//===-- SILoadStoreOptimizer.cpp ------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass tries to fuse DS instructions with close by immediate offsets. // This will fuse operations such as // ds_read_b32 v0, v2 offset:16 // ds_read_b32 v1, v2 offset:32 // ==> // ds_read2_b32 v[0:1], v2, offset0:4 offset1:8 // // // Future improvements: // // - This currently relies on the scheduler to place loads and stores next to // each other, and then only merges adjacent pairs of instructions. It would // be good to be more flexible with interleaved instructions, and possibly run // before scheduling. It currently missing stores of constants because loading // the constant into the data register is placed between the stores, although // this is arguably a scheduling problem. // // - Live interval recomputing seems inefficient. This currently only matches // one pair, and recomputes live intervals and moves on to the next pair. It // would be better to compute a list of all merges that need to occur. // // - With a list of instructions to process, we can also merge more. If a // cluster of loads have offsets that are too large to fit in the 8-bit // offsets, but are close enough to fit in the 8 bits, we can add to the base // pointer and use the new reduced offsets. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "SIInstrInfo.h" #include "SIRegisterInfo.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; #define DEBUG_TYPE "si-load-store-opt" namespace { class SILoadStoreOptimizer : public MachineFunctionPass { private: const SIInstrInfo *TII; const SIRegisterInfo *TRI; MachineRegisterInfo *MRI; AliasAnalysis *AA; static bool offsetsCanBeCombined(unsigned Offset0, unsigned Offset1, unsigned EltSize); MachineBasicBlock::iterator findMatchingDSInst( MachineBasicBlock::iterator I, unsigned EltSize, SmallVectorImpl &InstsToMove); MachineBasicBlock::iterator mergeRead2Pair( MachineBasicBlock::iterator I, MachineBasicBlock::iterator Paired, unsigned EltSize, ArrayRef InstsToMove); MachineBasicBlock::iterator mergeWrite2Pair( MachineBasicBlock::iterator I, MachineBasicBlock::iterator Paired, unsigned EltSize, ArrayRef InstsToMove); public: static char ID; SILoadStoreOptimizer() : MachineFunctionPass(ID), TII(nullptr), TRI(nullptr), MRI(nullptr), AA(nullptr) {} SILoadStoreOptimizer(const TargetMachine &TM_) : MachineFunctionPass(ID) { initializeSILoadStoreOptimizerPass(*PassRegistry::getPassRegistry()); } bool optimizeBlock(MachineBasicBlock &MBB); bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI Load / Store Optimizer"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // End anonymous namespace. INITIALIZE_PASS_BEGIN(SILoadStoreOptimizer, DEBUG_TYPE, "SI Load / Store Optimizer", false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(SILoadStoreOptimizer, DEBUG_TYPE, "SI Load / Store Optimizer", false, false) char SILoadStoreOptimizer::ID = 0; char &llvm::SILoadStoreOptimizerID = SILoadStoreOptimizer::ID; FunctionPass *llvm::createSILoadStoreOptimizerPass(TargetMachine &TM) { return new SILoadStoreOptimizer(TM); } static void moveInstsAfter(MachineBasicBlock::iterator I, ArrayRef InstsToMove) { MachineBasicBlock *MBB = I->getParent(); ++I; for (MachineInstr *MI : InstsToMove) { MI->removeFromParent(); MBB->insert(I, MI); } } static void addDefsToList(const MachineInstr &MI, SmallVectorImpl &Defs) { for (const MachineOperand &Def : MI.defs()) { Defs.push_back(&Def); } } static bool memAccessesCanBeReordered( MachineBasicBlock::iterator A, MachineBasicBlock::iterator B, const SIInstrInfo *TII, llvm::AliasAnalysis * AA) { return (TII->areMemAccessesTriviallyDisjoint(*A, *B, AA) || // RAW or WAR - cannot reorder // WAW - cannot reorder // RAR - safe to reorder !