//===-- SIInstructions.td - SI Instruction Defintions ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This file was originally auto-generated from a GPU register header file and // all the instruction definitions were originally commented out. Instructions // that are not yet supported remain commented out. //===----------------------------------------------------------------------===// def isGCN : Predicate<"Subtarget->getGeneration() " ">= SISubtarget::SOUTHERN_ISLANDS">, AssemblerPredicate<"FeatureGCN">; def isSI : Predicate<"Subtarget->getGeneration() " "== SISubtarget::SOUTHERN_ISLANDS">, AssemblerPredicate<"FeatureSouthernIslands">; def has16BankLDS : Predicate<"Subtarget->getLDSBankCount() == 16">; def has32BankLDS : Predicate<"Subtarget->getLDSBankCount() == 32">; def HasVGPRIndexMode : Predicate<"Subtarget->hasVGPRIndexMode()">, AssemblerPredicate<"FeatureVGPRIndexMode">; def HasMovrel : Predicate<"Subtarget->hasMovrel()">, AssemblerPredicate<"FeatureMovrel">; include "VOPInstructions.td" include "SOPInstructions.td" include "SMInstructions.td" include "FLATInstructions.td" include "BUFInstructions.td" let SubtargetPredicate = isGCN in { //===----------------------------------------------------------------------===// // EXP Instructions //===----------------------------------------------------------------------===// defm EXP : EXP_m<0, AMDGPUexport>; defm EXP_DONE : EXP_m<1, AMDGPUexport_done>; //===----------------------------------------------------------------------===// // VINTRP Instructions //===----------------------------------------------------------------------===// let Uses = [M0, EXEC] in { // FIXME: Specify SchedRW for VINTRP insturctions. multiclass V_INTERP_P1_F32_m : VINTRP_m < 0x00000000, (outs VGPR_32:$vdst), (ins VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), "v_interp_p1_f32 $vdst, $vsrc, $attr$attrchan", [(set f32:$vdst, (AMDGPUinterp_p1 f32:$vsrc, (i32 imm:$attrchan), (i32 imm:$attr)))] >; let OtherPredicates = [has32BankLDS] in { defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m; } // End OtherPredicates = [has32BankLDS] let OtherPredicates = [has16BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in { defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m; } // End OtherPredicates = [has32BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in { defm V_INTERP_P2_F32 : VINTRP_m < 0x00000001, (outs VGPR_32:$vdst), (ins VGPR_32:$src0, VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan), "v_interp_p2_f32 $vdst, $vsrc, $attr$attrchan", [(set f32:$vdst, (AMDGPUinterp_p2 f32:$src0, f32:$vsrc, (i32 imm:$attrchan), (i32 imm:$attr)))]>; } // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst" defm V_INTERP_MOV_F32 : VINTRP_m < 0x00000002, (outs VGPR_32:$vdst), (ins InterpSlot:$vsrc, Attr:$attr, AttrChan:$attrchan), "v_interp_mov_f32 $vdst, $vsrc, $attr$attrchan", [(set f32:$vdst, (AMDGPUinterp_mov (i32 imm:$vsrc), (i32 imm:$attrchan), (i32 imm:$attr)))]>; } // End Uses = [M0, EXEC] //===----------------------------------------------------------------------===// // Pseudo Instructions //===----------------------------------------------------------------------===// let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in { // For use in patterns def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> { let isPseudo = 1; let isCodeGenOnly = 1; let usesCustomInserter = 1; } // 64-bit vector move instruction. This is mainly used by the SIFoldOperands // pass to enable folding of inline immediates. def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst), (ins VSrc_b64:$src0)>; } // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] let usesCustomInserter = 1, SALU = 1 in { def GET_GROUPSTATICSIZE : PseudoInstSI <(outs SReg_32:$sdst), (ins), [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>; } // End