//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief Custom DAG lowering for SI // //===----------------------------------------------------------------------===// #ifdef _MSC_VER // Provide M_PI. #define _USE_MATH_DEFINES #endif #include "SIISelLowering.h" #include "AMDGPU.h" #include "AMDGPUIntrinsicInfo.h" #include "AMDGPUSubtarget.h" #include "AMDGPUTargetMachine.h" #include "SIDefines.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/DAGCombine.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineValueType.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetCallingConv.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Type.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetOptions.h" #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "si-lower" STATISTIC(NumTailCalls, "Number of tail calls"); static cl::opt EnableVGPRIndexMode( "amdgpu-vgpr-index-mode", cl::desc("Use GPR indexing mode instead of movrel for vector indexing"), cl::init(false)); static cl::opt AssumeFrameIndexHighZeroBits( "amdgpu-frame-index-zero-bits", cl::desc("High bits of frame index assumed to be zero"), cl::init(5), cl::ReallyHidden); static unsigned findFirstFreeSGPR(CCState &CCInfo) { unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs(); for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) { if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) { return AMDGPU::SGPR0 + Reg; } } llvm_unreachable("Cannot allocate sgpr"); } SITargetLowering::SITargetLowering(const TargetMachine &TM, const SISubtarget &STI) : AMDGPUTargetLowering(TM, STI) { addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass); addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass); addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass); addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass); addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass); addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass); addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); if (Subtarget->has16BitInsts()) { addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass); addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass); } if (Subtarget->hasVOP3PInsts()) { addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass); addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass); } computeRegisterProperties(STI.getRegisterInfo()); // We need to custom lower vector stores from local memory setOperationAction(ISD::LOAD, MVT::v2i32, Custom); setOperationAction(ISD::LOAD, MVT::v4i32, Custom); setOperationAction(ISD::LOAD, MVT::v8i32, Custom); setOperationAction(ISD::LOAD, MVT::v16i32, Custom); setOperationAction(ISD::LOAD, MVT::i1, Custom); setOperationAction(ISD::STORE, MVT::v2i32, Custom); setOperationAction(ISD::STORE, MVT::v4i32, Custom); setOperationAction(ISD::STORE, MVT::v8i32, Custom); setOperationAction(ISD::STORE, MVT::v16i32, Custom); setOperationAction(ISD::STORE, MVT::i1, Custom); setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand); setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand); setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand); setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand); setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand); setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand); setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand); setOperationAction(ISD::SELECT, MVT::i1, Promote); setOperationAction(ISD::SELECT, MVT::i64, Custom); setOperationAction(ISD::SELECT, MVT::f64, Promote); AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); setOperationAction(ISD::SETCC, MVT::i1, Promote); setOperationAction(ISD::SETCC, MVT::v2i1, Expand); setOperationAction(ISD::SETCC, MVT::v4i1, Expand); AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand); setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom); setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Custom); setOperationAction(ISD::BR_CC, MVT::i1, Expand); setOperationAction(ISD::BR_CC, MVT::i32, Expand); setOperationAction(ISD::BR_CC, MVT::i64, Expand); setOperationAction(ISD::BR_CC, MVT::f32, Expand); setOperationAction(ISD::BR_CC, MVT::f64, Expand); setOperationAction(ISD::UADDO, MVT::i32, Legal); setOperationAction(ISD::USUBO, MVT::i32, Legal); setOperationAction(ISD::ADDCARRY, MVT::i32, Legal); setOperationAction(ISD::SUBCARRY, MVT::i32, Legal); #if 0 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal); setOperationAction(ISD::SUBCARRY, MVT::i64, Legal); #endif //setOperationAction(ISD::ADDC, MVT::i64, Expand); //setOperationAction(ISD::SUBC, MVT::i64, Expand); // We only support LOAD/STORE and vector manipulation ops for vectors // with > 4 elements. for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) { for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { switch (Op) { case ISD::LOAD: case ISD::STORE: case ISD::BUILD_VECTOR: case ISD::BITCAST: case ISD::EXTRACT_VECTOR_ELT: case ISD::INSERT_VECTOR_ELT: case ISD::INSERT_SUBVECTOR: case ISD::EXTRACT_SUBVECTOR: case ISD::SCALAR_TO_VECTOR: break; case ISD::CONCAT_VECTORS: setOperationAction(Op, VT, Custom); break; default: setOperationAction(Op, VT, Expand); break; } } } // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that // is expanded to avoid having two separate loops in case the index is a VGPR. // Most operations are naturally 32-bit vector operations. We only support // load and store of i64 vectors, so promote v2i64 vector operations to v4i32. for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) { setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote); AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32); setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32); setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote); AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32); setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote); AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32); } setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); // Avoid stack access for these. // TODO: Generalize to more vector types. setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, // and output demarshalling setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); // We can't return success/failure, only the old value, // let LLVM add the comparison setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand); if (getSubtarget()->hasFlatAddressSpace()) { setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom); } setOperationAction(ISD::BSWAP, MVT::i32, Legal); setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); // On SI this is s_memtime and s_memrealtime on VI. setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); setOperationAction(ISD::TRAP, MVT::Other, Custom); setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom); setOperationAction(ISD::FMINNUM, MVT::f64, Legal); setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); if (Subtarget->getGeneration() >= SISubtarget::SEA_ISLANDS) { setOperationAction(ISD::FTRUNC, MVT::f64, Legal); setOperationAction(ISD::FCEIL, MVT::f64, Legal); setOperationAction(ISD::FRINT, MVT::f64, Legal); } setOperationAction(ISD::FFLOOR, MVT::f64, Legal); setOperationAction(ISD::FSIN, MVT::f32, Custom); setOperationAction(ISD::FCOS, MVT::f32, Custom); setOperationAction(ISD::FDIV, MVT::f32, Custom); setOperationAction(ISD::FDIV, MVT::f64, Custom); if (Subtarget->has16BitInsts()) { setOperationAction(ISD::Constant, MVT::i16, Legal); setOperationAction(ISD::SMIN, MVT::i16, Legal); setOperationAction(ISD::SMAX, MVT::i16, Legal); setOperationAction(ISD::UMIN, MVT::i16, Legal); setOperationAction(ISD::UMAX, MVT::i16, Legal); setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote); AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32); setOperationAction(ISD::ROTR, MVT::i16, Promote); setOperationAction(ISD::ROTL, MVT::i16, Promote); setOperationAction(ISD::SDIV, MVT::i16, Promote); setOperationAction(ISD::UDIV, MVT::i16, Promote); setOperationAction(ISD::SREM, MVT::i16, Promote); setOperationAction(ISD::UREM, MVT::i16, Promote); setOperationAction(ISD::BSWAP, MVT::i16, Promote); setOperationAction(ISD::BITREVERSE, MVT::i16, Promote); setOperationAction(ISD::CTTZ, MVT::i16, Promote); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); setOperationAction(ISD::CTLZ, MVT::i16, Promote); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); setOperationAction(ISD::SELECT_CC, MVT::i16, Expand); setOperationAction(ISD::BR_CC, MVT::i16, Expand); setOperationAction(ISD::LOAD, MVT::i16, Custom); setTruncStoreAction(MVT::i64, MVT::i16, Expand); setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote); AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32); setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote); AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32); setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); // F16 - Constant Actions. setOperationAction(ISD::ConstantFP, MVT::f16, Legal); // F16 - Load/Store Actions. setOperationAction(ISD::LOAD, MVT::f16, Promote); AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16); setOperationAction(ISD::STORE, MVT::f16, Promote); AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16); // F16 - VOP1 Actions. setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); setOperationAction(ISD::FCOS, MVT::f16, Promote); setOperationAction(ISD::FSIN, MVT::f16, Promote); setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote); setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote); setOperationAction(ISD::FROUND, MVT::f16, Custom); // F16 - VOP2 Actions. setOperationAction(ISD::BR_CC, MVT::f16, Expand); setOperationAction(ISD::SELECT_CC, MVT::f16, Expand); setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); setOperationAction(ISD::FMINNUM, MVT::f16, Legal); setOperationAction(ISD::FDIV, MVT::f16, Custom); // F16 - VOP3 Actions. setOperationAction(ISD::FMA, MVT::f16, Legal); if (!Subtarget->hasFP16Denormals()) setOperationAction(ISD::FMAD, MVT::f16, Legal); } if (Subtarget->hasVOP3PInsts()) { for (MVT VT : {MVT::v2i16, MVT::v2f16}) { for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { switch (Op) { case ISD::LOAD: case ISD::STORE: case ISD::BUILD_VECTOR: case ISD::BITCAST: case ISD::EXTRACT_VECTOR_ELT: case ISD::INSERT_VECTOR_ELT: case ISD::INSERT_SUBVECTOR: case ISD::EXTRACT_SUBVECTOR: case ISD::SCALAR_TO_VECTOR: break; case ISD::CONCAT_VECTORS: setOperationAction(Op, VT, Custom); break; default: setOperationAction(Op, VT, Expand); break; } } } // XXX - Do these do anything? Vector constants turn into build_vector. setOperationAction(ISD::Constant, MVT::v2i16, Legal); setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal); setOperationAction(ISD::STORE, MVT::v2i16, Promote); AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32); setOperationAction(ISD::STORE, MVT::v2f16, Promote); AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32); setOperationAction(ISD::LOAD, MVT::v2i16, Promote); AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32); setOperationAction(ISD::LOAD, MVT::v2f16, Promote); AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32); setOperationAction(ISD::AND, MVT::v2i16, Promote); AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32); setOperationAction(ISD::OR, MVT::v2i16, Promote); AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32); setOperationAction(ISD::XOR, MVT::v2i16, Promote); AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32); setOperationAction(ISD::SELECT, MVT::v2i16, Promote); AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32); setOperationAction(ISD::SELECT, MVT::v2f16, Promote); AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32); setOperationAction(ISD::ADD, MVT::v2i16, Legal); setOperationAction(ISD::SUB, MVT::v2i16, Legal); setOperationAction(ISD::MUL, MVT::v2i16, Legal); setOperationAction(ISD::SHL, MVT::v2i16, Legal); setOperationAction(ISD::SRL, MVT::v2i16, Legal); setOperationAction(ISD::SRA, MVT::v2i16, Legal); setOperationAction(ISD::SMIN, MVT::v2i16, Legal); setOperationAction(ISD::UMIN, MVT::v2i16, Legal); setOperationAction(ISD::SMAX, MVT::v2i16, Legal); setOperationAction(ISD::UMAX, MVT::v2i16, Legal); setOperationAction(ISD::FADD, MVT::v2f16, Legal); setOperationAction(ISD::FNEG, MVT::v2f16, Legal); setOperationAction(ISD::FMUL, MVT::v2f16, Legal); setOperationAction(ISD::FMA, MVT::v2f16, Legal); setOperationAction(ISD::FMINNUM, MVT::v2f16, Legal); setOperationAction(ISD::FMAXNUM, MVT::v2f16, Legal); // This isn't really legal, but this avoids the legalizer unrolling it (and // allows matching fneg (fabs x) patterns) setOperationAction(ISD::FABS, MVT::v2f16, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom); setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand); setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand); setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand); setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand); } else { setOperationAction(ISD::SELECT, MVT::v2i16, Custom); setOperationAction(ISD::SELECT, MVT::v2f16, Custom); } for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) { setOperationAction(ISD::SELECT, VT, Custom); } setTargetDAGCombine(ISD::ADD); setTargetDAGCombine(ISD::ADDCARRY); setTargetDAGCombine(ISD::SUB); setTargetDAGCombine(ISD::SUBCARRY); setTargetDAGCombine(ISD::FADD); setTargetDAGCombine(ISD::FSUB); setTargetDAGCombine(ISD::FMINNUM); setTargetDAGCombine(ISD::FMAXNUM); setTargetDAGCombine(ISD::SMIN); setTargetDAGCombine(ISD::SMAX); setTargetDAGCombine(ISD::UMIN); setTargetDAGCombine(ISD::UMAX); setTargetDAGCombine(ISD::SETCC); setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::XOR); setTargetDAGCombine(ISD::SINT_TO_FP); setTargetDAGCombine(ISD::UINT_TO_FP); setTargetDAGCombine(ISD::FCANONICALIZE); setTargetDAGCombine(ISD::SCALAR_TO_VECTOR); setTargetDAGCombine(ISD::ZERO_EXTEND); setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); setTargetDAGCombine(ISD::BUILD_VECTOR); // All memory operations. Some folding on the pointer operand is done to help // matching the constant offsets in the addressing modes. setTargetDAGCombine(ISD::LOAD); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::ATOMIC_LOAD); setTargetDAGCombine(ISD::ATOMIC_STORE); setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); setTargetDAGCombine(ISD::ATOMIC_SWAP); setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); setSchedulingPreference(Sched::RegPressure); } const SISubtarget *SITargetLowering::getSubtarget() const { return static_cast(Subtarget); } //===----------------------------------------------------------------------===// // TargetLowering queries //===----------------------------------------------------------------------===// bool SITargetLowering::isShuffleMaskLegal(ArrayRef, EVT) const { // SI has some legal vector types, but no legal vector operations. Say no // shuffles are legal in order to prefer scalarizing some vector operations. return false; } bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &CI, MachineFunction &MF, unsigned IntrID) const { switch (IntrID) { case Intrinsic::amdgcn_atomic_inc: case Intrinsic::amdgcn_atomic_dec: { Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::getVT(CI.getType()); Info.ptrVal = CI.getOperand(0); Info.align = 0; Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; const ConstantInt *Vol = dyn_cast(CI.getOperand(4)); if (!Vol || !Vol->isZero()) Info.flags |= MachineMemOperand::MOVolatile; return true; } default: return false; } } bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II, SmallVectorImpl &Ops, Type *&AccessTy) const { switch (II->getIntrinsicID()) { case Intrinsic::amdgcn_atomic_inc: case Intrinsic::amdgcn_atomic_dec: { Value *Ptr = II->getArgOperand(0); AccessTy = II->getType(); Ops.push_back(Ptr); return true; } default: return false; } } bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { if (!Subtarget->hasFlatInstOffsets()) { // Flat instructions do not have offsets, and only have the register // address. return AM.BaseOffs == 0 && AM.Scale == 0; } // GFX9 added a 13-bit signed offset. When using regular flat instructions, // the sign bit is ignored and is treated as a 12-bit unsigned offset. // Just r + i return isUInt<12>(AM.BaseOffs) && AM.Scale == 0; } bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const { if (Subtarget->hasFlatGlobalInsts()) return isInt<13>(AM.BaseOffs) && AM.Scale == 0; if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) { // Assume the we will use FLAT for all global memory accesses // on VI. // FIXME: This assumption is currently wrong. On VI we still use // MUBUF instructions for the r + i addressing mode. As currently // implemented, the MUBUF instructions only work on buffer < 4GB. // It may be possible to support > 4GB buffers with MUBUF instructions, // by setting the stride value in the resource descriptor which would // increase the size limit to (stride * 4GB). However, this is risky, // because it has never been validated. return isLegalFlatAddressingMode(AM); } return isLegalMUBUFAddressingMode(AM); } bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const { // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and // additionally can do r + r + i with addr64. 32-bit has more addressing // mode options. Depending on the resource constant, it can also do // (i64 r0) + (i32 r1) * (i14 i). // // Private arrays end up using a scratch buffer most of the time, so also // assume those use MUBUF instructions. Scratch loads / stores are currently // implemented as mubuf instructions with offen bit set, so slightly // different than the normal addr64. if (!isUInt<12>(AM.BaseOffs)) return false; // FIXME: Since we can split immediate into soffset and immediate offset, // would it make sense to allow any immediate? switch (AM.Scale) { case 0: // r + i or just i, depending on HasBaseReg. return true; case 1: return true; // We have r + r or r + i. case 2: if (AM.HasBaseReg) { // Reject 2 * r + r. return false; } // Allow 2 * r as r + r // Or 2 * r + i is allowed as r + r + i. return true; default: // Don't allow n * r return false; } } bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { // No global is ever allowed as a base. if (AM.BaseGV) return false; if (AS == AMDGPUASI.GLOBAL_ADDRESS) return isLegalGlobalAddressingMode(AM); if (AS == AMDGPUASI.CONSTANT_ADDRESS) { // If the offset isn't a multiple of 4, it probably isn't going to be // correctly aligned. // FIXME: Can we get the real alignment here? if (AM.BaseOffs % 4 != 0) return isLegalMUBUFAddressingMode(AM); // There are no SMRD extloads, so if we have to do a small type access we // will use a MUBUF load. // FIXME?: We also need to do this if unaligned, but we don't know the // alignment here. if (DL.getTypeStoreSize(Ty) < 4) return isLegalGlobalAddressingMode(AM); if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) { // SMRD instructions have an 8-bit, dword offset on SI. if (!isUInt<8>(AM.BaseOffs / 4)) return false; } else if (Subtarget->getGeneration() == SISubtarget::SEA_ISLANDS) { // On CI+, this can also be a 32-bit literal constant offset. If it fits // in 8-bits, it can use a smaller encoding. if (!isUInt<32>(AM.BaseOffs / 4)) return false; } else if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { // On VI, these use the SMEM format and the offset is 20-bit in bytes. if (!isUInt<20>(AM.BaseOffs)) return false; } else llvm_unreachable("unhandled generation"); if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. return true; if (AM.Scale == 1 && AM.HasBaseReg) return true; return false; } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) { return isLegalMUBUFAddressingMode(AM); } else if (AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.REGION_ADDRESS) { // Basic, single offset DS instructions allow a 16-bit unsigned immediate // field. // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have // an 8-bit dword offset but we don't know the alignment here. if (!isUInt<16>(AM.BaseOffs)) return false; if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. return true; if (AM.Scale == 1 && AM.HasBaseReg) return true; return false; } else if (AS == AMDGPUASI.FLAT_ADDRESS || AS == AMDGPUASI.UNKNOWN_ADDRESS_SPACE) { // For an unknown address space, this usually means that this is for some // reason being used for pure arithmetic, and not based on some addressing // computation. We don't have instructions that compute pointers with any // addressing modes, so treat them as having no offset like flat // instructions. return isLegalFlatAddressingMode(AM); } else { llvm_unreachable("unhandled address space"); } } bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, const SelectionDAG &DAG) const { if (AS == AMDGPUASI.GLOBAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) { return (MemVT.getSizeInBits() <= 4 * 32); } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) { unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize(); return (MemVT.getSizeInBits() <= MaxPrivateBits); } else if (AS == AMDGPUASI.LOCAL_ADDRESS) { return (MemVT.getSizeInBits() <= 2 * 32); } return true; } bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace, unsigned Align, bool *IsFast) const { if (IsFast) *IsFast = false; // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, // which isn't a simple VT. // Until MVT is extended to handle this, simply check for the size and // rely on the condition below: allow accesses if the size is a multiple of 4. if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 && VT.getStoreSize() > 16)) { return false; } if (AddrSpace == AMDGPUASI.LOCAL_ADDRESS || AddrSpace == AMDGPUASI.REGION_ADDRESS) { // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte // aligned, 8 byte access in a single operation using ds_read2/write2_b32 // with adjacent offsets. bool AlignedBy4 = (Align % 4 == 0); if (IsFast) *IsFast = AlignedBy4; return AlignedBy4; } // FIXME: We have to be conservative here and assume that flat operations // will access scratch. If we had access to the IR function, then we // could determine if any private memory was used in the function. if (!Subtarget->hasUnalignedScratchAccess() && (AddrSpace == AMDGPUASI.PRIVATE_ADDRESS || AddrSpace == AMDGPUASI.FLAT_ADDRESS)) { return false; } if (Subtarget->hasUnalignedBufferAccess()) { // If we have an uniform constant load, it still requires using a slow // buffer instruction if unaligned. if (IsFast) { *IsFast = (AddrSpace == AMDGPUASI.CONSTANT_ADDRESS) ? (Align % 4 == 0) : true; } return true; } // Smaller than dword value must be aligned. if (VT.bitsLT(MVT::i32)) return false; // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the // byte-address are ignored, thus forcing Dword alignment. // This applies to private, global, and constant memory. if (IsFast) *IsFast = true; return VT.bitsGT(MVT::i32) && Align % 4 == 0; } EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const { // FIXME: Should account for address space here. // The default fallback uses the private pointer size as a guess for a type to // use. Make sure we switch these to 64-bit accesses. if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global return MVT::v4i32; if (Size >= 8 && DstAlign >= 4) return MVT::v2i32; // Use the default. return MVT::Other; } static bool isFlatGlobalAddrSpace(unsigned AS, AMDGPUAS AMDGPUASI) { return AS == AMDGPUASI.GLOBAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS || AS == AMDGPUASI.CONSTANT_ADDRESS; } bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { return isFlatGlobalAddrSpace(SrcAS, AMDGPUASI) && isFlatGlobalAddrSpace(DestAS, AMDGPUASI); } bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const { const MemSDNode *MemNode = cast(N); const Value *Ptr = MemNode->getMemOperand()->getValue(); const Instruction *I = dyn_cast(Ptr); return I && I->getMetadata("amdgpu.noclobber"); } bool SITargetLowering::isCheapAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { // Flat -> private/local is a simple truncate. // Flat -> global is no-op if (SrcAS == AMDGPUASI.FLAT_ADDRESS) return true; return isNoopAddrSpaceCast(SrcAS, DestAS); } bool SITargetLowering::isMemOpUniform(const SDNode *N) const { const MemSDNode *MemNode = cast(N); return AMDGPU::isUniformMMO(MemNode->getMemOperand()); } TargetLoweringBase::LegalizeTypeAction SITargetLowering::getPreferredVectorAction(EVT VT) const { if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16)) return