) { int spread = (int)left->getHeight() - (int)right->getHeight(); if (std::abs(spread) > MaxReorderWindow) return left->getHeight() > right->getHeight() ? right : left; } // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down. unsigned LPriority = getNodePriority(left); unsigned RPriority = getNodePriority(right); if (LPriority != RPriority) return LPriority > RPriority ? right : left; // Try schedule def + use closer when Sethi-Ullman numbers are the same. // e.g. // t1 = op t2, c1 // t3 = op t4, c2 // // and the following instructions are both ready. // t2 = op c3 // t4 = op c4 // // Then schedule t2 = op first. // i.e. // t4 = op c4 // t2 = op c3 // t1 = op t2, c1 // t3 = op t4, c2 // // This creates more short live intervals. unsigned LDist = closestSucc(left); unsigned RDist = closestSucc(right); if (LDist != RDist) return LDist < RDist ? right : left; // How many registers becomes live when the node is scheduled. unsigned LScratch = calcMaxScratches(left); unsigned RScratch = calcMaxScratches(right); if (LScratch != RScratch) return LScratch > RScratch ? right : left; bool const DisableSchedCycles = false; if (!DisableSchedCycles) { int result = BUCompareLatency(left, right); if (result != 0) return result > 0 ? right : left; return left; } else { if (left->getHeight() != right->getHeight()) return (left->getHeight() > right->getHeight()) ? right : left; if (left->getDepth() != right->getDepth()) return (left->getDepth() < right->getDepth()) ? right : left; } assert(left->NodeQueueId && right->NodeQueueId && "NodeQueueId cannot be zero"); return (left->NodeQueueId > right->NodeQueueId) ? right : left; } GCNILPScheduler::Candidate* GCNILPScheduler::pickCandidate() { if (AvailQueue.empty()) return nullptr; auto Best = AvailQueue.begin(); for (auto I = std::next(AvailQueue.begin()), E = AvailQueue.end(); I != E; ++I) { auto NewBestSU = pickBest(Best->SU, I->SU); if (NewBestSU != Best->SU) { assert(NewBestSU == I->SU); Best = I; } } return &*Best; } void GCNILPScheduler::releasePending() { // Check to see if any of the pending instructions are ready to issue. If // so, add them to the available queue. for(auto I = PendingQueue.begin(), E = PendingQueue.end(); I != E;) { auto &C = *I++; if (C.SU->getHeight() <= CurCycle) { PendingQueue.remove(C); AvailQueue.push_back(C); C.SU->NodeQueueId = CurQueueId++; } } } /// Move the scheduler state forward by the specified number of Cycles. void GCNILPScheduler::advanceToCycle(unsigned NextCycle) { if (NextCycle <= CurCycle) return; CurCycle = NextCycle; releasePending(); } void GCNILPScheduler::releasePredecessors(const SUnit* SU) { for (const auto &PredEdge : SU->Preds) { auto PredSU = PredEdge.getSUnit(); if (PredEdge.isWeak()) continue; assert(PredSU->isBoundaryNode() || PredSU->NumSuccsLeft > 0); PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge.getLatency()); if (!PredSU->isBoundaryNode() && --PredSU->NumSuccsLeft == 0) PendingQueue.push_front(*new (Alloc.Allocate()) Candidate(PredSU)); } } std::vector GCNILPScheduler::schedule(ArrayRef BotRoots, const ScheduleDAG &DAG) { auto &SUnits = const_cast(DAG).SUnits; std::vector SUSavedCopy; SUSavedCopy.resize(SUnits.size()); // we cannot save only those fields we touch: some of them are private // so save units verbatim: this assumes SUnit should have value semantics for (const SUnit &SU : SUnits) SUSavedCopy[SU.NodeNum] = SU; SUNumbers.assign(SUnits.size(), 0); for (const SUnit &SU : SUnits) CalcNodeSethiUllmanNumber(&SU, SUNumbers); for (auto SU : BotRoots) { AvailQueue.push_back( *new (Alloc.Allocate()) Candidate(const_cast(SU))); } releasePredecessors(&DAG.ExitSU); std::vector Schedule; Schedule.reserve(SUnits.size()); while (true) { if (AvailQueue.empty() && !PendingQueue.empty()) { auto EarliestSU = std::min_element( PendingQueue.begin(), PendingQueue.end(), [=](const Candidate& C1, const Candidate& C2) { return C1.SU->getHeight() < C2.SU->getHeight(); })->SU; advanceToCycle(std::max(CurCycle + 1, EarliestSU->getHeight())); } if (AvailQueue.empty()) break; DEBUG( dbgs() << "\n=== Picking candidate\n" "Ready queue:"; for (auto &C : AvailQueue) dbgs() << ' ' << C.SU->NodeNum; dbgs() << '\n'; ); auto C = pickCandidate(); assert(C); AvailQueue.remove(*C); auto SU = C->SU; DEBUG(dbgs() << "Selected "; SU->dump(&DAG)); advanceToCycle(SU->getHeight()); releasePredecessors(SU); Schedule.push_back(SU); SU->isScheduled = true; } assert(SUnits.size() == Schedule.size()); std::reverse(Schedule.begin(), Schedule.end()); // restore units for (auto &SU : SUnits) SU = SUSavedCopy[SU.NodeNum]; return Schedule; } namespace llvm { std::vector makeGCNILPScheduler(ArrayRef BotRoots, const ScheduleDAG &DAG) { GCNILPScheduler S; return S.schedule(BotRoots, DAG); } }