//===-- SIInsertSkips.cpp - Use predicates for control flow ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief This pass inserts branches on the 0 exec mask over divergent branches /// branches when it's expected that jumping over the untaken control flow will /// be cheaper than having every workitem no-op through it. // #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/MC/MCAsmInfo.h" using namespace llvm; #define DEBUG_TYPE "si-insert-skips" namespace { static cl::opt SkipThresholdFlag( "amdgpu-skip-threshold", cl::desc("Number of instructions before jumping over divergent control flow"), cl::init(12), cl::Hidden); class SIInsertSkips : public MachineFunctionPass { private: const SIRegisterInfo *TRI; const SIInstrInfo *TII; unsigned SkipThreshold; bool shouldSkip(const MachineBasicBlock &From, const MachineBasicBlock &To) const; bool skipIfDead(MachineInstr &MI, MachineBasicBlock &NextBB); void kill(MachineInstr &MI); MachineBasicBlock *insertSkipBlock(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const; bool skipMaskBranch(MachineInstr &MI, MachineBasicBlock &MBB); public: static char ID; SIInsertSkips() : MachineFunctionPass(ID), TRI(nullptr), TII(nullptr), SkipThreshold(0) { } bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI insert s_cbranch_execz instructions"; } void getAnalysisUsage(AnalysisUsage &AU) const override { MachineFunctionPass::getAnalysisUsage(AU); } }; } // End anonymous namespace char SIInsertSkips::ID = 0; INITIALIZE_PASS(SIInsertSkips, DEBUG_TYPE, "SI insert s_cbranch_execz instructions", false, false) char &llvm::SIInsertSkipsPassID = SIInsertSkips::ID; static bool opcodeEmitsNoInsts(unsigned Opc) { switch (Opc) { case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::KILL: case TargetOpcode::BUNDLE: case TargetOpcode::CFI_INSTRUCTION: case TargetOpcode::EH_LABEL: case TargetOpcode::GC_LABEL: case TargetOpcode::DBG_VALUE: return true; default: return false; } } bool SIInsertSkips::shouldSkip(const MachineBasicBlock &From, const MachineBasicBlock &To) const { if (From.succ_empty()) return false; unsigned NumInstr = 0; const MachineFunction *MF = From.getParent(); for (MachineFunction::const_iterator MBBI(&From), ToI(&To), End = MF->end(); MBBI != End && MBBI != ToI; ++MBBI) { const MachineBasicBlock &MBB = *MBBI; for (MachineBasicBlock::const_iterator I = MBB.begin(), E = MBB.end(); NumInstr < SkipThreshold && I != E; ++I) { if (opcodeEmitsNoInsts(I->getOpcode())) continue; // FIXME: Since this is required for correctness, this should be inserted // during SILowerControlFlow. // When a uniform loop is inside non-uniform control flow, the branch // leaving the loop might be an S_CBRANCH_VCCNZ, which is never taken // when EXEC = 0. We should skip the loop lest it becomes infinite. if (I->getOpcode() == AMDGPU::S_CBRANCH_VCCNZ || I->getOpcode() == AMDGPU::S_CBRANCH_VCCZ) return true; if (I->isInlineAsm()) { const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); const char *AsmStr = I->getOperand(0).getSymbolName(); // inlineasm length estimate is number of bytes assuming the longest // instruction. uint64_t MaxAsmSize = TII->getInlineAsmLength(AsmStr, *MAI); NumInstr += MaxAsmSize / MAI->getMaxInstLength(); } else { ++NumInstr; } if (NumInstr >= SkipThreshold) return true; } } return false; } bool SIInsertSkips::skipIfDead(MachineInstr &MI, MachineBasicBlock &NextBB) { MachineBasicBlock &MBB = *MI.getParent(); MachineFunction *MF = MBB.getParent(); if (MF->getFunction()->getCallingConv() != CallingConv::AMDGPU_PS || !shouldSkip(MBB, MBB.getParent()->back())) return false; MachineBasicBlock *SkipBB = insertSkipBlock(MBB, MI.getIterator()); const DebugLoc &DL = MI.getDebugLoc(); // If the exec mask is non-zero, skip the next two instructions BuildMI(&MBB, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addMBB(&NextBB); MachineBasicBlock::iterator Insert = SkipBB->begin(); // Exec mask is zero: Export to NULL target... BuildMI(*SkipBB, Insert, DL, TII->get(AMDGPU::EXP_DONE)) .addImm(0x09) // V_008DFC_SQ_EXP_NULL .addReg(AMDGPU::VGPR0, RegState::Undef) .addReg(AMDGPU::VGPR0, RegState::Undef) .addReg(AMDGPU::VGPR0, RegState::Undef) .addReg(AMDGPU::VGPR0, RegState::Undef) .addImm(1) // vm .addImm(0) // compr .addImm(0); // en // ... and terminate wavefront. BuildMI(*SkipBB, Insert, DL, TII->get(AMDGPU::S_ENDPGM)); return true; } void SIInsertSkips::kill(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); const MachineOperand &Op = MI.getOperand(0); #ifndef NDEBUG CallingConv::ID CallConv = MBB.getParent()->getFunction()->getCallingConv(); // Kill is only allowed in pixel / geometry shaders. assert(CallConv == CallingConv::AMDGPU_PS || CallConv == CallingConv::AMDGPU_GS); #endif // Clear this thread from the exec mask if the operand is negative. if (Op.isImm()) { // Constant operand: Set exec mask to 0 or do nothing if (Op.getImm() & 0x80000000) { BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC) .addImm(0); } } else { BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMPX_LE_F32_e32)) .addImm(0) .addOperand(Op); } } MachineBasicBlock *SIInsertSkips::insertSkipBlock( MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { MachineFunction *MF = MBB.getParent(); MachineBasicBlock *SkipBB = MF->CreateMachineBasicBlock(); MachineFunction::iterator MBBI(MBB); ++MBBI; MF->insert(MBBI, SkipBB); MBB.addSuccessor(SkipBB); return SkipBB; } // Returns true if a branch over the block was inserted. bool SIInsertSkips::skipMaskBranch(MachineInstr &MI, MachineBasicBlock &SrcMBB) { MachineBasicBlock *DestBB = MI.getOperand(0).getMBB(); if (!shouldSkip(**SrcMBB.succ_begin(), *DestBB)) return false; const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator InsPt = std::next(MI.getIterator()); BuildMI(SrcMBB, InsPt, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ)) .addMBB(DestBB); return true; } bool SIInsertSkips::runOnMachineFunction(MachineFunction &MF) { const SISubtarget &ST = MF.getSubtarget(); TII = ST.getInstrInfo(); TRI = &TII->getRegisterInfo(); SkipThreshold = SkipThresholdFlag; bool HaveKill = false; bool MadeChange = false; // Track depth of exec mask, divergent branches. SmallVector ExecBranchStack; MachineFunction::iterator NextBB; MachineBasicBlock *EmptyMBBAtEnd = nullptr; for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; BI = NextBB) { NextBB = std::next(BI); MachineBasicBlock &MBB = *BI; if (!ExecBranchStack.empty() && ExecBranchStack.back() == &MBB) { // Reached convergence point for last divergent branch. ExecBranchStack.pop_back(); } if (HaveKill && ExecBranchStack.empty()) { HaveKill = false; // TODO: Insert skip if exec is 0? } MachineBasicBlock::iterator I, Next; for (I = MBB.begin(); I != MBB.end(); I = Next) { Next = std::next(I); MachineInstr &MI = *I; switch (MI.getOpcode()) { case AMDGPU::SI_MASK_BRANCH: { ExecBranchStack.push_back(MI.getOperand(0).getMBB()); MadeChange |= skipMaskBranch(MI, MBB); break; } case AMDGPU::S_BRANCH: { // Optimize out branches to the next block. // FIXME: Shouldn't this be handled by BranchFolding? if (MBB.isLayoutSuccessor(MI.getOperand(0).getMBB())) MI.eraseFromParent(); break; } case AMDGPU::SI_KILL_TERMINATOR: { MadeChange = true; kill(MI); if (ExecBranchStack.empty()) { if (skipIfDead(MI, *NextBB)) { NextBB = std::next(BI); BE = MF.end(); Next = MBB.end(); } } else { HaveKill = true; } MI.eraseFromParent(); break; } case AMDGPU::SI_RETURN: { // FIXME: Should move somewhere else assert(!MF.getInfo()->returnsVoid()); // Graphics shaders returning non-void shouldn't contain S_ENDPGM, // because external bytecode will be appended at the end. if (BI != --MF.end() || I != MBB.getFirstTerminator()) { // SI_RETURN is not the last instruction. Add an empty block at // the end and jump there. if (!EmptyMBBAtEnd) { EmptyMBBAtEnd = MF.CreateMachineBasicBlock(); MF.insert(MF.end(), EmptyMBBAtEnd); } MBB.addSuccessor(EmptyMBBAtEnd); BuildMI(*BI, I, MI.getDebugLoc(), TII->get(AMDGPU::S_BRANCH)) .addMBB(EmptyMBBAtEnd); I->eraseFromParent(); } } default: break; } } } return MadeChange; }