TypeSplitVector; return TargetLoweringBase::getPreferredVectorAction(VT); } bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { // FIXME: Could be smarter if called for vector constants. return true; } bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const { if (Subtarget->has16BitInsts() && VT == MVT::i16) { switch (Op) { case ISD::LOAD: case ISD::STORE: // These operations are done with 32-bit instructions anyway. case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SELECT: // TODO: Extensions? return true; default: return false; } } // SimplifySetCC uses this function to determine whether or not it should // create setcc with i1 operands. We don't have instructions for i1 setcc. if (VT == MVT::i1 && Op == ISD::SETCC) return false; return TargetLowering::isTypeDesirableForOp(Op, VT); } SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG, const SDLoc &SL, SDValue Chain, uint64_t Offset) const { const DataLayout &DL = DAG.getDataLayout(); MachineFunction &MF = DAG.getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo(); const ArgDescriptor *InputPtrReg; const TargetRegisterClass *RC; std::tie(InputPtrReg, RC) = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); MVT PtrVT = getPointerTy(DL, AMDGPUASI.CONSTANT_ADDRESS); SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT); return DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, DAG.getConstant(Offset, SL, PtrVT)); } SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG, const SDLoc &SL) const { auto MFI = DAG.getMachineFunction().getInfo(); uint64_t Offset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT); return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset); } SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Val, bool Signed, const ISD::InputArg *Arg) const { if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && VT.bitsLT(MemVT)) { unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext; Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT)); } if (MemVT.isFloatingPoint()) Val = getFPExtOrFPTrunc(DAG, Val, SL, VT); else if (Signed) Val = DAG.getSExtOrTrunc(Val, SL, VT); else Val = DAG.getZExtOrTrunc(Val, SL, VT); return Val; } SDValue SITargetLowering::lowerKernargMemParameter( SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain, uint64_t Offset, bool Signed, const ISD::InputArg *Arg) const { const DataLayout &DL = DAG.getDataLayout(); Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS); MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); unsigned Align = DL.getABITypeAlignment(Ty); SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset); SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align, MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg); return DAG.getMergeValues({ Val, Load.getValue(1) }, SL); } SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA, const SDLoc &SL, SDValue Chain, const ISD::InputArg &Arg) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); if (Arg.Flags.isByVal()) { unsigned Size = Arg.Flags.getByValSize(); int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false); return DAG.getFrameIndex(FrameIdx, MVT::i32); } unsigned ArgOffset = VA.getLocMemOffset(); unsigned ArgSize = VA.getValVT().getStoreSize(); int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true); // Create load nodes to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); SDValue ArgValue; // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; MVT MemVT = VA.getValVT(); switch (VA.getLocInfo()) { default: break; case CCValAssign::BCvt: MemVT = VA.getLocVT(); break; case CCValAssign::SExt: ExtType = ISD::SEXTLOAD; break; case CCValAssign::ZExt: ExtType = ISD::ZEXTLOAD; break; case CCValAssign::AExt: ExtType = ISD::EXTLOAD; break; } ArgValue = DAG.getExtLoad( ExtType, SL, VA.getLocVT(), Chain, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), MemVT); return ArgValue; } SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG, const SIMachineFunctionInfo &MFI, EVT VT, AMDGPUFunctionArgInfo::PreloadedValue PVID) const { const ArgDescriptor *Reg; const TargetRegisterClass *RC; std::tie(Reg, RC) = MFI.getPreloadedValue(PVID); return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT); } static void processShaderInputArgs(SmallVectorImpl &Splits, CallingConv::ID CallConv, ArrayRef Ins, BitVector &Skipped, FunctionType *FType, SIMachineFunctionInfo *Info) { for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) { const ISD::InputArg &Arg = Ins[I]; // First check if it's a PS input addr. if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() && !Arg.Flags.isByVal() && PSInputNum <= 15) { if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) { // We can safely skip PS inputs. Skipped.set(I); ++PSInputNum; continue; } Info->markPSInputAllocated(PSInputNum); if (Arg.Used) Info->markPSInputEnabled(PSInputNum); ++PSInputNum; } // Second split vertices into their elements. if (Arg.VT.isVector()) { ISD::InputArg NewArg = Arg; NewArg.Flags.setSplit(); NewArg.VT = Arg.VT.getVectorElementType(); // We REALLY want the ORIGINAL number of vertex elements here, e.g. a // three or five element vertex only needs three or five registers, // NOT four or eight. Type *ParamType = FType->getParamType(Arg.getOrigArgIndex()); unsigned NumElements = ParamType->getVectorNumElements(); for (unsigned J = 0; J != NumElements; ++J) { Splits.push_back(NewArg); NewArg.PartOffset += NewArg.VT.getStoreSize(); } } else { Splits.push_back(Arg); } } } // Allocate special inputs passed in VGPRs. static void allocateSpecialEntryInputVGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) { if (Info.hasWorkItemIDX()) { unsigned Reg = AMDGPU::VGPR0; MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); CCInfo.AllocateReg(Reg); Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg)); } if (Info.hasWorkItemIDY()) { unsigned Reg = AMDGPU::VGPR1; MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); CCInfo.AllocateReg(Reg); Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg)); } if (Info.hasWorkItemIDZ()) { unsigned Reg = AMDGPU::VGPR2; MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); CCInfo.AllocateReg(Reg); Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg)); } } // Try to allocate a VGPR at the end of the argument list, or if no argument // VGPRs are left allocating a stack slot. static ArgDescriptor allocateVGPR32Input(CCState &CCInfo) { ArrayRef ArgVGPRs = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32); unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs); if (RegIdx == ArgVGPRs.size()) { // Spill to stack required. int64_t Offset = CCInfo.AllocateStack(4, 4); return ArgDescriptor::createStack(Offset); } unsigned Reg = ArgVGPRs[RegIdx]; Reg = CCInfo.AllocateReg(Reg); assert(Reg != AMDGPU::NoRegister); MachineFunction &MF = CCInfo.getMachineFunction(); MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass); return ArgDescriptor::createRegister(Reg); } static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo, const TargetRegisterClass *RC, unsigned NumArgRegs) { ArrayRef ArgSGPRs = makeArrayRef(RC->begin(), 32); unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs); if (RegIdx == ArgSGPRs.size()) report_fatal_error("ran out of SGPRs for arguments"); unsigned Reg = ArgSGPRs[RegIdx]; Reg = CCInfo.AllocateReg(Reg); assert(Reg != AMDGPU::NoRegister); MachineFunction &MF = CCInfo.getMachineFunction(); MF.addLiveIn(Reg, RC); return ArgDescriptor::createRegister(Reg); } static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) { return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32); } static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) { return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16); } static void allocateSpecialInputVGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) { if (Info.hasWorkItemIDX()) Info.setWorkItemIDX(allocateVGPR32Input(CCInfo)); if (Info.hasWorkItemIDY()) Info.setWorkItemIDY(allocateVGPR32Input(CCInfo)); if (Info.hasWorkItemIDZ()) Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo)); } static void allocateSpecialInputSGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) { auto &ArgInfo = Info.getArgInfo(); // TODO: Unify handling with private memory pointers. if (Info.hasDispatchPtr()) ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo); if (Info.hasQueuePtr()) ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo); if (Info.hasKernargSegmentPtr()) ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo); if (Info.hasDispatchID()) ArgInfo.DispatchID = allocateSGPR64Input(CCInfo); // flat_scratch_init is not applicable for non-kernel functions. if (Info.hasWorkGroupIDX()) ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo); if (Info.hasWorkGroupIDY()) ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo); if (Info.hasWorkGroupIDZ()) ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo); if (Info.hasImplicitArgPtr()) ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo); } // Allocate special inputs passed in user SGPRs. static void allocateHSAUserSGPRs(CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) { if (Info.hasImplicitBufferPtr()) { unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI); MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(ImplicitBufferPtrReg); } // FIXME: How should these inputs interact with inreg / custom SGPR inputs? if (Info.hasPrivateSegmentBuffer()) { unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); CCInfo.AllocateReg(PrivateSegmentBufferReg); } if (Info.hasDispatchPtr()) { unsigned DispatchPtrReg = Info.addDispatchPtr(TRI); MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(DispatchPtrReg); } if (Info.hasQueuePtr()) { unsigned QueuePtrReg = Info.addQueuePtr(TRI); MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(QueuePtrReg); } if (Info.hasKernargSegmentPtr()) { unsigned InputPtrReg = Info.addKernargSegmentPtr(TRI); MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(InputPtrReg); } if (Info.hasDispatchID()) { unsigned DispatchIDReg = Info.addDispatchID(TRI); MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(DispatchIDReg); } if (Info.hasFlatScratchInit()) { unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI); MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); CCInfo.AllocateReg(FlatScratchInitReg); } // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read // these from the dispatch pointer. } // Allocate special input registers that are initialized per-wave. static void allocateSystemSGPRs(CCState &CCInfo, MachineFunction &MF, SIMachineFunctionInfo &Info, CallingConv::ID CallConv, bool IsShader) { if (Info.hasWorkGroupIDX()) { unsigned Reg = Info.addWorkGroupIDX(); MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); CCInfo.AllocateReg(Reg); } if (Info.hasWorkGroupIDY()) { unsigned Reg = Info.addWorkGroupIDY(); MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); CCInfo.AllocateReg(Reg); } if (Info.hasWorkGroupIDZ()) { unsigned Reg = Info.addWorkGroupIDZ(); MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); CCInfo.AllocateReg(Reg); } if (Info.hasWorkGroupInfo()) { unsigned Reg = Info.addWorkGroupInfo(); MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass); CCInfo.AllocateReg(Reg); } if (Info.hasPrivateSegmentWaveByteOffset()) { // Scratch wave offset passed in system SGPR. unsigned PrivateSegmentWaveByteOffsetReg; if (IsShader) { PrivateSegmentWaveByteOffsetReg = Info.getPrivateSegmentWaveByteOffsetSystemSGPR(); // This is true if the scratch wave byte offset doesn't have a fixed // location. if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) { PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo); Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg); } } else PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset(); MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass); CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg); } } static void reservePrivateMemoryRegs(const TargetMachine &TM, MachineFunction &MF, const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) { // Now that we've figured out where the scratch register inputs are, see if // should reserve the arguments and use them directly. MachineFrameInfo &MFI = MF.getFrameInfo(); bool HasStackObjects = MFI.hasStackObjects(); // Record that we know we have non-spill stack objects so we don't need to // check all stack objects later. if (HasStackObjects) Info.setHasNonSpillStackObjects(true); // Everything live out of a block is spilled with fast regalloc, so it's // almost certain that spilling will be required. if (TM.getOptLevel() == CodeGenOpt::None) HasStackObjects = true; // For now assume stack access is needed in any callee functions, so we need // the scratch registers to pass in. bool RequiresStackAccess = HasStackObjects || MFI.hasCalls(); const SISubtarget &ST = MF.getSubtarget(); if (ST.isAmdCodeObjectV2(MF)) { if (RequiresStackAccess) { // If we have stack objects, we unquestionably need the private buffer // resource. For the Code Object V2 ABI, this will be the first 4 user // SGPR inputs. We can reserve those and use them directly. unsigned PrivateSegmentBufferReg = Info.getPreloadedReg( AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER); Info.setScratchRSrcReg(PrivateSegmentBufferReg); if (MFI.hasCalls()) { // If we have calls, we need to keep the frame register in a register // that won't be clobbered by a call, so ensure it is copied somewhere. // This is not a problem for the scratch wave offset, because the same // registers are reserved in all functions. // FIXME: Nothing is really ensuring this is a call preserved register, // it's just selected from the end so it happens to be. unsigned ReservedOffsetReg = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); Info.setScratchWaveOffsetReg(ReservedOffsetReg); } else { unsigned PrivateSegmentWaveByteOffsetReg = Info.getPreloadedReg( AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET); Info.setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg); } } else { unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); unsigned ReservedOffsetReg = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); // We tentatively reserve the last registers (skipping the last two // which may contain VCC). After register allocation, we'll replace // these with the ones immediately after those which were really // allocated. In the prologue copies will be inserted from the argument // to these reserved registers. Info.setScratchRSrcReg(ReservedBufferReg); Info.setScratchWaveOffsetReg(ReservedOffsetReg); } } else { unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF); // Without HSA, relocations are used for the scratch pointer and the // buffer resource setup is always inserted in the prologue. Scratch wave // offset is still in an input SGPR. Info.setScratchRSrcReg(ReservedBufferReg); if (HasStackObjects && !MFI.hasCalls()) { unsigned ScratchWaveOffsetReg = Info.getPreloadedReg( AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET); Info.setScratchWaveOffsetReg(ScratchWaveOffsetReg); } else { unsigned ReservedOffsetReg = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF); Info.setScratchWaveOffsetReg(ReservedOffsetReg); } } } bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const { const SIMachineFunctionInfo *Info = MF->getInfo(); return !Info->isEntryFunction(); } void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { } void SITargetLowering::insertCopiesSplitCSR( MachineBasicBlock *Entry, const SmallVectorImpl &Exits) const { const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); if (!IStart) return; const TargetInstrInfo *TII = Subtarget->getInstrInfo(); MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); MachineBasicBlock::iterator MBBI = Entry->begin(); for (const MCPhysReg *I = IStart; *I; ++I) { const TargetRegisterClass *RC = nullptr; if (AMDGPU::SReg_64RegClass.contains(*I)) RC = &AMDGPU::SGPR_64RegClass; else if (AMDGPU::SReg_32RegClass.contains(*I)) RC = &AMDGPU::SGPR_32RegClass; else llvm_unreachable("Unexpected register class in CSRsViaCopy!"); unsigned NewVR = MRI->createVirtualRegister(RC); // Create copy from CSR to a virtual register. Entry->addLiveIn(*I); BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) .addReg(*I); // Insert the copy-back instructions right before the terminator. for (auto *Exit : Exits) BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), TII->get(TargetOpcode::COPY), *I) .addReg(NewVR); } } SDValue SITargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); MachineFunction &MF = DAG.getMachineFunction(); FunctionType *FType = MF.getFunction().getFunctionType(); SIMachineFunctionInfo *Info = MF.getInfo(); const SISubtarget &ST = MF.getSubtarget(); if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) { const Function &Fn = MF.getFunction(); DiagnosticInfoUnsupported NoGraphicsHSA( Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc()); DAG.getContext()->diagnose(NoGraphicsHSA); return DAG.getEntryNode(); } // Create stack objects that are used for emitting debugger prologue if // "amdgpu-debugger-emit-prologue" attribute was specified. if (ST.debuggerEmitPrologue()) createDebuggerPrologueStackObjects(MF); SmallVector Splits; SmallVector ArgLocs; BitVector Skipped(Ins.size()); CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); bool IsShader = AMDGPU::isShader(CallConv); bool IsKernel = AMDGPU::isKernel(CallConv); bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv); if (!IsEntryFunc) { // 4 bytes are reserved at offset 0 for the emergency stack slot. Skip over // this when allocating argument fixed offsets. CCInfo.AllocateStack(4, 4); } if (IsShader) { processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info); // At least one interpolation mode must be enabled or else the GPU will // hang. // // Check PSInputAddr instead of PSInputEnable. The idea is that if the user // set PSInputAddr, the user wants to enable some bits after the compilation // based on run-time states. Since we can't know what the final PSInputEna // will look like, so we shouldn't do anything here and the user should take // responsibility for the correct programming. // // Otherwise, the following restrictions apply: // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be // enabled too. if (CallConv == CallingConv::AMDGPU_PS) { if ((Info->getPSInputAddr() & 0x7F) == 0 || ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) { CCInfo.AllocateReg(AMDGPU::VGPR0); CCInfo.AllocateReg(AMDGPU::VGPR1); Info->markPSInputAllocated(0); Info->markPSInputEnabled(0); } if (Subtarget->isAmdPalOS()) { // For isAmdPalOS, the user does not enable some bits after compilation // based on run-time states; the register values being generated here are // the final ones set in hardware. Therefore we need to apply the // workaround to PSInputAddr and PSInputEnable together. (The case where // a bit is set in PSInputAddr but not PSInputEnable is where the // frontend set up an input arg for a particular interpolation mode, but // nothing uses that input arg. Really we should have an earlier pass // that removes such an arg.) unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); if ((PsInputBits & 0x7F) == 0 || ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1))) Info->markPSInputEnabled( countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); } } assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()); } else if (IsKernel) { assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()); } else { Splits.append(Ins.begin(), Ins.end()); } if (IsEntryFunc) { allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info); } if (IsKernel) { analyzeFormalArgumentsCompute(CCInfo, Ins); } else { CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg); CCInfo.AnalyzeFormalArguments(Splits, AssignFn); } SmallVector Chains; for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { const ISD::InputArg &Arg = Ins[i]; if (Skipped[i]) { InVals.push_back(DAG.getUNDEF(Arg.VT)); continue; } CCValAssign &VA = ArgLocs[ArgIdx++]; MVT VT = VA.getLocVT(); if (IsEntryFunc && VA.isMemLoc()) { VT = Ins[i].VT; EVT MemVT = VA.getLocVT(); const uint64_t Offset = Subtarget->getExplicitKernelArgOffset(MF) + VA.getLocMemOffset(); Info->setABIArgOffset(Offset + MemVT.getStoreSize()); // The first 36 bytes of the input buffer contains information about // thread group and global sizes. SDValue Arg = lowerKernargMemParameter( DAG, VT, MemVT, DL, Chain, Offset, Ins[i].Flags.isSExt(), &Ins[i]); Chains.push_back(Arg.getValue(1)); auto *ParamTy = dyn_cast(FType->getParamType(Ins[i].getOrigArgIndex())); if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS && ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { // On SI local pointers are just offsets into LDS, so they are always // less than 16-bits. On CI and newer they could potentially be // real pointers, so we can't guarantee their size. Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, DAG.getValueType(MVT::i16)); } InVals.push_back(Arg); continue; } else if (!IsEntryFunc && VA.isMemLoc()) { SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg); InVals.push_back(Val); if (!Arg.Flags.isByVal()) Chains.push_back(Val.getValue(1)); continue; } assert(VA.isRegLoc() && "Parameter must be in a register!"); unsigned Reg = VA.getLocReg(); const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); EVT ValVT = VA.getValVT(); Reg = MF.addLiveIn(Reg, RC); SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); if (Arg.Flags.isSRet() && !getSubtarget()->enableHugePrivateBuffer()) { // The return object should be reasonably addressable. // FIXME: This helps when the return is a real sret. If it is a // automatically inserted sret (i.e. CanLowerReturn returns false), an // extra copy is inserted in SelectionDAGBuilder which obscures this. unsigned NumBits = 32 - AssumeFrameIndexHighZeroBits; Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits))); } // If this is an 8 or 16-bit value, it is really passed promoted // to 32 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val); break; case CCValAssign::SExt: Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, DAG.getValueType(ValVT)); Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); break; case CCValAssign::ZExt: Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, DAG.getValueType(ValVT)); Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); break; case CCValAssign::AExt: Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val); break; default: llvm_unreachable("Unknown loc info!"); } if (IsShader && Arg.VT.isVector()) { // Build a vector from the registers Type *ParamType = FType->getParamType(Arg.getOrigArgIndex()); unsigned NumElements = ParamType->getVectorNumElements(); SmallVector Regs; Regs.push_back(Val); for (unsigned j = 1; j != NumElements; ++j) { Reg = ArgLocs[ArgIdx++].getLocReg(); Reg = MF.addLiveIn(Reg, RC); SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT); Regs.push_back(Copy); } // Fill up the missing vector elements NumElements = Arg.VT.getVectorNumElements() - NumElements; Regs.append(NumElements, DAG.getUNDEF(VT)); InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs)); continue; } InVals.push_back(Val); } if (!IsEntryFunc) { // Special inputs come after user arguments. allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); } // Start adding system SGPRs. if (IsEntryFunc) { allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader); } else { CCInfo.AllocateReg(Info->getScratchRSrcReg()); CCInfo.AllocateReg(Info->getScratchWaveOffsetReg()); CCInfo.AllocateReg(Info->getFrameOffsetReg()); allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); } auto &ArgUsageInfo = DAG.getPass()->getAnalysis(); ArgUsageInfo.setFuncArgInfo(MF.getFunction(), Info->getArgInfo()); unsigned StackArgSize = CCInfo.getNextStackOffset(); Info->setBytesInStackArgArea(StackArgSize); return Chains.empty() ? Chain : DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); } // TODO: If return values can't fit in registers, we should return as many as // possible in registers before passing on stack. bool SITargetLowering::CanLowerReturn( CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { // Replacing returns with sret/stack usage doesn't make sense for shaders. // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn // for shaders. Vector types should be explicitly handled by CC. if (AMDGPU::isEntryFunctionCC(CallConv)) return true; SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)); } SDValue SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *Info = MF.getInfo(); if (AMDGPU::isKernel(CallConv)) { return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs, OutVals, DL, DAG); } bool IsShader = AMDGPU::isShader(CallConv); Info->setIfReturnsVoid(Outs.size() == 0); bool IsWaveEnd = Info->returnsVoid() && IsShader; SmallVector Splits; SmallVector SplitVals; // Split vectors into their elements. for (unsigned i = 0, e = Outs.size(); i != e; ++i) { const ISD::OutputArg &Out = Outs[i]; if (IsShader && Out.VT.isVector()) { MVT VT = Out.VT.getVectorElementType(); ISD::OutputArg NewOut = Out; NewOut.Flags.setSplit(); NewOut.VT = VT; // We want the original number of vector elements here, e.g. // three or five, not four or eight. unsigned NumElements = Out.ArgVT.getVectorNumElements(); for (unsigned j = 0; j != NumElements; ++j) { SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i], DAG.getConstant(j, DL, MVT::i32)); SplitVals.push_back(Elem); Splits.push_back(NewOut); NewOut.PartOffset += NewOut.VT.getStoreSize(); } } else { SplitVals.push_back(OutVals[i]); Splits.push_back(Out); } } // CCValAssign - represent the assignment of the return value to a location. SmallVector RVLocs; // CCState - Info about the registers and stack slots. CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); // Analyze outgoing return values. CCInfo.AnalyzeReturn(Splits, CCAssignFnForReturn(CallConv, isVarArg)); SDValue Flag; SmallVector RetOps; RetOps.push_back(Chain); // Operand #0 = Chain (updated below) // Add return address for callable functions. if (!Info->isEntryFunction()) { const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); SDValue ReturnAddrReg = CreateLiveInRegister( DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); // FIXME: Should be able to use a vreg here, but need a way to prevent it // from being allcoated to a CSR. SDValue PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), MVT::i64); Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, Flag); Flag = Chain.getValue(1); RetOps.push_back(PhysReturnAddrReg); } // Copy the result values into the output registers. for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); ++i, ++realRVLocIdx) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); // TODO: Partially return in registers if return values don't fit. SDValue Arg = SplitVals[realRVLocIdx]; // Copied from other backends. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); break; default: llvm_unreachable("Unknown loc info!"); } Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } // FIXME: Does sret work properly? if (!Info->isEntryFunction()) { const SIRegisterInfo *TRI = static_cast(Subtarget)->getRegisterInfo(); const MCPhysReg *I = TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); if (I) { for (; *I; ++I) { if (AMDGPU::SReg_64RegClass.contains(*I)) RetOps.push_back(DAG.getRegister(*I, MVT::i64)); else if (AMDGPU::SReg_32RegClass.contains(*I)) RetOps.push_back(DAG.getRegister(*I, MVT::i32)); else llvm_unreachable("Unexpected register class in CSRsViaCopy!"); } } } // Update chain and glue. RetOps[0] = Chain; if (Flag.getNode()) RetOps.push_back(Flag); unsigned Opc = AMDGPUISD::ENDPGM; if (!IsWaveEnd) Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG; return DAG.getNode(Opc, DL, MVT::Other, RetOps); } SDValue SITargetLowering::LowerCallResult( SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals, bool IsThisReturn, SDValue ThisVal) const { CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg); // Assign locations to each value returned by this call. SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign VA = RVLocs[i]; SDValue Val; if (VA.isRegLoc()) { Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); Chain = Val.getValue(1); InFlag = Val.getValue(2); } else if (VA.isMemLoc()) { report_fatal_error("TODO: return values in memory"); } else llvm_unreachable("unknown argument location type"); switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); break; case CCValAssign::ZExt: Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val, DAG.getValueType(VA.getValVT())); Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); break; case CCValAssign::SExt: Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val, DAG.getValueType(VA.getValVT())); Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); break; case CCValAssign::AExt: Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val); break; default: llvm_unreachable("Unknown loc info!"); } InVals.push_back(Val); } return Chain; } // Add code to pass special inputs required depending on used features separate // from the explicit user arguments present in the IR. void SITargetLowering::passSpecialInputs( CallLoweringInfo &CLI, const SIMachineFunctionInfo &Info, SmallVectorImpl> &RegsToPass, SmallVectorImpl &MemOpChains, SDValue Chain, SDValue StackPtr) const { // If we don't have a call site, this was a call inserted by // legalization. These can never use special inputs. if (!CLI.CS) return; const Function *CalleeFunc = CLI.CS.getCalledFunction(); assert(CalleeFunc); SelectionDAG &DAG = CLI.DAG; const SDLoc &DL = CLI.DL; const SISubtarget *ST = getSubtarget(); const SIRegisterInfo *TRI = ST->getRegisterInfo(); auto &ArgUsageInfo = DAG.getPass()->getAnalysis(); const AMDGPUFunctionArgInfo &CalleeArgInfo = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc); const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo(); // TODO: Unify with private memory register handling. This is complicated by // the fact that at least in kernels, the input argument is not necessarily // in the same location as the input. AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { AMDGPUFunctionArgInfo::DISPATCH_PTR, AMDGPUFunctionArgInfo::QUEUE_PTR, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR, AMDGPUFunctionArgInfo::DISPATCH_ID, AMDGPUFunctionArgInfo::WORKGROUP_ID_X, AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, AMDGPUFunctionArgInfo::WORKGROUP_ID_Z, AMDGPUFunctionArgInfo::WORKITEM_ID_X, AMDGPUFunctionArgInfo::WORKITEM_ID_Y, AMDGPUFunctionArgInfo::WORKITEM_ID_Z, AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR }; for (auto InputID : InputRegs) { const ArgDescriptor *OutgoingArg; const TargetRegisterClass *ArgRC; std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID); if (!OutgoingArg) continue; const ArgDescriptor *IncomingArg; const TargetRegisterClass *IncomingArgRC; std::tie(IncomingArg, IncomingArgRC) = CallerArgInfo.getPreloadedValue(InputID); assert(IncomingArgRC == ArgRC); // All special arguments are ints for now. EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32; SDValue InputReg; if (IncomingArg) { InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg); } else { // The implicit arg ptr is special because it doesn't have a corresponding // input for kernels, and is computed from the kernarg segment pointer. assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); InputReg = getImplicitArgPtr(DAG, DL); } if (OutgoingArg->isRegister()) { RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg); } else { SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, StackPtr, InputReg, OutgoingArg->getStackOffset()); MemOpChains.push_back(ArgStore); } } } static bool canGuaranteeTCO(CallingConv::ID CC) { return CC == CallingConv::Fast; } /// Return true if we might ever do TCO for calls with this calling convention. static bool mayTailCallThisCC(CallingConv::ID CC) { switch (CC) { case CallingConv::C: return true; default: return canGuaranteeTCO(CC); } } bool SITargetLowering::isEligibleForTailCallOptimization( SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG &DAG) const { if (!mayTailCallThisCC(CalleeCC)) return false; MachineFunction &MF = DAG.getMachineFunction(); const Function &CallerF = MF.getFunction(); CallingConv::ID CallerCC = CallerF.getCallingConv(); const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); // Kernels aren't callable, and don't have a live in return address so it // doesn't make sense to do a tail call with entry functions. if (!CallerPreserved) return false; bool CCMatch = CallerCC == CalleeCC; if (DAG.getTarget().Options.GuaranteedTailCallOpt) { if (canGuaranteeTCO(CalleeCC) && CCMatch) return true; return false; } // TODO: Can we handle var args? if (IsVarArg) return false; for (const Argument &Arg : CallerF.args()) { if (Arg.hasByValAttr()) return false; } LLVMContext &Ctx = *DAG.getContext(); // Check that the call results are passed in the same way. if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins, CCAssignFnForCall(CalleeCC, IsVarArg), CCAssignFnForCall(CallerCC, IsVarArg))) return false; // The callee has to preserve all registers the caller needs to preserve. if (!CCMatch) { const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) return false; } // Nothing more to check if the callee is taking no arguments. if (Outs.empty()) return true; SmallVector ArgLocs; CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg)); const SIMachineFunctionInfo *FuncInfo = MF.getInfo(); // If the stack arguments for this call do not fit into our own save area then // the call cannot be made tail. // TODO: Is this really necessary? if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) return false; const MachineRegisterInfo &MRI = MF.getRegInfo(); return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals); } bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { if (!CI->isTailCall()) return false; const Function *ParentFn = CI->getParent()->getParent(); if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv())) return false; auto Attr = ParentFn->getFnAttribute("disable-tail-calls"); return (Attr.getValueAsString() != "true"); } // The wave scratch offset register is used as the global base pointer. SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; const SDLoc &DL = CLI.DL; SmallVector &Outs = CLI.Outs; SmallVector &OutVals = CLI.OutVals; SmallVector &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; bool IsSibCall = false; bool IsThisReturn = false; MachineFunction &MF = DAG.getMachineFunction(); if (IsVarArg) { return lowerUnhandledCall(CLI, InVals, "unsupported call to variadic function "); } if (!CLI.CS.getCalledFunction()) { return lowerUnhandledCall(CLI, InVals, "unsupported indirect call to function "); } if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) { return lowerUnhandledCall(CLI, InVals, "unsupported required tail call to function "); } // The first 4 bytes are reserved for the callee's emergency stack slot. const unsigned CalleeUsableStackOffset = 4; if (IsTailCall) { IsTailCall = isEligibleForTailCallOptimization( Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) { report_fatal_error("failed to perform tail call elimination on a call " "site marked musttail"); } bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; // A sibling call is one where we're under the usual C ABI and not planning // to change that but can still do a tail call: if (!TailCallOpt && IsTailCall) IsSibCall = true; if (IsTailCall) ++NumTailCalls; } if (GlobalAddressSDNode *GA = dyn_cast(Callee)) { // FIXME: Remove this hack for function pointer types after removing // support of old address space mapping. In the new address space // mapping the pointer in default address space is 64 bit, therefore // does not need this hack. if (Callee.getValueType() == MVT::i32) { const GlobalValue *GV = GA->getGlobal(); Callee = DAG.getGlobalAddress(GV, DL, MVT::i64, GA->getOffset(), false, GA->getTargetFlags()); } } assert(Callee.getValueType() == MVT::i64); const SIMachineFunctionInfo *Info = MF.getInfo(); // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg); CCInfo.AnalyzeCallOperands(Outs, AssignFn); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); if (IsSibCall) { // Since we're not changing the ABI to make this a tail call, the memory // operands are already available in the caller's incoming argument space. NumBytes = 0; } // FPDiff is the byte offset of the call's argument area from the callee's. // Stores to callee stack arguments will be placed in FixedStackSlots offset // by this amount for a tail call. In a sibling call it must be 0 because the // caller will deallocate the entire stack and the callee still expects its // arguments to begin at SP+0. Completely unused for non-tail calls. int32_t FPDiff = 0; MachineFrameInfo &MFI = MF.getFrameInfo(); SmallVector, 8> RegsToPass; SDValue CallerSavedFP; // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass if (!IsSibCall) { Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL); unsigned OffsetReg = Info->getScratchWaveOffsetReg(); // In the HSA case, this should be an identity copy. SDValue ScratchRSrcReg = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32); RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); // TODO: Don't hardcode these registers and get from the callee function. SDValue ScratchWaveOffsetReg = DAG.getCopyFromReg(Chain, DL, OffsetReg, MVT::i32); RegsToPass.emplace_back(AMDGPU::SGPR4, ScratchWaveOffsetReg); if (!Info->isEntryFunction()) { // Avoid clobbering this function's FP value. In the current convention // callee will overwrite this, so do save/restore around the call site. CallerSavedFP = DAG.getCopyFromReg(Chain, DL, Info->getFrameOffsetReg(), MVT::i32); } } // Stack pointer relative accesses are done by changing the offset SGPR. This // is just the VGPR offset component. SDValue StackPtr = DAG.getConstant(CalleeUsableStackOffset, DL, MVT::i32); SmallVector MemOpChains; MVT PtrVT = MVT::i32; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; ++i, ++realArgIdx) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[realArgIdx]; // Promote the value if needed. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); break; case CCValAssign::FPExt: Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); break; default: llvm_unreachable("Unknown loc info!"); } if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else { assert(VA.isMemLoc()); SDValue DstAddr; MachinePointerInfo DstInfo; unsigned LocMemOffset = VA.getLocMemOffset(); int32_t Offset = LocMemOffset; SDValue PtrOff = DAG.getObjectPtrOffset(DL, StackPtr, Offset); if (IsTailCall) { ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() : VA.getValVT().getStoreSize(); Offset = Offset + FPDiff; int FI = MFI.CreateFixedObject(OpSize, Offset, true); DstAddr = DAG.getObjectPtrOffset(DL, DAG.getFrameIndex(FI, PtrVT), StackPtr); DstInfo = MachinePointerInfo::getFixedStack(MF, FI); // Make sure any stack arguments overlapping with where we're storing // are loaded before this eventual operation. Otherwise they'll be // clobbered. // FIXME: Why is this really necessary? This seems to just result in a // lot of code to copy the stack and write them back to the same // locations, which are supposed to be immutable? Chain = addTokenForArgument(Chain, DAG, MFI, FI); } else { DstAddr = PtrOff; DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); } if (Outs[i].Flags.isByVal()) { SDValue SizeNode = DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32); SDValue Cpy = DAG.getMemcpy( Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), /*isVol = */ false, /*AlwaysInline = */ true, /*isTailCall = */ false, DstInfo, MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy( *DAG.getContext(), AMDGPUASI.PRIVATE_ADDRESS)))); MemOpChains.push_back(Cpy); } else { SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo); MemOpChains.push_back(Store); } } } // Copy special input registers after user input arguments. passSpecialInputs(CLI, *Info, RegsToPass, MemOpChains, Chain, StackPtr); if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InFlag; for (auto &RegToPass : RegsToPass) { Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, RegToPass.second, InFlag); InFlag = Chain.getValue(1); } SDValue PhysReturnAddrReg; if (IsTailCall) { // Since the return is being combined with the call, we need to pass on the // return address. const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo(); SDValue ReturnAddrReg = CreateLiveInRegister( DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64); PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF), MVT::i64); Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag); InFlag = Chain.getValue(1); } // We don't usually want to end the call-sequence here because we would tidy // the frame up *after* the call, however in the ABI-changing tail-call case // we've carefully laid out the parameters so that when sp is reset they'll be // in the correct location. if (IsTailCall && !IsSibCall) { Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(NumBytes, DL, MVT::i32), DAG.getTargetConstant(0, DL, MVT::i32), InFlag, DL); InFlag = Chain.getValue(1); } std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); if (IsTailCall) { // Each tail call may have to adjust the stack by a different amount, so // this information must travel along with the operation for eventual // consumption by emitEpilogue. Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); Ops.push_back(PhysReturnAddrReg); } // Add argument registers to the end of the list so that they are known live // into the call. for (auto &RegToPass : RegsToPass) { Ops.push_back(DAG.getRegister(RegToPass.first, RegToPass.second.getValueType())); } // Add a register mask operand representing the call-preserved registers. const AMDGPURegisterInfo *TRI = Subtarget->getRegisterInfo(); const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (InFlag.getNode()) Ops.push_back(InFlag); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); // If we're doing a tall call, use a TC_RETURN here rather than an // actual call instruction. if (IsTailCall) { MFI.setHasTailCall(); return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops); } // Returns a chain and a flag for retval copy to use. SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops); Chain = Call.getValue(0); InFlag = Call.getValue(1); if (CallerSavedFP) { SDValue FPReg = DAG.getRegister(Info->getFrameOffsetReg(), MVT::i32); Chain = DAG.getCopyToReg(Chain, DL, FPReg, CallerSavedFP, InFlag); InFlag = Chain.getValue(1); } uint64_t CalleePopBytes = NumBytes; Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32), DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32), InFlag, DL); if (!Ins.empty()) InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, InVals, IsThisReturn, IsThisReturn ? OutVals[0] : SDValue()); } unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT, SelectionDAG &DAG) const { unsigned Reg = StringSwitch(RegName) .Case("m0", AMDGPU::M0) .Case("exec", AMDGPU::EXEC) .Case("exec_lo", AMDGPU::EXEC_LO) .Case("exec_hi", AMDGPU::EXEC_HI) .Case("flat_scratch", AMDGPU::FLAT_SCR) .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO) .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI) .Default(AMDGPU::NoRegister); if (Reg == AMDGPU::NoRegister) { report_fatal_error(Twine("invalid register name \"" + StringRef(RegName) + "\".")); } if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS && Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) { report_fatal_error(Twine("invalid register \"" + StringRef(RegName) + "\" for subtarget.")); } switch (Reg) { case AMDGPU::M0: case AMDGPU::EXEC_LO: case AMDGPU::EXEC_HI: case AMDGPU::FLAT_SCR_LO: case AMDGPU::FLAT_SCR_HI: if (VT.getSizeInBits() == 32) return Reg; break; case AMDGPU::EXEC: case AMDGPU::FLAT_SCR: if (VT.getSizeInBits() == 64) return Reg; break; default: llvm_unreachable("missing register type checking"); } report_fatal_error(Twine("invalid type for register \"" + StringRef(RegName) + "\".")); } // If kill is not the last instruction, split the block so kill is always a // proper terminator. MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI, MachineBasicBlock *BB) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); MachineBasicBlock::iterator SplitPoint(&MI); ++SplitPoint; if (SplitPoint == BB->end()) { // Don't bother with a new block. MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); return BB; } MachineFunction *MF = BB->getParent(); MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(BB->getBasicBlock()); MF->insert(++MachineFunction::iterator(BB), SplitBB); SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end()); SplitBB->transferSuccessorsAndUpdatePHIs(BB); BB->addSuccessor(SplitBB); MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode())); return SplitBB; } // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the // wavefront. If the value is uniform and just happens to be in a VGPR, this // will only do one iteration. In the worst case, this will loop 64 times. // // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value. static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop( const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, const DebugLoc &DL, const MachineOperand &IdxReg, unsigned InitReg, unsigned ResultReg, unsigned PhiReg, unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode) { MachineBasicBlock::iterator I = LoopBB.begin(); unsigned PhiExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); unsigned NewExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); unsigned CondReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg) .addReg(InitReg) .addMBB(&OrigBB) .addReg(ResultReg) .addMBB(&LoopBB); BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec) .addReg(InitSaveExecReg) .addMBB(&OrigBB) .addReg(NewExec) .addMBB(&LoopBB); // Read the next variant <- also loop target. BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg) .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef())); // Compare the just read M0 value to all possible Idx values. BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg) .addReg(CurrentIdxReg) .