let usesCustomInserter = 1, SALU = 1 def S_MOV_B64_term : PseudoInstSI<(outs SReg_64:$dst), (ins SSrc_b64:$src0)> { let SALU = 1; let isAsCheapAsAMove = 1; let isTerminator = 1; } def S_XOR_B64_term : PseudoInstSI<(outs SReg_64:$dst), (ins SSrc_b64:$src0, SSrc_b64:$src1)> { let SALU = 1; let isAsCheapAsAMove = 1; let isTerminator = 1; } def S_ANDN2_B64_term : PseudoInstSI<(outs SReg_64:$dst), (ins SSrc_b64:$src0, SSrc_b64:$src1)> { let SALU = 1; let isAsCheapAsAMove = 1; let isTerminator = 1; } def WAVE_BARRIER : SPseudoInstSI<(outs), (ins), [(int_amdgcn_wave_barrier)]> { let SchedRW = []; let hasNoSchedulingInfo = 1; let hasSideEffects = 1; let mayLoad = 1; let mayStore = 1; let isBarrier = 1; let isConvergent = 1; } // SI pseudo instructions. These are used by the CFG structurizer pass // and should be lowered to ISA instructions prior to codegen. // Dummy terminator instruction to use after control flow instructions // replaced with exec mask operations. def SI_MASK_BRANCH : PseudoInstSI < (outs), (ins brtarget:$target)> { let isBranch = 0; let isTerminator = 1; let isBarrier = 0; let Uses = [EXEC]; let SchedRW = []; let hasNoSchedulingInfo = 1; } let isTerminator = 1 in { def SI_IF: CFPseudoInstSI < (outs SReg_64:$dst), (ins SReg_64:$vcc, brtarget:$target), [(set i64:$dst, (int_amdgcn_if i1:$vcc, bb:$target))], 1, 1> { let Constraints = ""; let Size = 12; let mayLoad = 1; let mayStore = 1; let hasSideEffects = 1; } def SI_ELSE : CFPseudoInstSI < (outs SReg_64:$dst), (ins SReg_64:$src, brtarget:$target, i1imm:$execfix), [], 1, 1> { let Constraints = "$src = $dst"; let Size = 12; let mayStore = 1; let mayLoad = 1; let hasSideEffects = 1; } def SI_LOOP : CFPseudoInstSI < (outs), (ins SReg_64:$saved, brtarget:$target), [(int_amdgcn_loop i64:$saved, bb:$target)], 1, 1> { let Size = 8; let isBranch = 1; let hasSideEffects = 1; let mayLoad = 1; let mayStore = 1; } } // End isBranch = 1, isTerminator = 1 def SI_END_CF : CFPseudoInstSI < (outs), (ins SReg_64:$saved), [(int_amdgcn_end_cf i64:$saved)], 1, 1> { let Size = 4; let isAsCheapAsAMove = 1; let isReMaterializable = 1; let mayLoad = 1; let mayStore = 1; let hasSideEffects = 1; } def SI_BREAK : CFPseudoInstSI < (outs SReg_64:$dst), (ins SReg_64:$src), [(set i64:$dst, (int_amdgcn_break i64:$src))], 1> { let Size = 4; let isAsCheapAsAMove = 1; let isReMaterializable = 1; } def SI_IF_BREAK : CFPseudoInstSI < (outs SReg_64:$dst), (ins SReg_64:$vcc, SReg_64:$src), [(set i64:$dst, (int_amdgcn_if_break i1:$vcc, i64:$src))]> { let Size = 4; let isAsCheapAsAMove = 1; let isReMaterializable = 1; } def SI_ELSE_BREAK : CFPseudoInstSI < (outs SReg_64:$dst), (ins SReg_64:$src0, SReg_64:$src1), [(set i64:$dst, (int_amdgcn_else_break i64:$src0, i64:$src1))]> { let Size = 4; let isAsCheapAsAMove = 1; let isReMaterializable = 1; } let Uses = [EXEC], Defs = [EXEC,VCC] in { def SI_KILL : PseudoInstSI < (outs), (ins VSrc_b32:$src), [(AMDGPUkill i32:$src)]> { let isConvergent = 1; let usesCustomInserter = 1; } def SI_KILL_TERMINATOR : SPseudoInstSI < (outs), (ins VSrc_b32:$src)> { let isTerminator = 1; } } // End Uses = [EXEC], Defs = [EXEC,VCC] // Branch on undef scc. Used to avoid intermediate copy from // IMPLICIT_DEF to SCC. def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins sopp_brtarget:$simm16)> { let isTerminator = 1; let usesCustomInserter = 1; } def SI_PS_LIVE : PseudoInstSI < (outs SReg_64:$dst), (ins), [(set i1:$dst, (int_amdgcn_ps_live))]> { let SALU = 1; } // Used as an isel pseudo to directly emit initialization with an // s_mov_b32 rather than a copy of another initialized // register. MachineCSE skips copies, and we don't want to have to // fold operands before it runs. def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> { let Defs = [M0]; let usesCustomInserter = 1; let isAsCheapAsAMove = 1; let isReMaterializable = 1; } def SI_RETURN : SPseudoInstSI < (outs), (ins variable_ops), [(AMDGPUreturn)]> { let isTerminator = 1; let isBarrier = 1; let isReturn = 1; let hasSideEffects = 1; let hasNoSchedulingInfo = 1; let DisableWQM = 1; } let Defs = [M0, EXEC], UseNamedOperandTable = 1 in { class SI_INDIRECT_SRC : VPseudoInstSI < (outs VGPR_32:$vdst), (ins rc:$src, VS_32:$idx, i32imm:$offset)> { let usesCustomInserter = 1; } class SI_INDIRECT_DST : VPseudoInstSI < (outs rc:$vdst), (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> { let Constraints = "$src = $vdst"; let usesCustomInserter = 1; } // TODO: We can support indirect SGPR access. def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC; def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC; def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST; def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST; } // End Uses = [EXEC], Defs = [M0, EXEC] multiclass SI_SPILL_SGPR { let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in { def _SAVE : PseudoInstSI < (outs), (ins sgpr_class:$data, i32imm:$addr)> { let mayStore = 1; let mayLoad = 0; } def _RESTORE : PseudoInstSI < (outs sgpr_class:$data), (ins i32imm:$addr)> { let mayStore = 0; let mayLoad = 1; } } // End UseNamedOperandTable = 1 } // You cannot use M0 as the output of v_readlane_b32 instructions or // use it in the sdata operand of SMEM instructions. We still need to // be able to spill the physical register m0, so allow it for // SI_SPILL_32_* instructions. defm SI_SPILL_S32 : SI_SPILL_SGPR ; defm SI_SPILL_S64 : SI_SPILL_SGPR ; defm SI_SPILL_S128 : SI_SPILL_SGPR ; defm SI_SPILL_S256 : SI_SPILL_SGPR ; defm SI_SPILL_S512 : SI_SPILL_SGPR ; multiclass SI_SPILL_VGPR { let UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM] in { def _SAVE : VPseudoInstSI < (outs), (ins vgpr_class:$vdata, i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset, i32imm:$offset)> { let mayStore = 1; let mayLoad = 0; // (2 * 4) + (8 * num_subregs) bytes maximum let Size = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8); } def _RESTORE : VPseudoInstSI < (outs vgpr_class:$vdata), (ins i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset, i32imm:$offset)> { let mayStore = 0; let mayLoad = 1; // (2 * 4) + (8 * num_subregs) bytes maximum let Size = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8); } } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM] } defm SI_SPILL_V32 : SI_SPILL_VGPR ; defm SI_SPILL_V64 : SI_SPILL_VGPR ; defm SI_SPILL_V96 : SI_SPILL_VGPR ; defm SI_SPILL_V128 : SI_SPILL_VGPR ; defm SI_SPILL_V256 : SI_SPILL_VGPR ; defm SI_SPILL_V512 : SI_SPILL_VGPR ; def SI_PC_ADD_REL_OFFSET : SPseudoInstSI < (outs SReg_64:$dst), (ins si_ga:$ptr_lo, si_ga:$ptr_hi), [(set SReg_64:$dst, (i64 (SIpc_add_rel_offset (tglobaladdr:$ptr_lo), (tglobaladdr:$ptr_hi))))]> { let Defs = [SCC]; } } // End SubtargetPredicate = isGCN let Predicates = [isGCN] in { def : Pat< (int_amdgcn_else i64:$src, bb:$target), (SI_ELSE $src, $target, 0) >; def : Pat < (int_AMDGPU_kilp), (SI_KILL (i32 0xbf800000)) >; //===----------------------------------------------------------------------===// // VOP1 Patterns //===----------------------------------------------------------------------===// let Predicates = [UnsafeFPMath] in { //def : RcpPat; //defm : RsqPat; //defm : RsqPat; def : RsqPat; def : RsqPat; // Convert (x - floor(x)) to fract(x) def : Pat < (f32 (fsub (f32 (VOP3Mods f32:$x, i32:$mods)), (f32 (ffloor (f32 (VOP3Mods f32:$x, i32:$mods)))))), (V_FRACT_F32_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE) >; // Convert (x + (-floor(x))) to fract(x) def : Pat < (f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)), (f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))), (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE) >; } // End Predicates = [UnsafeFPMath] def : Pat < (f32 (fpextend f16:$src)), (V_CVT_F32_F16_e32 $src) >; def : Pat < (f64 (fpextend f16:$src)), (V_CVT_F64_F32_e32 (V_CVT_F32_F16_e32 $src)) >; def : Pat < (f16 (fpround f32:$src)), (V_CVT_F16_F32_e32 $src) >; def : Pat < (f16 (fpround f64:$src)), (V_CVT_F16_F32_e32 (V_CVT_F32_F64_e32 $src)) >; def : Pat < (i32 (fp_to_sint f16:$src)), (V_CVT_I32_F32_e32 (V_CVT_F32_F16_e32 $src)) >; def : Pat < (i32 (fp_to_uint f16:$src)), (V_CVT_U32_F32_e32 (V_CVT_F32_F16_e32 $src)) >; def : Pat < (f16 (sint_to_fp i32:$src)), (V_CVT_F16_F32_e32 (V_CVT_F32_I32_e32 $src)) >; def : Pat < (f16 (uint_to_fp i32:$src)), (V_CVT_F16_F32_e32 (V_CVT_F32_U32_e32 $src)) >; //===----------------------------------------------------------------------===// // VOP2 Patterns //===----------------------------------------------------------------------===// multiclass FMADPat { def : Pat < (vt (fmad (VOP3NoMods0 vt:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod), (VOP3NoMods vt:$src1, i32:$src1_modifiers), (VOP3NoMods vt:$src2, i32:$src2_modifiers))), (inst $src0_modifiers, $src0, $src1_modifiers, $src1, $src2_modifiers, $src2, $clamp, $omod) >; } defm : FMADPat ; defm : FMADPat ; multiclass SelectPat { def : Pat < (vt (select i1:$src0, vt:$src1, vt:$src2)), (inst $src2, $src1, $src0) >; } defm : SelectPat ; defm : SelectPat ; defm : SelectPat ; defm : SelectPat ; def : Pat < (i32 (add (i32 (ctpop i32:$popcnt)), i32:$val)), (V_BCNT_U32_B32_e64 $popcnt, $val) >; /********** ============================================ **********/ /********** Extraction, Insertion, Building and Casting **********/ /********** ============================================ **********/ foreach Index = 0-2 in { def Extract_Element_v2i32_#Index : Extract_Element < i32, v2i32, Index, !cast(sub#Index) >; def Insert_Element_v2i32_#Index : Insert_Element < i32, v2i32, Index, !cast(sub#Index) >; def Extract_Element_v2f32_#Index : Extract_Element < f32, v2f32, Index, !cast(sub#Index) >; def Insert_Element_v2f32_#Index : Insert_Element < f32, v2f32, Index, !cast(sub#Index) >; } foreach Index = 0-3 in { def Extract_Element_v4i32_#Index : Extract_Element < i32, v4i32, Index, !cast(sub#Index) >; def Insert_Element_v4i32_#Index : Insert_Element < i32, v4i32, Index, !cast(sub#Index) >; def Extract_Element_v4f32_#Index : Extract_Element < f32, v4f32, Index, !cast(sub#Index) >; def Insert_Element_v4f32_#Index : Insert_Element < f32, v4f32, Index, !cast(sub#Index) >; } foreach Index = 0-7 in { def Extract_Element_v8i32_#Index : Extract_Element < i32, v8i32, Index, !cast(sub#Index) >; def Insert_Element_v8i32_#Index : Insert_Element < i32, v8i32, Index, !cast(sub#Index) >; def Extract_Element_v8f32_#Index : Extract_Element < f32, v8f32, Index, !cast(sub#Index) >; def Insert_Element_v8f32_#Index : Insert_Element < f32, v8f32, Index, !cast(sub#Index) >; } foreach Index = 0-15 in { def Extract_Element_v16i32_#Index : Extract_Element < i32, v16i32, Index, !cast(sub#Index) >; def Insert_Element_v16i32_#Index : Insert_Element < i32, v16i32, Index, !cast(sub#Index) >; def Extract_Element_v16f32_#Index : Extract_Element < f32, v16f32, Index, !cast(sub#Index) >; def Insert_Element_v16f32_#Index : Insert_Element < f32, v16f32, Index, !cast(sub#Index) >; } // FIXME: Why do only some of these type combinations for SReg and // VReg? // 16-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 32-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 64-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 128-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 256-bit bitcast def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // 512-bit bitcast def : BitConvert ; def : BitConvert ; /********** =================== **********/ /********** Src & Dst modifiers **********/ /********** =================== **********/ def : Pat < (AMDGPUclamp (VOP3Mods0Clamp f32:$src0, i32:$src0_modifiers, i32:$omod), (f32 FP_ZERO), (f32 FP_ONE)), (V_ADD_F32_e64 $src0_modifiers, $src0, 0, (i32 0), 1, $omod) >; /********** ================================ **********/ /********** Floating point absolute/negative **********/ /********** ================================ **********/ // Prevent expanding both fneg and fabs. def : Pat < (fneg (fabs f32:$src)), (S_OR_B32 $src, (S_MOV_B32(i32 0x80000000))) // Set sign bit >; // FIXME: Should use S_OR_B32 def : Pat < (fneg (fabs f64:$src)), (REG_SEQUENCE VReg_64, (i32 (EXTRACT_SUBREG f64:$src, sub0)), sub0, (V_OR_B32_e32 (i32 (EXTRACT_SUBREG f64:$src, sub1)), (V_MOV_B32_e32 (i32 0x80000000))), // Set sign bit. sub1) >; def : Pat < (fabs f32:$src), (V_AND_B32_e64 $src, (V_MOV_B32_e32 (i32 0x7fffffff))) >; def : Pat < (fneg f32:$src), (V_XOR_B32_e32 $src, (V_MOV_B32_e32 (i32 0x80000000))) >; def : Pat < (fabs f64:$src), (REG_SEQUENCE VReg_64, (i32 (EXTRACT_SUBREG f64:$src, sub0)), sub0, (V_AND_B32_e64 (i32 (EXTRACT_SUBREG f64:$src, sub1)), (V_MOV_B32_e32 (i32 0x7fffffff))), // Set sign bit. sub1) >; def : Pat < (fneg f64:$src), (REG_SEQUENCE VReg_64, (i32 (EXTRACT_SUBREG f64:$src, sub0)), sub0, (V_XOR_B32_e32 (i32 (EXTRACT_SUBREG f64:$src, sub1)), (i32 (V_MOV_B32_e32 (i32 0x80000000)))), sub1) >; def : Pat < (fneg f16:$src), (V_XOR_B32_e32 $src, (V_MOV_B32_e32 (i32 0x00008000))) >; def : Pat < (fabs f16:$src), (V_AND_B32_e64 $src, (V_MOV_B32_e32 (i32 0x00007fff))) >; def : Pat < (fneg (fabs f16:$src)), (S_OR_B32 $src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit >; /********** ================== **********/ /********** Immediate Patterns **********/ /********** ================== **********/ def : Pat < (VGPRImm<(i32 imm)>:$imm), (V_MOV_B32_e32 imm:$imm) >; def : Pat < (VGPRImm<(f32 fpimm)>:$imm), (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm))) >; def : Pat < (i32 imm:$imm), (S_MOV_B32 imm:$imm) >; // FIXME: Workaround for ordering issue with peephole optimizer where // a register class copy interferes with immediate folding. Should // use s_mov_b32, which can be shrunk to s_movk_i32 def : Pat < (VGPRImm<(f16 fpimm)>:$imm), (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm))) >; def : Pat < (f32 fpimm:$imm), (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm))) >; def : Pat < (f16 fpimm:$imm), (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm))) >; def : Pat < (i32 frameindex:$fi), (V_MOV_B32_e32 (i32 (frameindex_to_targetframeindex $fi))) >; def : Pat < (i64 InlineImm:$imm), (S_MOV_B64 InlineImm:$imm) >; // XXX - Should this use a s_cmp to set SCC? // Set to sign-extended 64-bit value (true = -1, false = 0) def : Pat < (i1 imm:$imm), (S_MOV_B64 (i64 (as_i64imm $imm))) >; def : Pat < (f64 InlineFPImm:$imm), (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineFPImm:$imm))) >; /********** ================== **********/ /********** Intrinsic Patterns **********/ /********** ================== **********/ def : POW_Common ; def : Pat < (int_AMDGPU_cube v4f32:$src), (REG_SEQUENCE VReg_128, (V_CUBETC_F32 0 /* src0_modifiers */, (f32 (EXTRACT_SUBREG $src, sub0)), 0 /* src1_modifiers */, (f32 (EXTRACT_SUBREG $src, sub1)), 0 /* src2_modifiers */, (f32 (EXTRACT_SUBREG $src, sub2)), 0 /* clamp */, 0 /* omod */), sub0, (V_CUBESC_F32 0 /* src0_modifiers */, (f32 (EXTRACT_SUBREG $src, sub0)), 0 /* src1_modifiers */,(f32 (EXTRACT_SUBREG $src, sub1)), 0 /* src2_modifiers */,(f32 (EXTRACT_SUBREG $src, sub2)), 0 /* clamp */, 0 /* omod */), sub1, (V_CUBEMA_F32 0 /* src1_modifiers */,(f32 (EXTRACT_SUBREG $src, sub0)), 0 /* src1_modifiers */,(f32 (EXTRACT_SUBREG $src, sub1)), 0 /* src1_modifiers */,(f32 (EXTRACT_SUBREG $src, sub2)), 0 /* clamp */, 0 /* omod */), sub2, (V_CUBEID_F32 0 /* src1_modifiers */,(f32 (EXTRACT_SUBREG $src, sub0)), 0 /* src1_modifiers */,(f32 (EXTRACT_SUBREG $src, sub1)), 0 /* src1_modifiers */,(f32 (EXTRACT_SUBREG $src, sub2)), 0 /* clamp */, 0 /* omod */), sub3) >; def : Pat < (i32 (sext i1:$src0)), (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src0) >; class Ext32Pat : Pat < (i32 (ext i1:$src0)), (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src0) >; def : Ext32Pat ; def : Ext32Pat ; // The multiplication scales from [0,1] to the unsigned integer range def : Pat < (AMDGPUurecip i32:$src0), (V_CVT_U32_F32_e32 (V_MUL_F32_e32 (i32 CONST.FP_UINT_MAX_PLUS_1), (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0)))) >; //===----------------------------------------------------------------------===// // VOP3 Patterns //===----------------------------------------------------------------------===// def : IMad24Pat; def : UMad24Pat; defm : BFIPatterns ; def : ROTRPattern ; /********** ====================== **********/ /********** Indirect addressing **********/ /********** ====================== **********/ multiclass SI_INDIRECT_Pattern { // Extract with offset def : Pat< (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))), (!cast("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset) >; // Insert with offset def : Pat< (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))), (!cast("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val) >; } defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; defm : SI_INDIRECT_Pattern ; //===----------------------------------------------------------------------===// // SAD Patterns //===----------------------------------------------------------------------===// def : Pat < (add (sub_oneuse (umax i32:$src0, i32:$src1), (umin i32:$src0, i32:$src1)), i32:$src2), (V_SAD_U32 $src0, $src1, $src2) >; def : Pat < (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)), (sub i32:$src0, i32:$src1), (sub i32:$src1, i32:$src0)), i32:$src2), (V_SAD_U32 $src0, $src1, $src2) >; //===----------------------------------------------------------------------===// // Conversion Patterns //===----------------------------------------------------------------------===// def : Pat<(i32 (sext_inreg i32:$src, i1)), (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16 // Handle sext_inreg in i64 def : Pat < (i64 (sext_inreg i64:$src, i1)), (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16 >; def : Pat < (i16 (sext_inreg i16:$src, i1)), (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16 >; def : Pat < (i16 (sext_inreg i16:$src, i8)), (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16 >; def : Pat < (i64 (sext_inreg i64:$src, i8)), (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16 >; def : Pat < (i64 (sext_inreg i64:$src, i16)), (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16 >; def : Pat < (i64 (sext_inreg i64:$src, i32)), (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16 >; def : Pat < (i64 (zext i32:$src)), (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1) >; def : Pat < (i64 (anyext i32:$src)), (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1) >; class ZExt_i64_i1_Pat : Pat < (i64 (ext i1:$src)), (REG_SEQUENCE VReg_64, (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src), sub0, (S_MOV_B32 (i32 0)), sub1) >; def : ZExt_i64_i1_Pat; def : ZExt_i64_i1_Pat; // FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that // REG_SEQUENCE patterns don't support instructions with multiple outputs. def : Pat < (i64 (sext i32:$src)), (REG_SEQUENCE SReg_64, $src, sub0, (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1) >; def : Pat < (i64 (sext i1:$src)), (REG_SEQUENCE VReg_64, (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src), sub0, (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src), sub1) >; class FPToI1Pat : Pat < (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))), (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE, DSTOMOD.NONE)) >; def : FPToI1Pat; def : FPToI1Pat; def : FPToI1Pat; def : FPToI1Pat; // If we need to perform a logical operation on i1 values, we need to // use vector comparisons since there is only one SCC register. Vector // comparisons still write to a pair of SGPRs, so treat these as // 64-bit comparisons. When legalizing SGPR copies, instructions // resulting in the copies from SCC to these instructions will be // moved to the VALU. def : Pat < (i1 (and i1:$src0, i1:$src1)), (S_AND_B64 $src0, $src1) >; def : Pat < (i1 (or i1:$src0, i1:$src1)), (S_OR_B64 $src0, $src1) >; def : Pat < (i1 (xor i1:$src0, i1:$src1)), (S_XOR_B64 $src0, $src1) >; def : Pat < (f32 (sint_to_fp i1:$src)), (V_CNDMASK_B32_e64 (i32 0), (i32 CONST.FP32_NEG_ONE), $src) >; def : Pat < (f32 (uint_to_fp i1:$src)), (V_CNDMASK_B32_e64 (i32 0), (i32 CONST.FP32_ONE), $src) >; def : Pat < (f64 (sint_to_fp i1:$src)), (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 -1), $src)) >; def : Pat < (f64 (uint_to_fp i1:$src)), (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 (i32 0), (i32 1), $src)) >; //===----------------------------------------------------------------------===// // Miscellaneous Patterns //===----------------------------------------------------------------------===// def : Pat < (i32 (trunc i64:$a)), (EXTRACT_SUBREG $a, sub0) >; def : Pat < (i1 (trunc i32:$a)), (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1)) >; def : Pat < (i1 (trunc i64:$a)), (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1)) >; def : Pat < (i32 (bswap i32:$a)), (V_BFI_B32 (S_MOV_B32 (i32 0x00ff00ff)), (V_ALIGNBIT_B32 $a, $a, (i32 24)), (V_ALIGNBIT_B32 $a, $a, (i32 8))) >; multiclass BFMPatterns { def : Pat < (vt (shl (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)), (BFM $a, $b) >; def : Pat < (vt (add (vt (shl 1, vt:$a)), -1)), (BFM $a, (MOV (i32 0))) >; } defm : BFMPatterns ; // FIXME: defm : BFMPatterns ; def : BFEPattern ; def : Pat< (fcanonicalize f16:$src), (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), 0, $src, 0, 0) >; def : Pat< (fcanonicalize f32:$src), (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), 0, $src, 0, 0) >; def : Pat< (fcanonicalize f64:$src), (V_MUL_F64 0, CONST.FP64_ONE, 0, $src, 0, 0) >; //===----------------------------------------------------------------------===// // Fract Patterns //===----------------------------------------------------------------------===// let Predicates = [isSI] in { // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is // used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient // way to implement it is using V_FRACT_F64. // The workaround for the V_FRACT bug is: // fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) // Convert floor(x) to (x - fract(x)) def : Pat < (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))), (V_ADD_F64 $mods, $x, SRCMODS.NEG, (V_CNDMASK_B64_PSEUDO (V_MIN_F64 SRCMODS.NONE, (V_FRACT_F64_e64 $mods, $x, DSTCLAMP.NONE, DSTOMOD.NONE), SRCMODS.NONE, (V_MOV_B64_PSEUDO 0x3fefffffffffffff), DSTCLAMP.NONE, DSTOMOD.NONE), $x, (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))), DSTCLAMP.NONE, DSTOMOD.NONE) >; } // End Predicates = [isSI] //============================================================================// // Miscellaneous Optimization Patterns //============================================================================// def : SHA256MaPattern ; def : IntMed3Pat; def : IntMed3Pat; //============================================================================// // Assembler aliases //============================================================================// def : MnemonicAlias<"v_add_u32", "v_add_i32">; def : MnemonicAlias<"v_sub_u32", "v_sub_i32">; def : MnemonicAlias<"v_subrev_u32", "v_subrev_i32">; } // End isGCN predicate