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg()); if (UseGPRIdxMode) { unsigned IdxReg; if (Offset == 0) { IdxReg = CurrentIdxReg; } else { IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg) .addReg(CurrentIdxReg, RegState::Kill) .addImm(Offset); } MachineInstr *SetIdx = BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_IDX)) .addReg(IdxReg, RegState::Kill); SetIdx->getOperand(2).setIsUndef(); } else { // Move index from VCC into M0 if (Offset == 0) { BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) .addReg(CurrentIdxReg, RegState::Kill); } else { BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) .addReg(CurrentIdxReg, RegState::Kill) .addImm(Offset); } } // Update EXEC, save the original EXEC value to VCC. BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), NewExec) .addReg(CondReg, RegState::Kill); MRI.setSimpleHint(NewExec, CondReg); // Update EXEC, switch all done bits to 0 and all todo bits to 1. MachineInstr *InsertPt = BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .addReg(NewExec); // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use // s_cbranch_scc0? // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addMBB(&LoopBB); return InsertPt->getIterator(); } // This has slightly sub-optimal regalloc when the source vector is killed by // the read. The register allocator does not understand that the kill is // per-workitem, so is kept alive for the whole loop so we end up not re-using a // subregister from it, using 1 more VGPR than necessary. This was saved when // this was expanded after register allocation. static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI, unsigned InitResultReg, unsigned PhiReg, int Offset, bool UseGPRIdxMode) { MachineFunction *MF = MBB.getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator I(&MI); unsigned DstReg = MI.getOperand(0).getReg(); unsigned SaveExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass); unsigned TmpExec = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass); BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec); // Save the EXEC mask BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), SaveExec) .addReg(AMDGPU::EXEC); // To insert the loop we need to split the block. Move everything after this // point to a new block, and insert a new empty block between the two. MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); MachineFunction::iterator MBBI(MBB); ++MBBI; MF->insert(MBBI, LoopBB); MF->insert(MBBI, RemainderBB); LoopBB->addSuccessor(LoopBB); LoopBB->addSuccessor(RemainderBB); // Move the rest of the block into a new block. RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end()); MBB.addSuccessor(LoopBB); const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx, InitResultReg, DstReg, PhiReg, TmpExec, Offset, UseGPRIdxMode); MachineBasicBlock::iterator First = RemainderBB->begin(); BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC) .addReg(SaveExec); return InsPt; } // Returns subreg index, offset static std::pair computeIndirectRegAndOffset(const SIRegisterInfo &TRI, const TargetRegisterClass *SuperRC, unsigned VecReg, int Offset) { int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32; // Skip out of bounds offsets, or else we would end up using an undefined // register. if (Offset >= NumElts || Offset < 0) return std::make_pair(AMDGPU::sub0, Offset); return std::make_pair(AMDGPU::sub0 + Offset, 0); } // Return true if the index is an SGPR and was set. static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII, MachineRegisterInfo &MRI, MachineInstr &MI, int Offset, bool UseGPRIdxMode, bool IsIndirectSrc) { MachineBasicBlock *MBB = MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator I(&MI); const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg()); assert(Idx->getReg() != AMDGPU::NoRegister); if (!TII->getRegisterInfo().isSGPRClass(IdxRC)) return false; if (UseGPRIdxMode) { unsigned IdxMode = IsIndirectSrc ? VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE; if (Offset == 0) { MachineInstr *SetOn = BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) .add(*Idx) .addImm(IdxMode); SetOn->getOperand(3).setIsUndef(); } else { unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp) .add(*Idx) .addImm(Offset); MachineInstr *SetOn = BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) .addReg(Tmp, RegState::Kill) .addImm(IdxMode); SetOn->getOperand(3).setIsUndef(); } return true; } if (Offset == 0) { BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) .add(*Idx); } else { BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) .add(*Idx) .addImm(Offset); } return true; } // Control flow needs to be inserted if indexing with a VGPR. static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI, MachineBasicBlock &MBB, const SISubtarget &ST) { const SIInstrInfo *TII = ST.getInstrInfo(); const SIRegisterInfo &TRI = TII->getRegisterInfo(); MachineFunction *MF = MBB.getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned Dst = MI.getOperand(0).getReg(); unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg(); int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg); unsigned SubReg; std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset); bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode); if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) { MachineBasicBlock::iterator I(&MI); const DebugLoc &DL = MI.getDebugLoc(); if (UseGPRIdxMode) { // TODO: Look at the uses to avoid the copy. This may require rescheduling // to avoid interfering with other uses, so probably requires a new // optimization pass. BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) .addReg(SrcReg, RegState::Undef, SubReg) .addReg(SrcReg, RegState::Implicit) .addReg(AMDGPU::M0, RegState::Implicit); BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); } else { BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) .addReg(SrcReg, RegState::Undef, SubReg) .addReg(SrcReg, RegState::Implicit); } MI.eraseFromParent(); return &MBB; } const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator I(&MI); unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg); if (UseGPRIdxMode) { MachineInstr *SetOn = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) .addImm(0) // Reset inside loop. .addImm(VGPRIndexMode::SRC0_ENABLE); SetOn->getOperand(3).setIsUndef(); // Disable again after the loop. BuildMI(MBB, std::next(I), DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); } auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, UseGPRIdxMode); MachineBasicBlock *LoopBB = InsPt->getParent(); if (UseGPRIdxMode) { BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst) .addReg(SrcReg, RegState::Undef, SubReg) .addReg(SrcReg, RegState::Implicit) .addReg(AMDGPU::M0, RegState::Implicit); } else { BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) .addReg(SrcReg, RegState::Undef, SubReg) .addReg(SrcReg, RegState::Implicit); } MI.eraseFromParent(); return LoopBB; } static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI, const TargetRegisterClass *VecRC) { switch (TRI.getRegSizeInBits(*VecRC)) { case 32: // 4 bytes return AMDGPU::V_MOVRELD_B32_V1; case 64: // 8 bytes return AMDGPU::V_MOVRELD_B32_V2; case 128: // 16 bytes return AMDGPU::V_MOVRELD_B32_V4; case 256: // 32 bytes return AMDGPU::V_MOVRELD_B32_V8; case 512: // 64 bytes return AMDGPU::V_MOVRELD_B32_V16; default: llvm_unreachable("unsupported size for MOVRELD pseudos"); } } static MachineBasicBlock *emitIndirectDst(MachineInstr &MI, MachineBasicBlock &MBB, const SISubtarget &ST) { const SIInstrInfo *TII = ST.getInstrInfo(); const SIRegisterInfo &TRI = TII->getRegisterInfo(); MachineFunction *MF = MBB.getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned Dst = MI.getOperand(0).getReg(); const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src); const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx); const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val); int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm(); const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg()); // This can be an immediate, but will be folded later. assert(Val->getReg()); unsigned SubReg; std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC, SrcVec->getReg(), Offset); bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode); if (Idx->getReg() == AMDGPU::NoRegister) { MachineBasicBlock::iterator I(&MI); const DebugLoc &DL = MI.getDebugLoc(); assert(Offset == 0); BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst) .add(*SrcVec) .add(*Val) .addImm(SubReg); MI.eraseFromParent(); return &MBB; } if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) { MachineBasicBlock::iterator I(&MI); const DebugLoc &DL = MI.getDebugLoc(); if (UseGPRIdxMode) { BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect)) .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst .add(*Val) .addReg(Dst, RegState::ImplicitDefine) .addReg(SrcVec->getReg(), RegState::Implicit) .addReg(AMDGPU::M0, RegState::Implicit); BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); } else { const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC)); BuildMI(MBB, I, DL, MovRelDesc) .addReg(Dst, RegState::Define) .addReg(SrcVec->getReg()) .add(*Val) .addImm(SubReg - AMDGPU::sub0); } MI.eraseFromParent(); return &MBB; } if (Val->isReg()) MRI.clearKillFlags(Val->getReg()); const DebugLoc &DL = MI.getDebugLoc(); if (UseGPRIdxMode) { MachineBasicBlock::iterator I(&MI); MachineInstr *SetOn = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON)) .addImm(0) // Reset inside loop. .addImm(VGPRIndexMode::DST_ENABLE); SetOn->getOperand(3).setIsUndef(); // Disable again after the loop. BuildMI(MBB, std::next(I), DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF)); } unsigned PhiReg = MRI.createVirtualRegister(VecRC); auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset, UseGPRIdxMode); MachineBasicBlock *LoopBB = InsPt->getParent(); if (UseGPRIdxMode) { BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect)) .addReg(PhiReg, RegState::Undef, SubReg) // vdst .add(*Val) // src0 .addReg(Dst, RegState::ImplicitDefine) .addReg(PhiReg, RegState::Implicit) .addReg(AMDGPU::M0, RegState::Implicit); } else { const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC)); BuildMI(*LoopBB, InsPt, DL, MovRelDesc) .addReg(Dst, RegState::Define) .addReg(PhiReg) .add(*Val) .addImm(SubReg - AMDGPU::sub0); } MI.eraseFromParent(); return LoopBB; } MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter( MachineInstr &MI, MachineBasicBlock *BB) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); MachineFunction *MF = BB->getParent(); SIMachineFunctionInfo *MFI = MF->getInfo(); if (TII->isMIMG(MI)) { if (!MI.memoperands_empty()) return BB; // Add a memoperand for mimg instructions so that they aren't assumed to // be ordered memory instuctions. MachinePointerInfo PtrInfo(MFI->getImagePSV()); MachineMemOperand::Flags Flags = MachineMemOperand::MODereferenceable; if (MI.mayStore()) Flags |= MachineMemOperand::MOStore; if (MI.mayLoad()) Flags |= MachineMemOperand::MOLoad; if (Flags != MachineMemOperand::MODereferenceable) { auto MMO = MF->getMachineMemOperand(PtrInfo, Flags, 0, 0); MI.addMemOperand(*MF, MMO); } return BB; } switch (MI.getOpcode()) { case AMDGPU::S_ADD_U64_PSEUDO: case AMDGPU::S_SUB_U64_PSEUDO: { MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); const DebugLoc &DL = MI.getDebugLoc(); MachineOperand &Dest = MI.getOperand(0); MachineOperand &Src0 = MI.getOperand(1); MachineOperand &Src1 = MI.getOperand(2); unsigned DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); unsigned DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI, Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub0, &AMDGPU::SReg_32_XM0RegClass); MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI, Src0, &AMDGPU::SReg_64RegClass, AMDGPU::sub1, &AMDGPU::SReg_32_XM0RegClass); MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI, Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub0, &AMDGPU::SReg_32_XM0RegClass); MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI, Src1, &AMDGPU::SReg_64RegClass, AMDGPU::sub1, &AMDGPU::SReg_32_XM0RegClass); bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0) .add(Src0Sub0) .add(Src1Sub0); BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1) .add(Src0Sub1) .add(Src1Sub1); BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg()) .addReg(DestSub0) .addImm(AMDGPU::sub0) .addReg(DestSub1) .addImm(AMDGPU::sub1); MI.eraseFromParent(); return BB; } case AMDGPU::SI_INIT_M0: { BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) .add(MI.getOperand(0)); MI.eraseFromParent(); return BB; } case AMDGPU::SI_INIT_EXEC: // This should be before all vector instructions. BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC) .addImm(MI.getOperand(0).getImm()); MI.eraseFromParent(); return BB; case AMDGPU::SI_INIT_EXEC_FROM_INPUT: { // Extract the thread count from an SGPR input and set EXEC accordingly. // Since BFM can't shift by 64, handle that case with CMP + CMOV. // // S_BFE_U32 count, input, {shift, 7} // S_BFM_B64 exec, count, 0 // S_CMP_EQ_U32 count, 64 // S_CMOV_B64 exec, -1 MachineInstr *FirstMI = &*BB->begin(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned InputReg = MI.getOperand(0).getReg(); unsigned CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); bool Found = false; // Move the COPY of the input reg to the beginning, so that we can use it. for (auto I = BB->begin(); I != &MI; I++) { if (I->getOpcode() != TargetOpcode::COPY || I->getOperand(0).getReg() != InputReg) continue; if (I == FirstMI) { FirstMI = &*++BB->begin(); } else { I->removeFromParent(); BB->insert(FirstMI, &*I); } Found = true; break; } assert(Found); (void)Found; // This should be before all vector instructions. BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg) .addReg(InputReg) .addImm((MI.getOperand(1).getImm() & 0x7f) | 0x70000); BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFM_B64), AMDGPU::EXEC) .addReg(CountReg) .addImm(0); BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32)) .addReg(CountReg, RegState::Kill) .addImm(64); BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMOV_B64), AMDGPU::EXEC) .addImm(-1); MI.eraseFromParent(); return BB; } case AMDGPU::GET_GROUPSTATICSIZE: { DebugLoc DL = MI.getDebugLoc(); BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32)) .add(MI.getOperand(0)) .addImm(MFI->getLDSSize()); MI.eraseFromParent(); return BB; } case AMDGPU::SI_INDIRECT_SRC_V1: case AMDGPU::SI_INDIRECT_SRC_V2: case AMDGPU::SI_INDIRECT_SRC_V4: case AMDGPU::SI_INDIRECT_SRC_V8: case AMDGPU::SI_INDIRECT_SRC_V16: return emitIndirectSrc(MI, *BB, *getSubtarget()); case AMDGPU::SI_INDIRECT_DST_V1: case AMDGPU::SI_INDIRECT_DST_V2: case AMDGPU::SI_INDIRECT_DST_V4: case AMDGPU::SI_INDIRECT_DST_V8: case AMDGPU::SI_INDIRECT_DST_V16: return emitIndirectDst(MI, *BB, *getSubtarget()); case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: case AMDGPU::SI_KILL_I1_PSEUDO: return splitKillBlock(MI, BB); case AMDGPU::V_CNDMASK_B64_PSEUDO: { MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Src0 = MI.getOperand(1).getReg(); unsigned Src1 = MI.getOperand(2).getReg(); const DebugLoc &DL = MI.getDebugLoc(); unsigned SrcCond = MI.getOperand(3).getReg(); unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); unsigned SrcCondCopy = MRI.createVirtualRegister(&AMDGPU::SReg_64_XEXECRegClass); BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy) .addReg(SrcCond); BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo) .addReg(Src0, 0, AMDGPU::sub0) .addReg(Src1, 0, AMDGPU::sub0) .addReg(SrcCondCopy); BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi) .addReg(Src0, 0, AMDGPU::sub1) .addReg(Src1, 0, AMDGPU::sub1) .addReg(SrcCondCopy); BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst) .addReg(DstLo) .addImm(AMDGPU::sub0) .addReg(DstHi) .addImm(AMDGPU::sub1); MI.eraseFromParent(); return BB; } case AMDGPU::SI_BR_UNDEF: { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); const DebugLoc &DL = MI.getDebugLoc(); MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1)) .add(MI.getOperand(0)); Br->getOperand(1).setIsUndef(true); // read undef SCC MI.eraseFromParent(); return BB; } case AMDGPU::ADJCALLSTACKUP: case AMDGPU::ADJCALLSTACKDOWN: { const SIMachineFunctionInfo *Info = MF->getInfo(); MachineInstrBuilder MIB(*MF, &MI); MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine) .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit); return BB; } case AMDGPU::SI_CALL_ISEL: case AMDGPU::SI_TCRETURN_ISEL: { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); const DebugLoc &DL = MI.getDebugLoc(); unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned GlobalAddrReg = MI.getOperand(0).getReg(); MachineInstr *PCRel = MRI.getVRegDef(GlobalAddrReg); assert(PCRel->getOpcode() == AMDGPU::SI_PC_ADD_REL_OFFSET); const GlobalValue *G = PCRel->getOperand(1).getGlobal(); MachineInstrBuilder MIB; if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) { MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg) .add(MI.getOperand(0)) .addGlobalAddress(G); } else { MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_TCRETURN)) .add(MI.getOperand(0)) .addGlobalAddress(G); // There is an additional imm operand for tcreturn, but it should be in the // right place already. } for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) MIB.add(MI.getOperand(I)); MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); MI.eraseFromParent(); return BB; } default: return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); } } bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const { return isTypeLegal(VT.getScalarType()); } bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { // This currently forces unfolding various combinations of fsub into fma with // free fneg'd operands. As long as we have fast FMA (controlled by // isFMAFasterThanFMulAndFAdd), we should perform these. // When fma is quarter rate, for f64 where add / sub are at best half rate, // most of these combines appear to be cycle neutral but save on instruction // count / code size. return true; } EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, EVT VT) const { if (!VT.isVector()) { return MVT::i1; } return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); } MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const { // TODO: Should i16 be used always if legal? For now it would force VALU // shifts. return (VT == MVT::i16) ? MVT::i16 : MVT::i32; } // Answering this is somewhat tricky and depends on the specific device which // have different rates for fma or all f64 operations. // // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other // regardless of which device (although the number of cycles differs between // devices), so it is always profitable for f64. // // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable // only on full rate devices. Normally, we should prefer selecting v_mad_f32 // which we can always do even without fused FP ops since it returns the same // result as the separate operations and since it is always full // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 // however does not support denormals, so we do report fma as faster if we have // a fast fma device and require denormals. // bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { VT = VT.getScalarType(); switch (VT.getSimpleVT().SimpleTy) { case MVT::f32: // This is as fast on some subtargets. However, we always have full rate f32 // mad available which returns the same result as the separate operations // which we should prefer over fma. We can't use this if we want to support // denormals, so only report this in these cases. return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32(); case MVT::f64: return true; case MVT::f16: return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals(); default: break; } return false; } //===----------------------------------------------------------------------===// // Custom DAG Lowering Operations //===----------------------------------------------------------------------===// SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::LOAD: { SDValue Result = LowerLOAD(Op, DAG); assert((!Result.getNode() || Result.getNode()->getNumValues() == 2) && "Load should return a value and a chain"); return Result; } case ISD::FSIN: case ISD::FCOS: return LowerTrig(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::FDIV: return LowerFDIV(Op, DAG); case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); case ISD::STORE: return LowerSTORE(Op, DAG); case ISD::GlobalAddress: { MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *MFI = MF.getInfo(); return LowerGlobalAddress(MFI, Op, DAG); } case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG); case ISD::INSERT_VECTOR_ELT: return lowerINSERT_VECTOR_ELT(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::FP_ROUND: return lowerFP_ROUND(Op, DAG); case ISD::TRAP: case ISD::DEBUGTRAP: return lowerTRAP(Op, DAG); } return SDValue(); } void SITargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { switch (N->getOpcode()) { case ISD::INSERT_VECTOR_ELT: { if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG)) Results.push_back(Res); return; } case ISD::EXTRACT_VECTOR_ELT: { if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG)) Results.push_back(Res); return; } case ISD::INTRINSIC_WO_CHAIN: { unsigned IID = cast(N->getOperand(0))->getZExtValue(); if (IID == Intrinsic::amdgcn_cvt_pkrtz) { SDValue Src0 = N->getOperand(1); SDValue Src1 = N->getOperand(2); SDLoc SL(N); SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, Src0, Src1); Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt)); return; } break; } case ISD::SELECT: { SDLoc SL(N); EVT VT = N->getValueType(0); EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1)); SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2)); EVT SelectVT = NewVT; if (NewVT.bitsLT(MVT::i32)) { LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS); RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS); SelectVT = MVT::i32; } SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT, N->getOperand(0), LHS, RHS); if (NewVT != SelectVT) NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect); Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect)); return; } default: break; } } /// \brief Helper function for LowerBRCOND static SDNode *findUser(SDValue Value, unsigned Opcode) { SDNode *Parent = Value.getNode(); for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); I != E; ++I) { if (I.getUse().get() != Value) continue; if (I->getOpcode() == Opcode) return *I; } return nullptr; } unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const { if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) { switch (cast(Intr->getOperand(1))->getZExtValue()) { case Intrinsic::amdgcn_if: return AMDGPUISD::IF; case Intrinsic::amdgcn_else: return AMDGPUISD::ELSE; case Intrinsic::amdgcn_loop: return AMDGPUISD::LOOP; case Intrinsic::amdgcn_end_cf: llvm_unreachable("should not occur"); default: return 0; } } // break, if_break, else_break are all only used as inputs to loop, not // directly as branch conditions. return 0; } void SITargetLowering::createDebuggerPrologueStackObjects( MachineFunction &MF) const { // Create stack objects that are used for emitting debugger prologue. // // Debugger prologue writes work group IDs and work item IDs to scratch memory // at fixed location in the following format: // offset 0: work group ID x // offset 4: work group ID y // offset 8: work group ID z // offset 16: work item ID x // offset 20: work item ID y // offset 24: work item ID z SIMachineFunctionInfo *Info = MF.getInfo(); int ObjectIdx = 0; // For each dimension: for (unsigned i = 0; i < 3; ++i) { // Create fixed stack object for work group ID. ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4, true); Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx); // Create fixed stack object for work item ID. ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4 + 16, true); Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx); } } bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const { const Triple &TT = getTargetMachine().getTargetTriple(); return GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS && AMDGPU::shouldEmitConstantsToTextSection(TT); } bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const { return (GV->getType()->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS || GV->getType()->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS) && !shouldEmitFixup(GV) && !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); } bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const { return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV); } /// This transforms the control flow intrinsics to get the branch destination as /// last parameter, also switches branch target with BR if the need arise SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, SelectionDAG &DAG) const { SDLoc DL(BRCOND); SDNode *Intr = BRCOND.getOperand(1).getNode(); SDValue Target = BRCOND.getOperand(2); SDNode *BR = nullptr; SDNode *SetCC = nullptr; if (Intr->getOpcode() == ISD::SETCC) { // As long as we negate the condition everything is fine SetCC = Intr; Intr = SetCC->getOperand(0).getNode(); } else { // Get the target from BR if we don't negate the condition BR = findUser(BRCOND, ISD::BR); Target = BR->getOperand(1); } // FIXME: This changes the types of the intrinsics instead of introducing new // nodes with the correct types. // e.g. llvm.amdgcn.loop // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3 // => t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch unsigned CFNode = isCFIntrinsic(Intr); if (CFNode == 0) { // This is a uniform branch so we don't need to legalize. return BRCOND; } bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID || Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN; assert(!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)); // operands of the new intrinsic call SmallVector Ops; if (HaveChain) Ops.push_back(BRCOND.getOperand(0)); Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end()); Ops.push_back(Target); ArrayRef Res(Intr->value_begin() + 1, Intr->value_end()); // build the new intrinsic call SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode(); if (!HaveChain) { SDValue Ops[] = { SDValue(Result, 0), BRCOND.getOperand(0) }; Result = DAG.getMergeValues(Ops, DL).getNode(); } if (BR) { // Give the branch instruction our target SDValue Ops[] = { BR->getOperand(0), BRCOND.getOperand(2) }; SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); BR = NewBR.getNode(); } SDValue Chain = SDValue(Result, Result->getNumValues() - 1); // Copy the intrinsic results to registers for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); if (!CopyToReg) continue; Chain = DAG.getCopyToReg( Chain, DL, CopyToReg->getOperand(1), SDValue(Result, i - 1), SDValue()); DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); } // Remove the old intrinsic from the chain DAG.ReplaceAllUsesOfValueWith( SDValue(Intr, Intr->getNumValues() - 1), Intr->getOperand(0)); return Chain; } SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG, SDValue Op, const SDLoc &DL, EVT VT) const { return Op.getValueType().bitsLE(VT) ? DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) : DAG.getNode(ISD::FTRUNC, DL, VT, Op); } SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::f16 && "Do not know how to custom lower FP_ROUND for non-f16 type"); SDValue Src = Op.getOperand(0); EVT SrcVT = Src.getValueType(); if (SrcVT != MVT::f64) return Op; SDLoc DL(Op); SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src); SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16); return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc); } SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); MachineFunction &MF = DAG.getMachineFunction(); SDValue Chain = Op.getOperand(0); unsigned TrapID = Op.getOpcode() == ISD::DEBUGTRAP ? SISubtarget::TrapIDLLVMDebugTrap : SISubtarget::TrapIDLLVMTrap; if (Subtarget->getTrapHandlerAbi() == SISubtarget::TrapHandlerAbiHsa && Subtarget->isTrapHandlerEnabled()) { SIMachineFunctionInfo *Info = MF.getInfo(); unsigned UserSGPR = Info->getQueuePtrUserSGPR(); assert(UserSGPR != AMDGPU::NoRegister); SDValue QueuePtr = CreateLiveInRegister( DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64); SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, QueuePtr, SDValue()); SDValue Ops[] = { ToReg, DAG.getTargetConstant(TrapID, SL, MVT::i16), SGPR01, ToReg.getValue(1) }; return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops); } switch (TrapID) { case SISubtarget::TrapIDLLVMTrap: return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain); case SISubtarget::TrapIDLLVMDebugTrap: { DiagnosticInfoUnsupported NoTrap(MF.getFunction(), "debugtrap handler not supported", Op.getDebugLoc(), DS_Warning); LLVMContext &Ctx = MF.getFunction().getContext(); Ctx.diagnose(NoTrap); return Chain; } default: llvm_unreachable("unsupported trap handler type!"); } return Chain; } SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL, SelectionDAG &DAG) const { // FIXME: Use inline constants (src_{shared, private}_base) instead. if (Subtarget->hasApertureRegs()) { unsigned Offset = AS == AMDGPUASI.LOCAL_ADDRESS ? AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; unsigned WidthM1 = AS == AMDGPUASI.LOCAL_ADDRESS ? AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; unsigned Encoding = AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16); SDValue ApertureReg = SDValue( DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0); SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32); return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount); } MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *Info = MF.getInfo(); unsigned UserSGPR = Info->getQueuePtrUserSGPR(); assert(UserSGPR != AMDGPU::NoRegister); SDValue QueuePtr = CreateLiveInRegister( DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64); // Offset into amd_queue_t for group_segment_aperture_base_hi / // private_segment_aperture_base_hi. uint32_t StructOffset = (AS == AMDGPUASI.LOCAL_ADDRESS) ? 0x40 : 0x44; SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset); // TODO: Use custom target PseudoSourceValue. // TODO: We should use the value from the IR intrinsic call, but it might not // be available and how do we get it? Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()), AMDGPUASI.CONSTANT_ADDRESS)); MachinePointerInfo PtrInfo(V, StructOffset); return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo, MinAlign(64, StructOffset), MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); } SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); const AddrSpaceCastSDNode *ASC = cast(Op); SDValue Src = ASC->getOperand(0); SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64); const AMDGPUTargetMachine &TM = static_cast(getTargetMachine()); // flat -> local/private if (ASC->getSrcAddressSpace() == AMDGPUASI.FLAT_ADDRESS) { unsigned DestAS = ASC->getDestAddressSpace(); if (DestAS == AMDGPUASI.LOCAL_ADDRESS || DestAS == AMDGPUASI.PRIVATE_ADDRESS) { unsigned NullVal = TM.getNullPointerValue(DestAS); SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE); SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src); return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr, SegmentNullPtr); } } // local/private -> flat if (ASC->getDestAddressSpace() == AMDGPUASI.FLAT_ADDRESS) { unsigned SrcAS = ASC->getSrcAddressSpace(); if (SrcAS == AMDGPUASI.LOCAL_ADDRESS || SrcAS == AMDGPUASI.PRIVATE_ADDRESS) { unsigned NullVal = TM.getNullPointerValue(SrcAS); SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32); SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE); SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG); SDValue CvtPtr = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture); return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr), FlatNullPtr); } } // global <-> flat are no-ops and never emitted. const MachineFunction &MF = DAG.getMachineFunction(); DiagnosticInfoUnsupported InvalidAddrSpaceCast( MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc()); DAG.getContext()->diagnose(InvalidAddrSpaceCast); return DAG.getUNDEF(ASC->getValueType(0)); } SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { SDValue Idx = Op.getOperand(2); if (isa(Idx)) return SDValue(); // Avoid stack access for dynamic indexing. SDLoc SL(Op); SDValue Vec = Op.getOperand(0); SDValue Val = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Op.getOperand(1)); // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec SDValue ExtVal = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Val); // Convert vector index to bit-index. SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, DAG.getConstant(16, SL, MVT::i32)); SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); SDValue BFM = DAG.getNode(ISD::SHL, SL, MVT::i32, DAG.getConstant(0xffff, SL, MVT::i32), ScaledIdx); SDValue LHS = DAG.getNode(ISD::AND, SL, MVT::i32, BFM, ExtVal); SDValue RHS = DAG.getNode(ISD::AND, SL, MVT::i32, DAG.getNOT(SL, BFM, MVT::i32), BCVec); SDValue BFI = DAG.getNode(ISD::OR, SL, MVT::i32, LHS, RHS); return DAG.getNode(ISD::BITCAST, SL, Op.getValueType(), BFI); } SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); EVT ResultVT = Op.getValueType(); SDValue Vec = Op.getOperand(0); SDValue Idx = Op.getOperand(1); DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); // Make sure we we do any optimizations that will make it easier to fold // source modifiers before obscuring it with bit operations. // XXX - Why doesn't this get called when vector_shuffle is expanded? if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI)) return Combined; if (const ConstantSDNode *CIdx = dyn_cast(Idx)) { SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); if (CIdx->getZExtValue() == 1) { Result = DAG.getNode(ISD::SRL, SL, MVT::i32, Result, DAG.getConstant(16, SL, MVT::i32)); } else { assert(CIdx->getZExtValue() == 0); } if (ResultVT.bitsLT(MVT::i32)) Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result); return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); } SDValue Sixteen = DAG.getConstant(16, SL, MVT::i32); // Convert vector index to bit-index. SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, Sixteen); SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); SDValue Elt = DAG.getNode(ISD::SRL, SL, MVT::i32, BC, ScaledIdx); SDValue Result = Elt; if (ResultVT.bitsLT(MVT::i32)) Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Result); return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result); } bool SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // We can fold offsets for anything that doesn't require a GOT relocation. return (GA->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS || GA->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS) && !shouldEmitGOTReloc(GA->getGlobal()); } static SDValue buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV, const SDLoc &DL, unsigned Offset, EVT PtrVT, unsigned GAFlags = SIInstrInfo::MO_NONE) { // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is // lowered to the following code sequence: // // For constant address space: // s_getpc_b64 s[0:1] // s_add_u32 s0, s0, $symbol // s_addc_u32 s1, s1, 0 // // s_getpc_b64 returns the address of the s_add_u32 instruction and then // a fixup or relocation is emitted to replace $symbol with a literal // constant, which is a pc-relative offset from the encoding of the $symbol // operand to the global variable. // // For global address space: // s_getpc_b64 s[0:1] // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi // // s_getpc_b64 returns the address of the s_add_u32 instruction and then // fixups or relocations are emitted to replace $symbol@*@lo and // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, // which is a 64-bit pc-relative offset from the encoding of the $symbol // operand to the global variable. // // What we want here is an offset from the value returned by s_getpc // (which is the address of the s_add_u32 instruction) to the global // variable, but since the encoding of $symbol starts 4 bytes after the start // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too // small. This requires us to add 4 to the global variable offset in order to // compute the correct address. SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags); SDValue PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags == SIInstrInfo::MO_NONE ? GAFlags : GAFlags + 1); return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi); } SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GSD = cast(Op); const GlobalValue *GV = GSD->getGlobal(); if (GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS && GSD->getAddressSpace() != AMDGPUASI.GLOBAL_ADDRESS && // FIXME: It isn't correct to rely on the type of the pointer. This should // be removed when address space 0 is 64-bit. !GV->getType()->getElementType()->isFunctionTy()) return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); SDLoc DL(GSD); EVT PtrVT = Op.getValueType(); if (shouldEmitFixup(GV)) return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT); else if (shouldEmitPCReloc(GV)) return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT, SIInstrInfo::MO_REL32); SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT, SIInstrInfo::MO_GOTPCREL32); Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext()); PointerType *PtrTy = PointerType::get(Ty, AMDGPUASI.CONSTANT_ADDRESS); const DataLayout &DataLayout = DAG.getDataLayout(); unsigned Align = DataLayout.getABITypeAlignment(PtrTy); // FIXME: Use a PseudoSourceValue once those can be assigned an address space. MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align, MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant); } SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, const SDLoc &DL, SDValue V) const { // We can't use S_MOV_B32 directly, because there is no way to specify m0 as // the destination register. // // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, // so we will end up with redundant moves to m0. // // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result. // A Null SDValue creates a glue result. SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue, V, Chain); return SDValue(M0, 0); } SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, SDValue Op, MVT VT, unsigned Offset) const { SDLoc SL(Op); SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, false); // The local size values will have the hi 16-bits as zero. return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param, DAG.getValueType(VT)); } static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, EVT VT) { DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), "non-hsa intrinsic with hsa target", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); return DAG.getUNDEF(VT); } static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL, EVT VT) { DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(), "intrinsic not supported on subtarget", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); return DAG.getUNDEF(VT); } SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); auto MFI = MF.getInfo(); EVT VT = Op.getValueType(); SDLoc DL(Op); unsigned IntrinsicID = cast(Op.getOperand(0))->getZExtValue(); // TODO: Should this propagate fast-math-flags? switch (IntrinsicID) { case Intrinsic::amdgcn_implicit_buffer_ptr: { if (getSubtarget()->isAmdCodeObjectV2(MF)) return emitNonHSAIntrinsicError(DAG, DL, VT); return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); } case Intrinsic::amdgcn_dispatch_ptr: case Intrinsic::amdgcn_queue_ptr: { if (!Subtarget->isAmdCodeObjectV2(MF)) { DiagnosticInfoUnsupported BadIntrin( MF.getFunction(), "unsupported hsa intrinsic without hsa target", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); return DAG.getUNDEF(VT); } auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ? AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR; return getPreloadedValue(DAG, *MFI, VT, RegID); } case Intrinsic::amdgcn_implicitarg_ptr: { if (MFI->isEntryFunction()) return getImplicitArgPtr(DAG, DL); return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); } case Intrinsic::amdgcn_kernarg_segment_ptr: { return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); } case Intrinsic::amdgcn_dispatch_id: { return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID); } case Intrinsic::amdgcn_rcp: return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_rsq: return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_rsq_legacy: if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) return emitRemovedIntrinsicError(DAG, DL, VT); return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_rcp_legacy: if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) return emitRemovedIntrinsicError(DAG, DL, VT); return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_rsq_clamp: { if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS) return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); Type *Type = VT.getTypeForEVT(*DAG.getContext()); APFloat Max = APFloat::getLargest(Type->getFltSemantics()); APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, DAG.getConstantFP(Max, DL, VT)); return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, DAG.getConstantFP(Min, DL, VT)); } case Intrinsic::r600_read_ngroups_x: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_X, false); case Intrinsic::r600_read_ngroups_y: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_Y, false); case Intrinsic::r600_read_ngroups_z: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::NGROUPS_Z, false); case Intrinsic::r600_read_global_size_x: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_X, false); case Intrinsic::r600_read_global_size_y: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_Y, false); case Intrinsic::r600_read_global_size_z: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(), SI::KernelInputOffsets::GLOBAL_SIZE_Z, false); case Intrinsic::r600_read_local_size_x: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerImplicitZextParam(DAG, Op, MVT::i16, SI::KernelInputOffsets::LOCAL_SIZE_X); case Intrinsic::r600_read_local_size_y: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerImplicitZextParam(DAG, Op, MVT::i16, SI::KernelInputOffsets::LOCAL_SIZE_Y); case Intrinsic::r600_read_local_size_z: if (Subtarget->isAmdHsaOS()) return emitNonHSAIntrinsicError(DAG, DL, VT); return lowerImplicitZextParam(DAG, Op, MVT::i16, SI::KernelInputOffsets::LOCAL_SIZE_Z); case Intrinsic::amdgcn_workgroup_id_x: case Intrinsic::r600_read_tgid_x: return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::WORKGROUP_ID_X); case Intrinsic::amdgcn_workgroup_id_y: case Intrinsic::r600_read_tgid_y: return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); case Intrinsic::amdgcn_workgroup_id_z: case Intrinsic::r600_read_tgid_z: return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); case Intrinsic::amdgcn_workitem_id_x: { case Intrinsic::r600_read_tidig_x: return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, SDLoc(DAG.getEntryNode()), MFI->getArgInfo().WorkItemIDX); } case Intrinsic::amdgcn_workitem_id_y: case Intrinsic::r600_read_tidig_y: return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, SDLoc(DAG.getEntryNode()), MFI->getArgInfo().WorkItemIDY); case Intrinsic::amdgcn_workitem_id_z: case Intrinsic::r600_read_tidig_z: return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32, SDLoc(DAG.getEntryNode()), MFI->getArgInfo().WorkItemIDZ); case AMDGPUIntrinsic::SI_load_const: { SDValue Ops[] = { Op.getOperand(1), Op.getOperand(2) }; MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(), MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant, VT.getStoreSize(), 4); return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL, Op->getVTList(), Ops, VT, MMO); } case Intrinsic::amdgcn_fdiv_fast: return lowerFDIV_FAST(Op, DAG); case Intrinsic::amdgcn_interp_mov: { SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4)); SDValue Glue = M0.getValue(1); return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Glue); } case Intrinsic::amdgcn_interp_p1: { SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4)); SDValue Glue = M0.getValue(1); return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Glue); } case Intrinsic::amdgcn_interp_p2: { SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5)); SDValue Glue = SDValue(M0.getNode(), 1); return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Op.getOperand(4), Glue); } case Intrinsic::amdgcn_sin: return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_cos: return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_log_clamp: { if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS) return SDValue(); DiagnosticInfoUnsupported BadIntrin( MF.getFunction(), "intrinsic not supported on subtarget", DL.getDebugLoc()); DAG.getContext()->diagnose(BadIntrin); return DAG.getUNDEF(VT); } case Intrinsic::amdgcn_ldexp: return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_fract: return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_class: return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_div_fmas: return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), Op.getOperand(4)); case Intrinsic::amdgcn_div_fixup: return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_trig_preop: return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_div_scale: { // 3rd parameter required to be a constant. const ConstantSDNode *Param = dyn_cast(Op.getOperand(3)); if (!Param) return DAG.getMergeValues({ DAG.getUNDEF(VT), DAG.getUNDEF(MVT::i1) }, DL); // Translate to the operands expected by the machine instruction. The // first parameter must be the same as the first instruction. SDValue Numerator = Op.getOperand(1); SDValue Denominator = Op.getOperand(2); // Note this order is opposite of the machine instruction's operations, // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The // intrinsic has the numerator as the first operand to match a normal // division operation. SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, Denominator, Numerator); } case Intrinsic::amdgcn_icmp: { const auto *CD = dyn_cast(Op.getOperand(3)); if (!CD) return DAG.getUNDEF(VT); int CondCode = CD->getSExtValue(); if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE || CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE) return DAG.getUNDEF(VT); ICmpInst::Predicate IcInput = static_cast(CondCode); ISD::CondCode CCOpcode = getICmpCondCode(IcInput); return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1), Op.getOperand(2), DAG.getCondCode(CCOpcode)); } case Intrinsic::amdgcn_fcmp: { const auto *CD = dyn_cast(Op.getOperand(3)); if (!CD) return DAG.getUNDEF(VT); int CondCode = CD->getSExtValue(); if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE || CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) return DAG.getUNDEF(VT); FCmpInst::Predicate IcInput = static_cast(CondCode); ISD::CondCode CCOpcode = getFCmpCondCode(IcInput); return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1), Op.getOperand(2), DAG.getCondCode(CCOpcode)); } case Intrinsic::amdgcn_fmed3: return DAG.getNode(AMDGPUISD::FMED3, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_fmul_legacy: return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, Op.getOperand(1), Op.getOperand(2)); case Intrinsic::amdgcn_sffbh: return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1)); case Intrinsic::amdgcn_sbfe: return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_ubfe: return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); case Intrinsic::amdgcn_cvt_pkrtz: { // FIXME: Stop adding cast if v2f16 legal. EVT VT = Op.getValueType(); SDValue Node = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, DL, MVT::i32, Op.getOperand(1), Op.getOperand(2)); return DAG.getNode(ISD::BITCAST, DL, VT, Node); } case Intrinsic::amdgcn_wqm: { SDValue Src = Op.getOperand(1); return SDValue(DAG.getMachineNode(AMDGPU::WQM, DL, Src.getValueType(), Src), 0); } case Intrinsic::amdgcn_wwm: { SDValue Src = Op.getOperand(1); return SDValue(DAG.getMachineNode(AMDGPU::WWM, DL, Src.getValueType(), Src), 0); } case Intrinsic::amdgcn_image_getlod: case Intrinsic::amdgcn_image_getresinfo: { unsigned Idx = (IntrinsicID == Intrinsic::amdgcn_image_getresinfo) ? 3 : 4; // Replace dmask with everything disabled with undef. const ConstantSDNode *DMask = dyn_cast(Op.getOperand(Idx)); if (!DMask || DMask->isNullValue()) return DAG.getUNDEF(Op.getValueType()); return SDValue(); } default: return Op; } } SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned IntrID = cast(Op.getOperand(1))->getZExtValue(); SDLoc DL(Op); MachineFunction &MF = DAG.getMachineFunction(); switch (IntrID) { case Intrinsic::amdgcn_atomic_inc: case Intrinsic::amdgcn_atomic_dec: { MemSDNode *M = cast(Op); unsigned Opc = (IntrID == Intrinsic::amdgcn_atomic_inc) ? AMDGPUISD::ATOMIC_INC : AMDGPUISD::ATOMIC_DEC; SDValue Ops[] = { M->getOperand(0), // Chain M->getOperand(2), // Ptr M->getOperand(3) // Value }; return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops, M->getMemoryVT(), M->getMemOperand()); } case Intrinsic::amdgcn_buffer_load: case Intrinsic::amdgcn_buffer_load_format: { SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // rsrc Op.getOperand(3), // vindex Op.getOperand(4), // offset Op.getOperand(5), // glc Op.getOperand(6) // slc }; SIMachineFunctionInfo *MFI = MF.getInfo(); unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ? AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT; EVT VT = Op.getValueType(); EVT IntVT = VT.changeTypeToInteger(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(MFI->getBufferPSV()), MachineMemOperand::MOLoad, VT.getStoreSize(), VT.getStoreSize()); return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, MMO); } case Intrinsic::amdgcn_tbuffer_load: { SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // rsrc Op.getOperand(3), // vindex Op.getOperand(4), // voffset Op.getOperand(5), // soffset Op.getOperand(6), // offset Op.getOperand(7), // dfmt Op.getOperand(8), // nfmt Op.getOperand(9), // glc Op.getOperand(10) // slc }; EVT VT = Op.getOperand(2).getValueType(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(), MachineMemOperand::MOLoad, VT.getStoreSize(), VT.getStoreSize()); return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL, Op->getVTList(), Ops, VT, MMO); } case Intrinsic::amdgcn_buffer_atomic_swap: case Intrinsic::amdgcn_buffer_atomic_add: case Intrinsic::amdgcn_buffer_atomic_sub: case Intrinsic::amdgcn_buffer_atomic_smin: case Intrinsic::amdgcn_buffer_atomic_umin: case Intrinsic::amdgcn_buffer_atomic_smax: case Intrinsic::amdgcn_buffer_atomic_umax: case Intrinsic::amdgcn_buffer_atomic_and: case Intrinsic::amdgcn_buffer_atomic_or: case Intrinsic::amdgcn_buffer_atomic_xor: { SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // vdata Op.getOperand(3), // rsrc Op.getOperand(4), // vindex Op.getOperand(5), // offset Op.getOperand(6) // slc }; EVT VT = Op.getOperand(3).getValueType(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(), MachineMemOperand::MOLoad | MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable | MachineMemOperand::MOVolatile, VT.getStoreSize(), 4); unsigned Opcode = 0; switch (IntrID) { case Intrinsic::amdgcn_buffer_atomic_swap: Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP; break; case Intrinsic::amdgcn_buffer_atomic_add: Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD; break; case Intrinsic::amdgcn_buffer_atomic_sub: Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB; break; case Intrinsic::amdgcn_buffer_atomic_smin: Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN; break; case Intrinsic::amdgcn_buffer_atomic_umin: Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN; break; case Intrinsic::amdgcn_buffer_atomic_smax: Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX; break; case Intrinsic::amdgcn_buffer_atomic_umax: Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX; break; case Intrinsic::amdgcn_buffer_atomic_and: Opcode = AMDGPUISD::BUFFER_ATOMIC_AND; break; case Intrinsic::amdgcn_buffer_atomic_or: Opcode = AMDGPUISD::BUFFER_ATOMIC_OR; break; case Intrinsic::amdgcn_buffer_atomic_xor: Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR; break; default: llvm_unreachable("unhandled atomic opcode"); } return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, MMO); } case Intrinsic::amdgcn_buffer_atomic_cmpswap: { SDValue Ops[] = { Op.getOperand(0), // Chain Op.getOperand(2), // src Op.getOperand(3), // cmp Op.getOperand(4), // rsrc Op.getOperand(5), // vindex Op.getOperand(6), // offset Op.getOperand(7) // slc }; EVT VT = Op.getOperand(4).getValueType(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(), MachineMemOperand::MOLoad | MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable | MachineMemOperand::MOVolatile, VT.getStoreSize(), 4); return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL, Op->getVTList(), Ops, VT, MMO); } // Basic sample. case Intrinsic::amdgcn_image_sample: case Intrinsic::amdgcn_image_sample_cl: case Intrinsic::amdgcn_image_sample_d: case Intrinsic::amdgcn_image_sample_d_cl: case Intrinsic::amdgcn_image_sample_l: case Intrinsic::amdgcn_image_sample_b: case Intrinsic::amdgcn_image_sample_b_cl: case Intrinsic::amdgcn_image_sample_lz: case Intrinsic::amdgcn_image_sample_cd: case Intrinsic::amdgcn_image_sample_cd_cl: // Sample with comparison. case Intrinsic::amdgcn_image_sample_c: case Intrinsic::amdgcn_image_sample_c_cl: case Intrinsic::amdgcn_image_sample_c_d: case Intrinsic::amdgcn_image_sample_c_d_cl: case Intrinsic::amdgcn_image_sample_c_l: case Intrinsic::amdgcn_image_sample_c_b: case Intrinsic::amdgcn_image_sample_c_b_cl: case Intrinsic::amdgcn_image_sample_c_lz: case Intrinsic::amdgcn_image_sample_c_cd: case Intrinsic::amdgcn_image_sample_c_cd_cl: // Sample with offsets. case Intrinsic::amdgcn_image_sample_o: case Intrinsic::amdgcn_image_sample_cl_o: case Intrinsic::amdgcn_image_sample_d_o: case Intrinsic::amdgcn_image_sample_d_cl_o: case Intrinsic::amdgcn_image_sample_l_o: case Intrinsic::amdgcn_image_sample_b_o: case Intrinsic::amdgcn_image_sample_b_cl_o: case Intrinsic::amdgcn_image_sample_lz_o: case Intrinsic::amdgcn_image_sample_cd_o: case Intrinsic::amdgcn_image_sample_cd_cl_o: // Sample with comparison and offsets. case Intrinsic::amdgcn_image_sample_c_o: case Intrinsic::amdgcn_image_sample_c_cl_o: case Intrinsic::amdgcn_image_sample_c_d_o: case Intrinsic::amdgcn_image_sample_c_d_cl_o: case Intrinsic::amdgcn_image_sample_c_l_o: case Intrinsic::amdgcn_image_sample_c_b_o: case Intrinsic::amdgcn_image_sample_c_b_cl_o: case Intrinsic::amdgcn_image_sample_c_lz_o: case Intrinsic::amdgcn_image_sample_c_cd_o: case Intrinsic::amdgcn_image_sample_c_cd_cl_o: { // Replace dmask with everything disabled with undef. const ConstantSDNode *DMask = dyn_cast(Op.getOperand(5)); if (!DMask || DMask->isNullValue()) { SDValue Undef = DAG.getUNDEF(Op.getValueType()); return DAG.getMergeValues({ Undef, Op.getOperand(0) }, SDLoc(Op)); } return SDValue(); } default: return SDValue(); } } SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue Chain = Op.getOperand(0); unsigned IntrinsicID = cast(Op.getOperand(1))->getZExtValue(); MachineFunction &MF = DAG.getMachineFunction(); switch (IntrinsicID) { case Intrinsic::amdgcn_exp: { const ConstantSDNode *Tgt = cast(Op.getOperand(2)); const ConstantSDNode *En = cast(Op.getOperand(3)); const ConstantSDNode *Done = cast(Op.getOperand(8)); const ConstantSDNode *VM = cast(Op.getOperand(9)); const SDValue Ops[] = { Chain, DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en Op.getOperand(4), // src0 Op.getOperand(5), // src1 Op.getOperand(6), // src2 Op.getOperand(7), // src3 DAG.getTargetConstant(0, DL, MVT::i1), // compr DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1) }; unsigned Opc = Done->isNullValue() ? AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE; return DAG.getNode(Opc, DL, Op->getVTList(), Ops); } case Intrinsic::amdgcn_exp_compr: { const ConstantSDNode *Tgt = cast(Op.getOperand(2)); const ConstantSDNode *En = cast(Op.getOperand(3)); SDValue Src0 = Op.getOperand(4); SDValue Src1 = Op.getOperand(5); const ConstantSDNode *Done = cast(Op.getOperand(6)); const ConstantSDNode *VM = cast(Op.getOperand(7)); SDValue Undef = DAG.getUNDEF(MVT::f32); const SDValue Ops[] = { Chain, DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8), // tgt DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8), // en DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), Undef, // src2 Undef, // src3 DAG.getTargetConstant(1, DL, MVT::i1), // compr DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1) }; unsigned Opc = Done->isNullValue() ? AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE; return DAG.getNode(Opc, DL, Op->getVTList(), Ops); } case Intrinsic::amdgcn_s_sendmsg: case Intrinsic::amdgcn_s_sendmsghalt: { unsigned NodeOp = (IntrinsicID == Intrinsic::amdgcn_s_sendmsg) ? AMDGPUISD::SENDMSG : AMDGPUISD::SENDMSGHALT; Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3)); SDValue Glue = Chain.getValue(1); return DAG.getNode(NodeOp, DL, MVT::Other, Chain, Op.getOperand(2), Glue); } case Intrinsic::amdgcn_init_exec: { return DAG.getNode(AMDGPUISD::INIT_EXEC, DL, MVT::Other, Chain, Op.getOperand(2)); } case Intrinsic::amdgcn_init_exec_from_input: { return DAG.getNode(AMDGPUISD::INIT_EXEC_FROM_INPUT, DL, MVT::Other, Chain, Op.getOperand(2), Op.getOperand(3)); } case AMDGPUIntrinsic::AMDGPU_kill: { SDValue Src = Op.getOperand(2); if (const ConstantFPSDNode *K = dyn_cast(Src)) { if (!K->isNegative()) return Chain; SDValue NegOne = DAG.getTargetConstant(FloatToBits(-1.0f), DL, MVT::i32); return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, NegOne); } SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Src); return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, Cast); } case Intrinsic::amdgcn_s_barrier: { if (getTargetMachine().getOptLevel() > CodeGenOpt::None) { const SISubtarget &ST = MF.getSubtarget(); unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second; if (WGSize <= ST.getWavefrontSize()) return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other, Op.getOperand(0)), 0); } return SDValue(); }; case AMDGPUIntrinsic::SI_tbuffer_store: { // Extract vindex and voffset from vaddr as appropriate const ConstantSDNode *OffEn = cast(Op.getOperand(10)); const ConstantSDNode *IdxEn = cast(Op.getOperand(11)); SDValue VAddr = Op.getOperand(5); SDValue Zero = DAG.getTargetConstant(0, DL, MVT::i32); assert(!(OffEn->isOne() && IdxEn->isOne()) && "Legacy intrinsic doesn't support both offset and index - use new version"); SDValue VIndex = IdxEn->isOne() ? VAddr : Zero; SDValue VOffset = OffEn->isOne() ? VAddr : Zero; // Deal with the vec-3 case const ConstantSDNode *NumChannels = cast(Op.getOperand(4)); auto Opcode = NumChannels->getZExtValue() == 3 ? AMDGPUISD::TBUFFER_STORE_FORMAT_X3 : AMDGPUISD::TBUFFER_STORE_FORMAT; SDValue Ops[] = { Chain, Op.getOperand(3), // vdata Op.getOperand(2), // rsrc VIndex, VOffset, Op.getOperand(6), // soffset Op.getOperand(7), // inst_offset Op.getOperand(8), // dfmt Op.getOperand(9), // nfmt Op.getOperand(12), // glc Op.getOperand(13), // slc }; assert((cast(Op.getOperand(14)))->getZExtValue() == 0 && "Value of tfe other than zero is unsupported"); EVT VT = Op.getOperand(3).getValueType(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(), MachineMemOperand::MOStore, VT.getStoreSize(), 4); return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, MMO); } case Intrinsic::amdgcn_tbuffer_store: { SDValue Ops[] = { Chain, Op.getOperand(2), // vdata Op.getOperand(3), // rsrc Op.getOperand(4), // vindex Op.getOperand(5), // voffset Op.getOperand(6), // soffset Op.getOperand(7), // offset Op.getOperand(8), // dfmt Op.getOperand(9), // nfmt Op.getOperand(10), // glc Op.getOperand(11) // slc }; EVT VT = Op.getOperand(3).getValueType(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(), MachineMemOperand::MOStore, VT.getStoreSize(), 4); return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL, Op->getVTList(), Ops, VT, MMO); } case Intrinsic::amdgcn_buffer_store: case Intrinsic::amdgcn_buffer_store_format: { SDValue Ops[] = { Chain, Op.getOperand(2), // vdata Op.getOperand(3), // rsrc Op.getOperand(4), // vindex Op.getOperand(5), // offset Op.getOperand(6), // glc Op.getOperand(7) // slc }; EVT VT = Op.getOperand(3).getValueType(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(), MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, VT.getStoreSize(), 4); unsigned Opcode = IntrinsicID == Intrinsic::amdgcn_buffer_store ? AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT; return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT, MMO); } default: return Op; } } SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); LoadSDNode *Load = cast(Op); ISD::LoadExtType ExtType = Load->getExtensionType(); EVT MemVT = Load->getMemoryVT(); if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) { if (MemVT == MVT::i16 && isTypeLegal(MVT::i16)) return SDValue(); // FIXME: Copied from PPC // First, load into 32 bits, then truncate to 1 bit. SDValue Chain = Load->getChain(); SDValue BasePtr = Load->getBasePtr(); MachineMemOperand *MMO = Load->getMemOperand(); EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16; SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, BasePtr, RealMemVT, MMO); SDValue Ops[] = { DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD), NewLD.getValue(1) }; return DAG.getMergeValues(Ops, DL); } if (!MemVT.isVector()) return SDValue(); assert(Op.getValueType().getVectorElementType() == MVT::i32 && "Custom lowering for non-i32 vectors hasn't been implemented."); unsigned AS = Load->getAddressSpace(); if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, AS, Load->getAlignment())) { SDValue Ops[2]; std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG); return DAG.getMergeValues(Ops, DL); } MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *MFI = MF.getInfo(); // If there is a possibilty that flat instruction access scratch memory // then we need to use the same legalization rules we use for private. if (AS == AMDGPUASI.FLAT_ADDRESS) AS = MFI->hasFlatScratchInit() ? AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS; unsigned NumElements = MemVT.getVectorNumElements(); if (AS == AMDGPUASI.CONSTANT_ADDRESS) { if (isMemOpUniform(Load)) return SDValue(); // Non-uniform loads will be selected to MUBUF instructions, so they // have the same legalization requirements as global and private // loads. // } if (AS == AMDGPUASI.CONSTANT_ADDRESS || AS == AMDGPUASI.GLOBAL_ADDRESS) { if (Subtarget->getScalarizeGlobalBehavior() && isMemOpUniform(Load) && !Load->isVolatile() && isMemOpHasNoClobberedMemOperand(Load)) return SDValue(); // Non-uniform loads will be selected to MUBUF instructions, so they // have the same legalization requirements as global and private // loads. // } if (AS == AMDGPUASI.CONSTANT_ADDRESS || AS == AMDGPUASI.GLOBAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) { if (NumElements > 4) return SplitVectorLoad(Op, DAG); // v4 loads are supported for private and global memory. return SDValue(); } if (AS == AMDGPUASI.PRIVATE_ADDRESS) { // Depending on the setting of the private_element_size field in the // resource descriptor, we can only make private accesses up to a certain // size. switch (Subtarget->getMaxPrivateElementSize()) { case 4: return scalarizeVectorLoad(Load, DAG); case 8: if (NumElements > 2) return SplitVectorLoad(Op, DAG); return SDValue(); case 16: // Same as global/flat if (NumElements > 4) return SplitVectorLoad(Op, DAG); return SDValue(); default: llvm_unreachable("unsupported private_element_size"); } } else if (AS == AMDGPUASI.LOCAL_ADDRESS) { if (NumElements > 2) return SplitVectorLoad(Op, DAG); if (NumElements == 2) return SDValue(); // If properly aligned, if we split we might be able to use ds_read_b64. return SplitVectorLoad(Op, DAG); } return SDValue(); } SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType() != MVT::i64) return SDValue(); SDLoc DL(Op); SDValue Cond = Op.getOperand(0); SDValue Zero = DAG.getConstant(0, DL, MVT::i32); SDValue One = DAG.getConstant(1, DL, MVT::i32); SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi}); return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res); } // Catch division cases where we can use shortcuts with rcp and rsq // instructions. SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); EVT VT = Op.getValueType(); const SDNodeFlags Flags = Op->getFlags(); bool Unsafe = DAG.getTarget().Options.UnsafeFPMath || Flags.hasUnsafeAlgebra() || Flags.hasAllowReciprocal(); if (!Unsafe && VT == MVT::f32 && Subtarget->hasFP32Denormals()) return SDValue(); if (const ConstantFPSDNode *CLHS = dyn_cast(LHS)) { if (Unsafe || VT == MVT::f32 || VT == MVT::f16) { if (CLHS->isExactlyValue(1.0)) { // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to // the CI documentation has a worst case error of 1 ulp. // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to // use it as long as we aren't trying to use denormals. // // v_rcp_f16 and v_rsq_f16 DO support denormals. // 1.0 / sqrt(x) -> rsq(x) // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP // error seems really high at 2^29 ULP. if (RHS.getOpcode() == ISD::FSQRT) return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); // 1.0 / x -> rcp(x) return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); } // Same as for 1.0, but expand the sign out of the constant. if (CLHS->isExactlyValue(-1.0)) { // -1.0 / x -> rcp (fneg x) SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS); } } } if (Unsafe) { // Turn into multiply by the reciprocal. // x / y -> x * (1.0 / y) SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags); } return SDValue(); } static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, EVT VT, SDValue A, SDValue B, SDValue GlueChain) { if (GlueChain->getNumValues() <= 1) { return DAG.getNode(Opcode, SL, VT, A, B); } assert(GlueChain->getNumValues() == 3); SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); switch (Opcode) { default: llvm_unreachable("no chain equivalent for opcode"); case ISD::FMUL: Opcode = AMDGPUISD::FMUL_W_CHAIN; break; } return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, GlueChain.getValue(2)); } static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL, EVT VT, SDValue A, SDValue B, SDValue C, SDValue GlueChain) { if (GlueChain->getNumValues() <= 1) { return DAG.getNode(Opcode, SL, VT, A, B, C); } assert(GlueChain->getNumValues() == 3); SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue); switch (Opcode) { default: llvm_unreachable("no chain equivalent for opcode"); case ISD::FMA: Opcode = AMDGPUISD::FMA_W_CHAIN; break; } return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)); } SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const { if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) return FastLowered; SDLoc SL(Op); SDValue Src0 = Op.getOperand(0); SDValue Src1 = Op.getOperand(1); SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0); SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1); SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1); SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1); SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32); SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag); return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0); } // Faster 2.5 ULP division that does not support denormals. SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const { SDLoc SL(Op); SDValue LHS = Op.getOperand(1); SDValue RHS = Op.getOperand(2); SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); const APFloat K0Val(BitsToFloat(0x6f800000)); const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); const APFloat K1Val(BitsToFloat(0x2f800000)); const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); // TODO: Should this propagate fast-math-flags? r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); // rcp does not support denormals. SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); } SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG)) return FastLowered; SDLoc SL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1); SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, RHS, RHS, LHS); SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, LHS, RHS, LHS); // Denominator is scaled to not be denormal, so using rcp is ok. SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, DenominatorScaled); SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, DenominatorScaled); const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE | (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16); if (!Subtarget->hasFP32Denormals()) { SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE, SL, MVT::i32); SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs, DAG.getEntryNode(), EnableDenormValue, BitField); SDValue Ops[3] = { NegDivScale0, EnableDenorm.getValue(0), EnableDenorm.getValue(1) }; NegDivScale0 = DAG.getMergeValues(Ops, SL); } SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, ApproxRcp, One, NegDivScale0); SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, ApproxRcp, Fma0); SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, Fma1, Fma1); SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, NumeratorScaled, Mul); SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2); SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, NumeratorScaled, Fma3); if (!Subtarget->hasFP32Denormals()) { const SDValue DisableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32); SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other, Fma4.getValue(1), DisableDenormValue, BitField, Fma4.getValue(2)); SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, DisableDenorm, DAG.getRoot()); DAG.setRoot(OutputChain); } SDValue Scale = NumeratorScaled.getValue(1); SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, Fma4, Fma1, Fma3, Scale); return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS); } SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { if (DAG.getTarget().Options.UnsafeFPMath) return lowerFastUnsafeFDIV(Op, DAG); SDLoc SL(Op); SDValue X = Op.getOperand(0); SDValue Y = Op.getOperand(1); const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Mul, DivScale1); SDValue Scale; if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) { // Workaround a hardware bug on SI where the condition output from div_scale // is not usable. const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); // Figure out if the scale to use for div_fmas. SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); SDValue Scale0Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); SDValue Scale1Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); } else { Scale = DivScale1.getValue(1); } SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, Fma4, Fma3, Mul, Scale); return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); } SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); if (VT == MVT::f32) return LowerFDIV32(Op, DAG); if (VT == MVT::f64) return LowerFDIV64(Op, DAG); if (VT == MVT::f16) return LowerFDIV16(Op, DAG); llvm_unreachable("Unexpected type for fdiv"); } SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); StoreSDNode *Store = cast(Op); EVT VT = Store->getMemoryVT(); if (VT == MVT::i1) { return DAG.getTruncStore(Store->getChain(), DL, DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), Store->getBasePtr(), MVT::i1, Store->getMemOperand()); } assert(VT.isVector() && Store->getValue().getValueType().getScalarType() == MVT::i32); unsigned AS = Store->getAddressSpace(); if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, AS, Store->getAlignment())) { return expandUnalignedStore(Store, DAG); } MachineFunction &MF = DAG.getMachineFunction(); SIMachineFunctionInfo *MFI = MF.getInfo(); // If there is a possibilty that flat instruction access scratch memory // then we need to use the same legalization rules we use for private. if (AS == AMDGPUASI.FLAT_ADDRESS) AS = MFI->hasFlatScratchInit() ? AMDGPUASI.PRIVATE_ADDRESS : AMDGPUASI.GLOBAL_ADDRESS; unsigned NumElements = VT.getVectorNumElements(); if (AS == AMDGPUASI.GLOBAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) { if (NumElements > 4) return SplitVectorStore(Op, DAG); return SDValue(); } else if (AS == AMDGPUASI.PRIVATE_ADDRESS) { switch (Subtarget->getMaxPrivateElementSize()) { case 4: return scalarizeVectorStore(Store, DAG); case 8: if (NumElements > 2) return SplitVectorStore(Op, DAG); return SDValue(); case 16: if (NumElements > 4) return SplitVectorStore(Op, DAG); return SDValue(); default: llvm_unreachable("unsupported private_element_size"); } } else if (AS == AMDGPUASI.LOCAL_ADDRESS) { if (NumElements > 2) return SplitVectorStore(Op, DAG); if (NumElements == 2) return Op; // If properly aligned, if we split we might be able to use ds_write_b64. return SplitVectorStore(Op, DAG); } else { llvm_unreachable("unhandled address space"); } } SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT VT = Op.getValueType(); SDValue Arg = Op.getOperand(0); // TODO: Should this propagate fast-math-flags? SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT, DAG.getNode(ISD::FMUL, DL, VT, Arg, DAG.getConstantFP(0.5/M_PI, DL, VT))); switch (Op.getOpcode()) { case ISD::FCOS: return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart); case ISD::FSIN: return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart); default: llvm_unreachable("Wrong trig opcode"); } } SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { AtomicSDNode *AtomicNode = cast(Op); assert(AtomicNode->isCompareAndSwap()); unsigned AS = AtomicNode->getAddressSpace(); // No custom lowering required for local address space if (!isFlatGlobalAddrSpace(AS, AMDGPUASI)) return Op; // Non-local address space requires custom lowering for atomic compare // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2 SDLoc DL(Op); SDValue ChainIn = Op.getOperand(0); SDValue Addr = Op.getOperand(1); SDValue Old = Op.getOperand(2); SDValue New = Op.getOperand(3); EVT VT = Op.getValueType(); MVT SimpleVT = VT.getSimpleVT(); MVT VecType = MVT::getVectorVT(SimpleVT, 2); SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old}); SDValue Ops[] = { ChainIn, Addr, NewOld }; return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(), Ops, VT, AtomicNode->getMemOperand()); } //===----------------------------------------------------------------------===// // Custom DAG optimizations //===----------------------------------------------------------------------===// SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); EVT ScalarVT = VT.getScalarType(); if (ScalarVT != MVT::f32) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); SDValue Src = N->getOperand(0); EVT SrcVT = Src.getValueType(); // TODO: We could try to match extracting the higher bytes, which would be // easier if i8 vectors weren't promoted to i32 vectors, particularly after // types are legalized. v4i8 -> v4f32 is probably the only case to worry // about in practice. if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) { if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src); DCI.AddToWorklist(Cvt.getNode()); return Cvt; } } return SDValue(); } // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) // This is a variant of // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), // // The normal DAG combiner will do this, but only if the add has one use since // that would increase the number of instructions. // // This prevents us from seeing a constant offset that can be folded into a // memory instruction's addressing mode. If we know the resulting add offset of // a pointer can be folded into an addressing offset, we can replace the pointer // operand with the add of new constant offset. This eliminates one of the uses, // and may allow the remaining use to also be simplified. // SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, unsigned AddrSpace, EVT MemVT, DAGCombinerInfo &DCI) const { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); // We only do this to handle cases where it's profitable when there are // multiple uses of the add, so defer to the standard combine. if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) || N0->hasOneUse()) return SDValue(); const ConstantSDNode *CN1 = dyn_cast(N1); if (!CN1) return SDValue(); const ConstantSDNode *CAdd = dyn_cast(N0.getOperand(1)); if (!CAdd) return SDValue(); // If the resulting offset is too large, we can't fold it into the addressing // mode offset. APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext()); AddrMode AM; AM.HasBaseReg = true; AM.BaseOffs = Offset.getSExtValue(); if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace)) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); EVT VT = N->getValueType(0); SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32); SDNodeFlags Flags; Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() && (N0.getOpcode() == ISD::OR || N0->getFlags().hasNoUnsignedWrap())); return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags); } SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N, DAGCombinerInfo &DCI) const { SDValue Ptr = N->getBasePtr(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); // TODO: We could also do this for multiplies. if (Ptr.getOpcode() == ISD::SHL) { SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(), N->getMemoryVT(), DCI); if (NewPtr) { SmallVector NewOps(N->op_begin(), N->op_end()); NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); } } return SDValue(); } static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) { return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) || (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) || (Opc == ISD::XOR && Val == 0); } // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit // integer combine opportunities since most 64-bit operations are decomposed // this way. TODO: We won't want this for SALU especially if it is an inline // immediate. SDValue SITargetLowering::splitBinaryBitConstantOp( DAGCombinerInfo &DCI, const SDLoc &SL, unsigned Opc, SDValue LHS, const ConstantSDNode *CRHS) const { uint64_t Val = CRHS->getZExtValue(); uint32_t ValLo = Lo_32(Val); uint32_t ValHi = Hi_32(Val); const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); if ((bitOpWithConstantIsReducible(Opc, ValLo) || bitOpWithConstantIsReducible(Opc, ValHi)) || (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) { // If we need to materialize a 64-bit immediate, it will be split up later // anyway. Avoid creating the harder to understand 64-bit immediate // materialization. return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi); } return SDValue(); } // Returns true if argument is a boolean value which is not serialized into // memory or argument and does not require v_cmdmask_b32 to be deserialized. static bool isBoolSGPR(SDValue V) { if (V.getValueType() != MVT::i1) return false; switch (V.getOpcode()) { default: break; case ISD::SETCC: case ISD::AND: case ISD::OR: case ISD::XOR: case AMDGPUISD::FP_CLASS: return true; } return false; } SDValue SITargetLowering::performAndCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (DCI.isBeforeLegalize()) return SDValue(); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); const ConstantSDNode *CRHS = dyn_cast(RHS); if (VT == MVT::i64 && CRHS) { if (SDValue Split = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS)) return Split; } if (CRHS && VT == MVT::i32) { // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb // nb = number of trailing zeroes in mask // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass, // given that we are selecting 8 or 16 bit fields starting at byte boundary. uint64_t Mask = CRHS->getZExtValue(); unsigned Bits = countPopulation(Mask); if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL && (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) { if (auto *CShift = dyn_cast(LHS->getOperand(1))) { unsigned Shift = CShift->getZExtValue(); unsigned NB = CRHS->getAPIntValue().countTrailingZeros(); unsigned Offset = NB + Shift; if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary. SDLoc SL(N); SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, LHS->getOperand(0), DAG.getConstant(Offset, SL, MVT::i32), DAG.getConstant(Bits, SL, MVT::i32)); EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits); SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE, DAG.getValueType(NarrowVT)); SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext, DAG.getConstant(NB, SDLoc(CRHS), MVT::i32)); return Shl; } } } } // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) { ISD::CondCode LCC = cast(LHS.getOperand(2))->get(); ISD::CondCode RCC = cast(RHS.getOperand(2))->get(); SDValue X = LHS.getOperand(0); SDValue Y = RHS.getOperand(0); if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) return SDValue(); if (LCC == ISD::SETO) { if (X != LHS.getOperand(1)) return SDValue(); if (RCC == ISD::SETUNE) { const ConstantFPSDNode *C1 = dyn_cast(RHS.getOperand(1)); if (!C1 || !C1->isInfinity() || C1->isNegative()) return SDValue(); const uint32_t Mask = SIInstrFlags::N_NORMAL | SIInstrFlags::N_SUBNORMAL | SIInstrFlags::N_ZERO | SIInstrFlags::P_ZERO | SIInstrFlags::P_SUBNORMAL | SIInstrFlags::P_NORMAL; static_assert(((~(SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN | SIInstrFlags::N_INFINITY | SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, "mask not equal"); SDLoc DL(N); return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, X, DAG.getConstant(Mask, DL, MVT::i32)); } } } if (VT == MVT::i32 && (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) { // and x, (sext cc from i1) => select cc, x, 0 if (RHS.getOpcode() != ISD::SIGN_EXTEND) std::swap(LHS, RHS); if (isBoolSGPR(RHS.getOperand(0))) return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), LHS, DAG.getConstant(0, SDLoc(N), MVT::i32)); } return SDValue(); } SDValue SITargetLowering::performOrCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); EVT VT = N->getValueType(0); if (VT == MVT::i1) { // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && RHS.getOpcode() == AMDGPUISD::FP_CLASS) { SDValue Src = LHS.getOperand(0); if (Src != RHS.getOperand(0)) return SDValue(); const ConstantSDNode *CLHS = dyn_cast(LHS.getOperand(1)); const ConstantSDNode *CRHS = dyn_cast(RHS.getOperand(1)); if (!CLHS || !CRHS) return SDValue(); // Only 10 bits are used. static const uint32_t MaxMask = 0x3ff; uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; SDLoc DL(N); return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, Src, DAG.getConstant(NewMask, DL, MVT::i32)); } return SDValue(); } if (VT != MVT::i64) return SDValue(); // TODO: This could be a generic combine with a predicate for extracting the // high half of an integer being free. // (or i64:x, (zero_extend i32:y)) -> // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x))) if (LHS.getOpcode() == ISD::ZERO_EXTEND && RHS.getOpcode() != ISD::ZERO_EXTEND) std::swap(LHS, RHS); if (RHS.getOpcode() == ISD::ZERO_EXTEND) { SDValue ExtSrc = RHS.getOperand(0); EVT SrcVT = ExtSrc.getValueType(); if (SrcVT == MVT::i32) { SDLoc SL(N); SDValue LowLHS, HiBits; std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG); SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc); DCI.AddToWorklist(LowOr.getNode()); DCI.AddToWorklist(HiBits.getNode()); SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, LowOr, HiBits); return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); } } const ConstantSDNode *CRHS = dyn_cast(N->getOperand(1)); if (CRHS) { if (SDValue Split = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS)) return Split; } return SDValue(); } SDValue SITargetLowering::performXorCombine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); if (VT != MVT::i64) return SDValue(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); const ConstantSDNode *CRHS = dyn_cast(RHS); if (CRHS) { if (SDValue Split = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS)) return Split; } return SDValue(); } // Instructions that will be lowered with a final instruction that zeros the // high result bits. // XXX - probably only need to list legal operations. static bool fp16SrcZerosHighBits(unsigned Opc) { switch (Opc) { case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: case ISD::FMA: case ISD::FMAD: case ISD::FCANONICALIZE: case ISD::FP_ROUND: case ISD::UINT_TO_FP: case ISD::SINT_TO_FP: case ISD::FABS: // Fabs is lowered to a bit operation, but it's an and which will clear the // high bits anyway. case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: case ISD::FPOWI: case ISD::FPOW: case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FEXP: case ISD::FEXP2: case ISD::FCEIL: case ISD::FTRUNC: case ISD::FRINT: case ISD::FNEARBYINT: case ISD::FROUND: case ISD::FFLOOR: case ISD::FMINNUM: case ISD::FMAXNUM: case AMDGPUISD::FRACT: case AMDGPUISD::CLAMP: case AMDGPUISD::COS_HW: case AMDGPUISD::SIN_HW: case AMDGPUISD::FMIN3: case AMDGPUISD::FMAX3: case AMDGPUISD::FMED3: case AMDGPUISD::FMAD_FTZ: case AMDGPUISD::RCP: case AMDGPUISD::RSQ: case AMDGPUISD::LDEXP: return true; default: // fcopysign, select and others may be lowered to 32-bit bit operations // which don't zero the high bits. return false; } } SDValue SITargetLowering::performZeroExtendCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (!Subtarget->has16BitInsts() || DCI.getDAGCombineLevel() < AfterLegalizeDAG) return SDValue(); EVT VT = N->getValueType(0); if (VT != MVT::i32) return SDValue(); SDValue Src = N->getOperand(0); if (Src.getValueType() != MVT::i16) return SDValue(); // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src // FIXME: It is not universally true that the high bits are zeroed on gfx9. if (Src.getOpcode() == ISD::BITCAST) { SDValue BCSrc = Src.getOperand(0); if (BCSrc.getValueType() == MVT::f16 && fp16SrcZerosHighBits(BCSrc.getOpcode())) return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc); } return SDValue(); } SDValue SITargetLowering::performClassCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue Mask = N->getOperand(1); // fp_class x, 0 -> false if (const ConstantSDNode *CMask = dyn_cast(Mask)) { if (CMask->isNullValue()) return DAG.getConstant(0, SDLoc(N), MVT::i1); } if (N->getOperand(0).isUndef()) return DAG.getUNDEF(MVT::i1); return SDValue(); } static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) { if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions()) return true; return DAG.isKnownNeverNaN(Op); } static bool isCanonicalized(SelectionDAG &DAG, SDValue Op, const SISubtarget *ST, unsigned MaxDepth=5) { // If source is a result of another standard FP operation it is already in // canonical form. switch (Op.getOpcode()) { default: break; // These will flush denorms if required. case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FSQRT: case ISD::FCEIL: case ISD::FFLOOR: case ISD::FMA: case ISD::FMAD: case ISD::FCANONICALIZE: return true; case ISD::FP_ROUND: return Op.getValueType().getScalarType() != MVT::f16 || ST->hasFP16Denormals(); case ISD::FP_EXTEND: return Op.getOperand(0).getValueType().getScalarType() != MVT::f16 || ST->hasFP16Denormals(); case ISD::FP16_TO_FP: case ISD::FP_TO_FP16: return ST->hasFP16Denormals(); // It can/will be lowered or combined as a bit operation. // Need to check their input recursively to handle. case ISD::FNEG: case ISD::FABS: return (MaxDepth > 0) && isCanonicalized(DAG, Op.getOperand(0), ST, MaxDepth - 1); case ISD::FSIN: case ISD::FCOS: case ISD::FSINCOS: return Op.getValueType().getScalarType() != MVT::f16; // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. // For such targets need to check their input recursively. case ISD::FMINNUM: case ISD::FMAXNUM: case ISD::FMINNAN: case ISD::FMAXNAN: if (ST->supportsMinMaxDenormModes() && DAG.isKnownNeverNaN(Op.getOperand(0)) && DAG.isKnownNeverNaN(Op.getOperand(1))) return true; return (MaxDepth > 0) && isCanonicalized(DAG, Op.getOperand(0), ST, MaxDepth - 1) && isCanonicalized(DAG, Op.getOperand(1), ST, MaxDepth - 1); case ISD::ConstantFP: { auto F = cast(Op)->getValueAPF(); return !F.isDenormal() && !(F.isNaN() && F.isSignaling()); } } return false; } // Constant fold canonicalize. SDValue SITargetLowering::performFCanonicalizeCombine( SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; ConstantFPSDNode *CFP = isConstOrConstSplatFP(N->getOperand(0)); if (!CFP) { SDValue N0 = N->getOperand(0); EVT VT = N0.getValueType().getScalarType(); auto ST = getSubtarget(); if (((VT == MVT::f32 && ST->hasFP32Denormals()) || (VT == MVT::f64 && ST->hasFP64Denormals()) || (VT == MVT::f16 && ST->hasFP16Denormals())) && DAG.isKnownNeverNaN(N0)) return N0; bool IsIEEEMode = Subtarget->enableIEEEBit(DAG.getMachineFunction()); if ((IsIEEEMode || isKnownNeverSNan(DAG, N0)) && isCanonicalized(DAG, N0, ST)) return N0; return SDValue(); } const APFloat &C = CFP->getValueAPF(); // Flush denormals to 0 if not enabled. if (C.isDenormal()) { EVT VT = N->getValueType(0); EVT SVT = VT.getScalarType(); if (SVT == MVT::f32 && !Subtarget->hasFP32Denormals()) return DAG.getConstantFP(0.0, SDLoc(N), VT); if (SVT == MVT::f64 && !Subtarget->hasFP64Denormals()) return DAG.getConstantFP(0.0, SDLoc(N), VT); if (SVT == MVT::f16 && !Subtarget->hasFP16Denormals()) return DAG.getConstantFP(0.0, SDLoc(N), VT); } if (C.isNaN()) { EVT VT = N->getValueType(0); APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics()); if (C.isSignaling()) { // Quiet a signaling NaN. return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT); } // Make sure it is the canonical NaN bitpattern. // // TODO: Can we use -1 as the canonical NaN value since it's an inline // immediate? if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt()) return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT); } return N->getOperand(0); } static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { switch (Opc) { case ISD::FMAXNUM: return AMDGPUISD::FMAX3; case ISD::SMAX: return AMDGPUISD::SMAX3; case ISD::UMAX: return AMDGPUISD::UMAX3; case ISD::FMINNUM: return AMDGPUISD::FMIN3; case ISD::SMIN: return AMDGPUISD::SMIN3; case ISD::UMIN: return AMDGPUISD::UMIN3; default: llvm_unreachable("Not a min/max opcode"); } } SDValue SITargetLowering::performIntMed3ImmCombine( SelectionDAG &DAG, const SDLoc &SL, SDValue Op0, SDValue Op1, bool Signed) const { ConstantSDNode *K1 = dyn_cast(Op1); if (!K1) return SDValue(); ConstantSDNode *K0 = dyn_cast(Op0.getOperand(1)); if (!K0) return SDValue(); if (Signed) { if (K0->getAPIntValue().sge(K1->getAPIntValue())) return SDValue(); } else { if (K0->getAPIntValue().uge(K1->getAPIntValue())) return SDValue(); } EVT VT = K0->getValueType(0); unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3; if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) { return DAG.getNode(Med3Opc, SL, VT, Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0)); } // If there isn't a 16-bit med3 operation, convert to 32-bit. MVT NVT = MVT::i32; unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0)); SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1)); SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1); SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3); return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3); } static ConstantFPSDNode *getSplatConstantFP(SDValue Op) { if (ConstantFPSDNode *C = dyn_cast(Op)) return C; if (BuildVectorSDNode *BV = dyn_cast(Op)) { if (ConstantFPSDNode *C = BV->getConstantFPSplatNode()) return C; } return nullptr; } SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL, SDValue Op0, SDValue Op1) const { ConstantFPSDNode *K1 = getSplatConstantFP(Op1); if (!K1) return SDValue(); ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1)); if (!K0) return SDValue(); // Ordered >= (although NaN inputs should have folded away by now). APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF()); if (Cmp == APFloat::cmpGreaterThan) return SDValue(); // TODO: Check IEEE bit enabled? EVT VT = Op0.getValueType(); if (Subtarget->enableDX10Clamp()) { // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the // hardware fmed3 behavior converting to a min. // FIXME: Should this be allowing -0.0? if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0)) return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0)); } // med3 for f16 is only available on gfx9+, and not available for v2f16. if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) { // This isn't safe with signaling NaNs because in IEEE mode, min/max on a // signaling NaN gives a quiet NaN. The quiet NaN input to the min would // then give the other result, which is different from med3 with a NaN // input. SDValue Var = Op0.getOperand(0); if (!isKnownNeverSNan(DAG, Var)) return SDValue(); return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), Var, SDValue(K0, 0), SDValue(K1, 0)); } return SDValue(); } SDValue SITargetLowering::performMinMaxCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); unsigned Opc = N->getOpcode(); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); // Only do this if the inner op has one use since this will just increases // register pressure for no benefit. if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY && VT != MVT::f64 && ((VT != MVT::f16 && VT != MVT::i16) || Subtarget->hasMin3Max3_16())) { // max(max(a, b), c) -> max3(a, b, c) // min(min(a, b), c) -> min3(a, b, c) if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { SDLoc DL(N); return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), DL, N->getValueType(0), Op0.getOperand(0), Op0.getOperand(1), Op1); } // Try commuted. // max(a, max(b, c)) -> max3(a, b, c) // min(a, min(b, c)) -> min3(a, b, c) if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { SDLoc DL(N); return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), DL, N->getValueType(0), Op0, Op1.getOperand(0), Op1.getOperand(1)); } } // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1) if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) { if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true)) return Med3; } if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) { if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false)) return Med3; } // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1) if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) || (Opc == AMDGPUISD::FMIN_LEGACY && Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) && (VT == MVT::f32 || VT == MVT::f64 || (VT == MVT::f16 && Subtarget->has16BitInsts()) || (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) && Op0.hasOneUse()) { if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1)) return Res; } return SDValue(); } static bool isClampZeroToOne(SDValue A, SDValue B) { if (ConstantFPSDNode *CA = dyn_cast(A)) { if (ConstantFPSDNode *CB = dyn_cast(B)) { // FIXME: Should this be allowing -0.0? return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) || (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0)); } } return false; } // FIXME: Should only worry about snans for version with chain. SDValue SITargetLowering::performFMed3Combine(SDNode *N, DAGCombinerInfo &DCI) const { EVT VT = N->getValueType(0); // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and // NaNs. With a NaN input, the order of the operands may change the result. SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); SDValue Src0 = N->getOperand(0); SDValue Src1 = N->getOperand(1); SDValue Src2 = N->getOperand(2); if (isClampZeroToOne(Src0, Src1)) { // const_a, const_b, x -> clamp is safe in all cases including signaling // nans. // FIXME: Should this be allowing -0.0? return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2); } // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother // handling no dx10-clamp? if (Subtarget->enableDX10Clamp()) { // If NaNs is clamped to 0, we are free to reorder the inputs. if (isa(Src0) && !isa(Src1)) std::swap(Src0, Src1); if (isa(Src1) && !isa(Src2)) std::swap(Src1, Src2); if (isa(Src0) && !isa(Src1)) std::swap(Src0, Src1); if (isClampZeroToOne(Src1, Src2)) return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0); } return SDValue(); } SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N, DAGCombinerInfo &DCI) const { SDValue Src0 = N->getOperand(0); SDValue Src1 = N->getOperand(1); if (Src0.isUndef() && Src1.isUndef()) return DCI.DAG.getUNDEF(N->getValueType(0)); return SDValue(); } SDValue SITargetLowering::performExtractVectorEltCombine( SDNode *N, DAGCombinerInfo &DCI) const { SDValue Vec = N->getOperand(0); SelectionDAG &DAG = DCI.DAG; if (Vec.getOpcode() == ISD::FNEG && allUsesHaveSourceMods(N)) { SDLoc SL(N); EVT EltVT = N->getValueType(0); SDValue Idx = N->getOperand(1); SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec.getOperand(0), Idx); return DAG.getNode(ISD::FNEG, SL, EltVT, Elt); } return SDValue(); } static bool convertBuildVectorCastElt(SelectionDAG &DAG, SDValue &Lo, SDValue &Hi) { if (Hi.getOpcode() == ISD::BITCAST && Hi.getOperand(0).getValueType() == MVT::f16 && (isa(Lo) || Lo.isUndef())) { Lo = DAG.getNode(ISD::BITCAST, SDLoc(Lo), MVT::f16, Lo); Hi = Hi.getOperand(0); return true; } return false; } SDValue SITargetLowering::performBuildVectorCombine( SDNode *N, DAGCombinerInfo &DCI) const { SDLoc SL(N); if (!isTypeLegal(MVT::v2i16)) return SDValue(); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); if (VT == MVT::v2i16) { SDValue Lo = N->getOperand(0); SDValue Hi = N->getOperand(1); // v2i16 build_vector (const|undef), (bitcast f16:$x) // -> bitcast (v2f16 build_vector const|undef, $x if (convertBuildVectorCastElt(DAG, Lo, Hi)) { SDValue NewVec = DAG.getBuildVector(MVT::v2f16, SL, { Lo, Hi }); return DAG.getNode(ISD::BITCAST, SL, VT, NewVec); } if (convertBuildVectorCastElt(DAG, Hi, Lo)) { SDValue NewVec = DAG.getBuildVector(MVT::v2f16, SL, { Hi, Lo }); return DAG.getNode(ISD::BITCAST, SL, VT, NewVec); } } return SDValue(); } unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG, const SDNode *N0, const SDNode *N1) const { EVT VT = N0->getValueType(0); // Only do this if we are not trying to support denormals. v_mad_f32 does not // support denormals ever. if ((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) || (VT == MVT::f16 && !Subtarget->hasFP16Denormals())) return ISD::FMAD; const TargetOptions &Options = DAG.getTarget().Options; if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || (N0->getFlags().hasUnsafeAlgebra() && N1->getFlags().hasUnsafeAlgebra())) && isFMAFasterThanFMulAndFAdd(VT)) { return ISD::FMA; } return 0; } static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, EVT VT, SDValue N0, SDValue N1, SDValue N2, bool Signed) { unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32; SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1); SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2); return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad); } SDValue SITargetLowering::performAddCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) && Subtarget->hasMad64_32() && !VT.isVector() && VT.getScalarSizeInBits() > 32 && VT.getScalarSizeInBits() <= 64) { if (LHS.getOpcode() != ISD::MUL) std::swap(LHS, RHS); SDValue MulLHS = LHS.getOperand(0); SDValue MulRHS = LHS.getOperand(1); SDValue AddRHS = RHS; // TODO: Maybe restrict if SGPR inputs. if (numBitsUnsigned(MulLHS, DAG) <= 32 && numBitsUnsigned(MulRHS, DAG) <= 32) { MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32); MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32); AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64); return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false); } if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) { MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32); MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32); AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64); return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true); } return SDValue(); } if (VT != MVT::i32) return SDValue(); // add x, zext (setcc) => addcarry x, 0, setcc // add x, sext (setcc) => subcarry x, 0, setcc unsigned Opc = LHS.getOpcode(); if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND || Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY) std::swap(RHS, LHS); Opc = RHS.getOpcode(); switch (Opc) { default: break; case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: case ISD::ANY_EXTEND: { auto Cond = RHS.getOperand(0); if (!isBoolSGPR(Cond)) break; SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1); SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond }; Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY; return DAG.getNode(Opc, SL, VTList, Args); } case ISD::ADDCARRY: { // add x, (addcarry y, 0, cc) => addcarry x, y, cc auto C = dyn_cast(RHS.getOperand(1)); if (!C || C->getZExtValue() != 0) break; SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) }; return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args); } } return SDValue(); } SDValue SITargetLowering::performSubCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); if (VT != MVT::i32) return SDValue(); SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); unsigned Opc = LHS.getOpcode(); if (Opc != ISD::SUBCARRY) std::swap(RHS, LHS); if (LHS.getOpcode() == ISD::SUBCARRY) { // sub (subcarry x, 0, cc), y => subcarry x, y, cc auto C = dyn_cast(LHS.getOperand(1)); if (!C || C->getZExtValue() != 0) return SDValue(); SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) }; return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args); } return SDValue(); } SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (N->getValueType(0) != MVT::i32) return SDValue(); auto C = dyn_cast(N->getOperand(1)); if (!C || C->getZExtValue() != 0) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDValue LHS = N->getOperand(0); // addcarry (add x, y), 0, cc => addcarry x, y, cc // subcarry (sub x, y), 0, cc => subcarry x, y, cc unsigned LHSOpc = LHS.getOpcode(); unsigned Opc = N->getOpcode(); if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) || (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) { SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) }; return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args); } return SDValue(); } SDValue SITargetLowering::performFAddCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) return SDValue(); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // These should really be instruction patterns, but writing patterns with // source modiifiers is a pain. // fadd (fadd (a, a), b) -> mad 2.0, a, b if (LHS.getOpcode() == ISD::FADD) { SDValue A = LHS.getOperand(0); if (A == LHS.getOperand(1)) { unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); if (FusedOp != 0) { const SDValue Two = DAG.getConstantFP(2.0, SL, VT); return DAG.getNode(FusedOp, SL, VT, A, Two, RHS); } } } // fadd (b, fadd (a, a)) -> mad 2.0, a, b if (RHS.getOpcode() == ISD::FADD) { SDValue A = RHS.getOperand(0); if (A == RHS.getOperand(1)) { unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); if (FusedOp != 0) { const SDValue Two = DAG.getConstantFP(2.0, SL, VT); return DAG.getNode(FusedOp, SL, VT, A, Two, LHS); } } } return SDValue(); } SDValue SITargetLowering::performFSubCombine(SDNode *N, DAGCombinerInfo &DCI) const { if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); EVT VT = N->getValueType(0); assert(!VT.isVector()); // Try to get the fneg to fold into the source modifier. This undoes generic // DAG combines and folds them into the mad. // // Only do this if we are not trying to support denormals. v_mad_f32 does // not support denormals ever. SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (LHS.getOpcode() == ISD::FADD) { // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) SDValue A = LHS.getOperand(0); if (A == LHS.getOperand(1)) { unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode()); if (FusedOp != 0){ const SDValue Two = DAG.getConstantFP(2.0, SL, VT); SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS); } } } if (RHS.getOpcode() == ISD::FADD) { // (fsub c, (fadd a, a)) -> mad -2.0, a, c SDValue A = RHS.getOperand(0); if (A == RHS.getOperand(1)) { unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode()); if (FusedOp != 0){ const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT); return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS); } } } return SDValue(); } SDValue SITargetLowering::performSetCCCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); EVT VT = LHS.getValueType(); ISD::CondCode CC = cast(N->getOperand(2))->get(); auto CRHS = dyn_cast(RHS); if (!CRHS) { CRHS = dyn_cast(LHS); if (CRHS) { std::swap(LHS, RHS); CC = getSetCCSwappedOperands(CC); } } if (CRHS && VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND && isBoolSGPR(LHS.getOperand(0))) { // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc if ((CRHS->isAllOnesValue() && (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) || (CRHS->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE))) return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0), DAG.getConstant(-1, SL, MVT::i1)); if ((CRHS->isAllOnesValue() && (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) || (CRHS->isNullValue() && (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT))) return LHS.getOperand(0); } if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() && VT != MVT::f16)) return SDValue(); // Match isinf pattern // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) { const ConstantFPSDNode *CRHS = dyn_cast(RHS); if (!CRHS) return SDValue(); const APFloat &APF = CRHS->getValueAPF(); if (APF.isInfinity() && !APF.isNegative()) { unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY; return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), DAG.getConstant(Mask, SL, MVT::i32)); } } return SDValue(); } SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc SL(N); unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; SDValue Src = N->getOperand(0); SDValue Srl = N->getOperand(0); if (Srl.getOpcode() == ISD::ZERO_EXTEND) Srl = Srl.getOperand(0); // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero. if (Srl.getOpcode() == ISD::SRL) { // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x if (const ConstantSDNode *C = dyn_cast(Srl.getOperand(1))) { Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)), EVT(MVT::i32)); unsigned SrcOffset = C->getZExtValue() + 8 * Offset; if (SrcOffset < 32 && SrcOffset % 8 == 0) { return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL, MVT::f32, Srl); } } } APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); KnownBits Known; TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), !DCI.isBeforeLegalizeOps()); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLI.ShrinkDemandedConstant(Src, Demanded, TLO) || TLI.SimplifyDemandedBits(Src, Demanded, Known, TLO)) { DCI.CommitTargetLoweringOpt(TLO); } return SDValue(); } SDValue SITargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { switch (N->getOpcode()) { default: return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); case ISD::ADD: return performAddCombine(N, DCI); case ISD::SUB: return performSubCombine(N, DCI); case ISD::ADDCARRY: case ISD::SUBCARRY: return performAddCarrySubCarryCombine(N, DCI); case ISD::FADD: return performFAddCombine(N, DCI); case ISD::FSUB: return performFSubCombine(N, DCI); case ISD::SETCC: return performSetCCCombine(N, DCI); case ISD::FMAXNUM: case ISD::FMINNUM: case ISD::SMAX: case ISD::SMIN: case ISD::UMAX: case ISD::UMIN: case AMDGPUISD::FMIN_LEGACY: case AMDGPUISD::FMAX_LEGACY: { if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG && getTargetMachine().getOptLevel() > CodeGenOpt::None) return performMinMaxCombine(N, DCI); break; } case ISD::LOAD: case ISD::STORE: case ISD::ATOMIC_LOAD: case ISD::ATOMIC_STORE: case ISD::ATOMIC_CMP_SWAP: case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: case ISD::ATOMIC_SWAP: case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: case AMDGPUISD::ATOMIC_INC: case AMDGPUISD::ATOMIC_DEC: // TODO: Target mem intrinsics. if (DCI.isBeforeLegalize()) break; return performMemSDNodeCombine(cast(N), DCI); case ISD::AND: return performAndCombine(N, DCI); case ISD::OR: return performOrCombine(N, DCI); case ISD::XOR: return performXorCombine(N, DCI); case ISD::ZERO_EXTEND: return performZeroExtendCombine(N, DCI); case AMDGPUISD::FP_CLASS: return performClassCombine(N, DCI); case ISD::FCANONICALIZE: return performFCanonicalizeCombine(N, DCI); case AMDGPUISD::FRACT: case AMDGPUISD::RCP: case AMDGPUISD::RSQ: case AMDGPUISD::RCP_LEGACY: case AMDGPUISD::RSQ_LEGACY: case AMDGPUISD::RSQ_CLAMP: case AMDGPUISD::LDEXP: { SDValue Src = N->getOperand(0); if (Src.isUndef()) return Src; break; } case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return performUCharToFloatCombine(N, DCI); case AMDGPUISD::CVT_F32_UBYTE0: case AMDGPUISD::CVT_F32_UBYTE1: case AMDGPUISD::CVT_F32_UBYTE2: case AMDGPUISD::CVT_F32_UBYTE3: return performCvtF32UByteNCombine(N, DCI); case AMDGPUISD::FMED3: return performFMed3Combine(N, DCI); case AMDGPUISD::CVT_PKRTZ_F16_F32: return performCvtPkRTZCombine(N, DCI); case ISD::SCALAR_TO_VECTOR: { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x)) if (VT == MVT::v2i16 || VT == MVT::v2f16) { SDLoc SL(N); SDValue Src = N->getOperand(0); EVT EltVT = Src.getValueType(); if (EltVT == MVT::f16) Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src); SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src); return DAG.getNode(ISD::BITCAST, SL, VT, Ext); } break; } case ISD::EXTRACT_VECTOR_ELT: return performExtractVectorEltCombine(N, DCI); case ISD::BUILD_VECTOR: return performBuildVectorCombine(N, DCI); } return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); } /// \brief Helper function for adjustWritemask static unsigned SubIdx2Lane(unsigned Idx) { switch (Idx) { default: return 0; case AMDGPU::sub0: return 0; case AMDGPU::sub1: return 1; case AMDGPU::sub2: return 2; case AMDGPU::sub3: return 3; } } /// \brief Adjust the writemask of MIMG instructions SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node, SelectionDAG &DAG) const { SDNode *Users[4] = { nullptr }; unsigned Lane = 0; unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3; unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx); unsigned NewDmask = 0; bool HasChain = Node->getNumValues() > 1; if (OldDmask == 0) { // These are folded out, but on the chance it happens don't assert. return Node; } // Try to figure out the used register components for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); I != E; ++I) { // Don't look at users of the chain. if (I.getUse().getResNo() != 0) continue; // Abort if we can't understand the usage if (!I->isMachineOpcode() || I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) return Node; // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used. // Note that subregs are packed, i.e. Lane==0 is the first bit set // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit // set, etc. Lane = SubIdx2Lane(I->getConstantOperandVal(1)); // Set which texture component corresponds to the lane. unsigned Comp; for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) { Comp = countTrailingZeros(Dmask); Dmask &= ~(1 << Comp); } // Abort if we have more than one user per component if (Users[Lane]) return Node; Users[Lane] = *I; NewDmask |= 1 << Comp; } // Abort if there's no change if (NewDmask == OldDmask) return Node; unsigned BitsSet = countPopulation(NewDmask); const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); int NewOpcode = AMDGPU::getMaskedMIMGOp(*TII, Node->getMachineOpcode(), BitsSet); assert(NewOpcode != -1 && NewOpcode != static_cast(Node->getMachineOpcode()) && "failed to find equivalent MIMG op"); // Adjust the writemask in the node SmallVector Ops; Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx); Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end()); MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT(); MVT ResultVT = BitsSet == 1 ? SVT : MVT::getVectorVT(SVT, BitsSet == 3 ? 4 : BitsSet); SDVTList NewVTList = HasChain ? DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT); MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node), NewVTList, Ops); if (HasChain) { // Update chain. NewNode->setMemRefs(Node->memoperands_begin(), Node->memoperands_end()); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1)); } if (BitsSet == 1) { assert(Node->hasNUsesOfValue(1, 0)); SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY, SDLoc(Node), Users[Lane]->getValueType(0), SDValue(NewNode, 0)); DAG.ReplaceAllUsesWith(Users[Lane], Copy); return nullptr; } // Update the users of the node with the new indices for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) { SDNode *User = Users[i]; if (!User) continue; SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op); switch (Idx) { default: break; case AMDGPU::sub0: Idx = AMDGPU::sub1; break; case AMDGPU::sub1: Idx = AMDGPU::sub2; break; case AMDGPU::sub2: Idx = AMDGPU::sub3; break; } } DAG.RemoveDeadNode(Node); return nullptr; } static bool isFrameIndexOp(SDValue Op) { if (Op.getOpcode() == ISD::AssertZext) Op = Op.getOperand(0); return isa(Op); } /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG) /// with frame index operands. /// LLVM assumes that inputs are to these instructions are registers. SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, SelectionDAG &DAG) const { if (Node->getOpcode() == ISD::CopyToReg) { RegisterSDNode *DestReg = cast(Node->getOperand(1)); SDValue SrcVal = Node->getOperand(2); // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have // to try understanding copies to physical registers. if (SrcVal.getValueType() == MVT::i1 && TargetRegisterInfo::isPhysicalRegister(DestReg->getReg())) { SDLoc SL(Node); MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); SDValue VReg = DAG.getRegister( MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1); SDNode *Glued = Node->getGluedNode(); SDValue ToVReg = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal, SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0)); SDValue ToResultReg = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0), VReg, ToVReg.getValue(1)); DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode()); DAG.RemoveDeadNode(Node); return ToResultReg.getNode(); } } SmallVector Ops; for (unsigned i = 0; i < Node->getNumOperands(); ++i) { if (!isFrameIndexOp(Node->getOperand(i))) { Ops.push_back(Node->getOperand(i)); continue; } SDLoc DL(Node); Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, Node->getOperand(i).getValueType(), Node->getOperand(i)), 0)); } return DAG.UpdateNodeOperands(Node, Ops); } /// \brief Fold the instructions after selecting them. /// Returns null if users were already updated. SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, SelectionDAG &DAG) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); unsigned Opcode = Node->getMachineOpcode(); if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() && !TII->isGather4(Opcode)) { return adjustWritemask(Node, DAG); } if (Opcode == AMDGPU::INSERT_SUBREG || Opcode == AMDGPU::REG_SEQUENCE) { legalizeTargetIndependentNode(Node, DAG); return Node; } switch (Opcode) { case AMDGPU::V_DIV_SCALE_F32: case AMDGPU::V_DIV_SCALE_F64: { // Satisfy the operand register constraint when one of the inputs is // undefined. Ordinarily each undef value will have its own implicit_def of // a vreg, so force these to use a single register. SDValue Src0 = Node->getOperand(0); SDValue Src1 = Node->getOperand(1); SDValue Src2 = Node->getOperand(2); if ((Src0.isMachineOpcode() && Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) && (Src0 == Src1 || Src0 == Src2)) break; MVT VT = Src0.getValueType().getSimpleVT(); const TargetRegisterClass *RC = getRegClassFor(VT); MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT); SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), UndefReg, Src0, SDValue()); // src0 must be the same register as src1 or src2, even if the value is // undefined, so make sure we don't violate this constraint. if (Src0.isMachineOpcode() && Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { if (Src1.isMachineOpcode() && Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) Src0 = Src1; else if (Src2.isMachineOpcode() && Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) Src0 = Src2; else { assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF); Src0 = UndefReg; Src1 = UndefReg; } } else break; SmallVector Ops = { Src0, Src1, Src2 }; for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I) Ops.push_back(Node->getOperand(I)); Ops.push_back(ImpDef.getValue(1)); return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); } default: break; } return Node; } /// \brief Assign the register class depending on the number of /// bits set in the writemask void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); if (TII->isVOP3(MI.getOpcode())) { // Make sure constant bus requirements are respected. TII->legalizeOperandsVOP3(MRI, MI); return; } // Replace unused atomics with the no return version. int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode()); if (NoRetAtomicOp != -1) { if (!Node->hasAnyUseOfValue(0)) { MI.setDesc(TII->get(NoRetAtomicOp)); MI.RemoveOperand(0); return; } // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg // instruction, because the return type of these instructions is a vec2 of // the memory type, so it can be tied to the input operand. // This means these instructions always have a use, so we need to add a // special case to check if the atomic has only one extract_subreg use, // which itself has no uses. if ((Node->hasNUsesOfValue(1, 0) && Node->use_begin()->isMachineOpcode() && Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG && !Node->use_begin()->hasAnyUseOfValue(0))) { unsigned Def = MI.getOperand(0).getReg(); // Change this into a noret atomic. MI.setDesc(TII->get(NoRetAtomicOp)); MI.RemoveOperand(0); // If we only remove the def operand from the atomic instruction, the // extract_subreg will be left with a use of a vreg without a def. // So we need to insert an implicit_def to avoid machine verifier // errors. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(AMDGPU::IMPLICIT_DEF), Def); } return; } } static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL, uint64_t Val) { SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); } MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr) const { const SIInstrInfo *TII = getSubtarget()->getInstrInfo(); // Build the half of the subregister with the constants before building the // full 128-bit register. If we are building multiple resource descriptors, // this will allow CSEing of the 2-component register. const SDValue Ops0[] = { DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), buildSMovImm32(DAG, DL, 0), DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) }; SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v2i32, Ops0), 0); // Combine the constants and the pointer. const SDValue Ops1[] = { DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), Ptr, DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), SubRegHi, DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) }; return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); } /// \brief Return a resource descriptor with the 'Add TID' bit enabled /// The TID (Thread ID) is multiplied by the stride value (bits [61:48] /// of the resource descriptor) to create an offset, which is added to /// the resource pointer. MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL, SDValue Ptr, uint32_t RsrcDword1, uint64_t RsrcDword2And3) const { SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); if (RsrcDword1) { PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, DAG.getConstant(RsrcDword1, DL, MVT::i32)), 0); } SDValue DataLo = buildSMovImm32(DAG, DL, RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); const SDValue Ops[] = { DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), PtrLo, DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), PtrHi, DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), DataLo, DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), DataHi, DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) }; return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); } //===----------------------------------------------------------------------===// // SI Inline Assembly Support //===----------------------------------------------------------------------===// std::pair SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { if (!isTypeLegal(VT)) return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); if (Constraint.size() == 1) { switch (Constraint[0]) { case 's': case 'r': switch (VT.getSizeInBits()) { default: return std::make_pair(0U, nullptr); case 32: case 16: return std::make_pair(0U, &AMDGPU::SReg_32_XM0RegClass); case 64: return std::make_pair(0U, &AMDGPU::SGPR_64RegClass); case 128: return std::make_pair(0U, &AMDGPU::SReg_128RegClass); case 256: return std::make_pair(0U, &AMDGPU::SReg_256RegClass); case 512: return std::make_pair(0U, &AMDGPU::SReg_512RegClass); } case 'v': switch (VT.getSizeInBits()) { default: return std::make_pair(0U, nullptr); case 32: case 16: return std::make_pair(0U, &AMDGPU::VGPR_32RegClass); case 64: return std::make_pair(0U, &AMDGPU::VReg_64RegClass); case 96: return std::make_pair(0U, &AMDGPU::VReg_96RegClass); case 128: return std::make_pair(0U, &AMDGPU::VReg_128RegClass); case 256: return std::make_pair(0U, &AMDGPU::VReg_256RegClass); case 512: return std::make_pair(0U, &AMDGPU::VReg_512RegClass); } } } if (Constraint.size() > 1) { const TargetRegisterClass *RC = nullptr; if (Constraint[1] == 'v') { RC = &AMDGPU::VGPR_32RegClass; } else if (Constraint[1] == 's') { RC = &AMDGPU::SGPR_32RegClass; } if (RC) { uint32_t Idx; bool Failed = Constraint.substr(2).getAsInteger(10, Idx); if (!Failed && Idx < RC->getNumRegs()) return std::make_pair(RC->getRegister(Idx), RC); } } return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); } SITargetLowering::ConstraintType SITargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 's': case 'v': return C_RegisterClass; } } return TargetLowering::getConstraintType(Constraint); } // Figure out which registers should be reserved for stack access. Only after // the function is legalized do we know all of the non-spill stack objects or if // calls are present. void SITargetLowering::finalizeLowering(MachineFunction &MF) const { MachineRegisterInfo &MRI = MF.getRegInfo(); SIMachineFunctionInfo *Info = MF.getInfo(); const MachineFrameInfo &MFI = MF.getFrameInfo(); const SISubtarget &ST = MF.getSubtarget(); const SIRegisterInfo *TRI = ST.getRegisterInfo(); if (Info->isEntryFunction()) { // Callable functions have fixed registers used for stack access. reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info); } // We have to assume the SP is needed in case there are calls in the function // during lowering. Calls are only detected after the function is // lowered. We're about to reserve registers, so don't bother using it if we // aren't really going to use it. bool NeedSP = !Info->isEntryFunction() || MFI.hasVarSizedObjects() || MFI.hasCalls(); if (NeedSP) { unsigned ReservedStackPtrOffsetReg = TRI->reservedStackPtrOffsetReg(MF); Info->setStackPtrOffsetReg(ReservedStackPtrOffsetReg); assert(Info->getStackPtrOffsetReg() != Info->getFrameOffsetReg()); assert(!TRI->isSubRegister(Info->getScratchRSrcReg(), Info->getStackPtrOffsetReg())); MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg()); } MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg()); MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg()); MRI.replaceRegWith(AMDGPU::SCRATCH_WAVE_OFFSET_REG, Info->getScratchWaveOffsetReg()); TargetLoweringBase::finalizeLowering(MF); } void SITargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { TargetLowering::computeKnownBitsForFrameIndex(Op, Known, DemandedElts, DAG, Depth); if (getSubtarget()->enableHugePrivateBuffer()) return; // Technically it may be possible to have a dispatch with a single workitem // that uses the full private memory size, but that's not really useful. We // can't use vaddr in MUBUF instructions if we don't know the address // calculation won't overflow, so assume the sign bit is never set. Known.Zero.setHighBits(AssumeFrameIndexHighZeroBits); }