(A->mayStore() || B->mayStore())); } // Add MI and its defs to the lists if MI reads one of the defs that are // already in the list. Returns true in that case. static bool addToListsIfDependent(MachineInstr &MI, SmallVectorImpl &Defs, SmallVectorImpl &Insts) { for (const MachineOperand *Def : Defs) { bool ReadDef = MI.readsVirtualRegister(Def->getReg()); // If ReadDef is true, then there is a use of Def between I // and the instruction that I will potentially be merged with. We // will need to move this instruction after the merged instructions. if (ReadDef) { Insts.push_back(&MI); addDefsToList(MI, Defs); return true; } } return false; } static bool canMoveInstsAcrossMemOp(MachineInstr &MemOp, ArrayRef InstsToMove, const SIInstrInfo *TII, AliasAnalysis *AA) { assert(MemOp.mayLoadOrStore()); for (MachineInstr *InstToMove : InstsToMove) { if (!InstToMove->mayLoadOrStore()) continue; if (!memAccessesCanBeReordered(MemOp, *InstToMove, TII, AA)) return false; } return true; } bool SILoadStoreOptimizer::offsetsCanBeCombined(unsigned Offset0, unsigned Offset1, unsigned Size) { // XXX - Would the same offset be OK? Is there any reason this would happen or // be useful? if (Offset0 == Offset1) return false; // This won't be valid if the offset isn't aligned. if ((Offset0 % Size != 0) || (Offset1 % Size != 0)) return false; unsigned EltOffset0 = Offset0 / Size; unsigned EltOffset1 = Offset1 / Size; // Check if the new offsets fit in the reduced 8-bit range. if (isUInt<8>(EltOffset0) && isUInt<8>(EltOffset1)) return true; // If the offset in elements doesn't fit in 8-bits, we might be able to use // the stride 64 versions. if ((EltOffset0 % 64 != 0) || (EltOffset1 % 64) != 0) return false; return isUInt<8>(EltOffset0 / 64) && isUInt<8>(EltOffset1 / 64); } MachineBasicBlock::iterator SILoadStoreOptimizer::findMatchingDSInst(MachineBasicBlock::iterator I, unsigned EltSize, SmallVectorImpl &InstsToMove) { MachineBasicBlock::iterator E = I->getParent()->end(); MachineBasicBlock::iterator MBBI = I; ++MBBI; SmallVector DefsToMove; addDefsToList(*I, DefsToMove); for ( ; MBBI != E; ++MBBI) { if (MBBI->getOpcode() != I->getOpcode()) { // This is not a matching DS instruction, but we can keep looking as // long as one of these conditions are met: // 1. It is safe to move I down past MBBI. // 2. It is safe to move MBBI down past the instruction that I will // be merged into. if (MBBI->hasUnmodeledSideEffects()) // We can't re-order this instruction with respect to other memory // opeations, so we fail both conditions mentioned above. return E; if (MBBI->mayLoadOrStore() && !memAccessesCanBeReordered(*I, *MBBI, TII, AA)) { // We fail condition #1, but we may still be able to satisfy condition // #2. Add this instruction to the move list and then we will check // if condition #2 holds once we have selected the matching instruction. InstsToMove.push_back(&*MBBI); addDefsToList(*MBBI, DefsToMove); continue; } // When we match I with another DS instruction we will be moving I down // to the location of the matched instruction any uses of I will need to // be moved down as well. addToListsIfDependent(*MBBI, DefsToMove, InstsToMove); continue; } // Don't merge volatiles. if (MBBI->hasOrderedMemoryRef()) return E; // Handle a case like // DS_WRITE_B32 addr, v, idx0 // w = DS_READ_B32 addr, idx0 // DS_WRITE_B32 addr, f(w), idx1 // where the DS_READ_B32 ends up in InstsToMove and therefore prevents // merging of the two writes. if (addToListsIfDependent(*MBBI, DefsToMove, InstsToMove)) continue; int AddrIdx = AMDGPU::getNamedOperandIdx(I->getOpcode(), AMDGPU::OpName::addr); const MachineOperand &AddrReg0 = I->getOperand(AddrIdx); const MachineOperand &AddrReg1 = MBBI->getOperand(AddrIdx); // Check same base pointer. Be careful of subregisters, which can occur with // vectors of pointers. if (AddrReg0.getReg() == AddrReg1.getReg() && AddrReg0.getSubReg() == AddrReg1.getSubReg()) { int OffsetIdx = AMDGPU::getNamedOperandIdx(I->getOpcode(), AMDGPU::OpName::offset); unsigned Offset0 = I->getOperand(OffsetIdx).getImm() & 0xffff; unsigned Offset1 = MBBI->getOperand(OffsetIdx).getImm() & 0xffff; // Check both offsets fit in the reduced range. // We also need to go through the list of instructions that we plan to // move and make sure they are all safe to move down past the merged // instruction. if (offsetsCanBeCombined(Offset0, Offset1, EltSize) && canMoveInstsAcrossMemOp(*MBBI, InstsToMove, TII, AA)) return MBBI; } // We've found a load/store that we couldn't merge for some reason. // We could potentially keep looking, but we'd need to make sure that // it was safe to move I and also all the instruction in InstsToMove // down past this instruction. if (!memAccessesCanBeReordered(*I, *MBBI, TII, AA) || // check if we can move I across MBBI !canMoveInstsAcrossMemOp(*MBBI, InstsToMove, TII, AA) // check if we can move all I's users ) break; } return E; } MachineBasicBlock::iterator SILoadStoreOptimizer::mergeRead2Pair( MachineBasicBlock::iterator I, MachineBasicBlock::iterator Paired, unsigned EltSize, ArrayRef InstsToMove) { MachineBasicBlock *MBB = I->getParent(); // Be careful, since the addresses could be subregisters themselves in weird // cases, like vectors of pointers. const MachineOperand *AddrReg = TII->getNamedOperand(*I, AMDGPU::OpName::addr); const MachineOperand *Dest0 = TII->getNamedOperand(*I, AMDGPU::OpName::vdst); const MachineOperand *Dest1 = TII->getNamedOperand(*Paired, AMDGPU::OpName::vdst); unsigned Offset0 = TII->getNamedOperand(*I, AMDGPU::OpName::offset)->getImm() & 0xffff; unsigned Offset1 = TII->getNamedOperand(*Paired, AMDGPU::OpName::offset)->getImm() & 0xffff; unsigned NewOffset0 = Offset0 / EltSize; unsigned NewOffset1 = Offset1 / EltSize; unsigned Opc = (EltSize == 4) ? AMDGPU::DS_READ2_B32 : AMDGPU::DS_READ2_B64; // Prefer the st64 form if we can use it, even if we can fit the offset in the // non st64 version. I'm not sure if there's any real reason to do this. bool UseST64 = (NewOffset0 % 64 == 0) && (NewOffset1 % 64 == 0); if (UseST64) { NewOffset0 /= 64; NewOffset1 /= 64; Opc = (EltSize == 4) ? AMDGPU::DS_READ2ST64_B32 : AMDGPU::DS_READ2ST64_B64; } unsigned SubRegIdx0 = (EltSize == 4) ? AMDGPU::sub0 : AMDGPU::sub0_sub1; unsigned SubRegIdx1 = (EltSize == 4) ? AMDGPU::sub1 : AMDGPU::sub2_sub3; if (NewOffset0 > NewOffset1) { // Canonicalize the merged instruction so the smaller offset comes first. std::swap(NewOffset0, NewOffset1); std::swap(SubRegIdx0, SubRegIdx1); } assert((isUInt<8>(NewOffset0) && isUInt<8>(NewOffset1)) && (NewOffset0 != NewOffset1) && "Computed offset doesn't fit"); const MCInstrDesc &Read2Desc = TII->get(Opc); const TargetRegisterClass *SuperRC = (EltSize == 4) ? &AMDGPU::VReg_64RegClass : &AMDGPU::VReg_128RegClass; unsigned DestReg = MRI->createVirtualRegister(SuperRC); DebugLoc DL = I->getDebugLoc(); MachineInstrBuilder Read2 = BuildMI(*MBB, Paired, DL, Read2Desc, DestReg) .addOperand(*AddrReg) // addr .addImm(NewOffset0) // offset0 .addImm(NewOffset1) // offset1 .addImm(0) // gds .addMemOperand(*I->memoperands_begin()) .addMemOperand(*Paired->memoperands_begin()); (void)Read2; const MCInstrDesc &CopyDesc = TII->get(TargetOpcode::COPY); // Copy to the old destination registers. BuildMI(*MBB, Paired, DL, CopyDesc) .addOperand(*Dest0) // Copy to same destination including flags and sub reg. .addReg(DestReg, 0, SubRegIdx0); MachineInstr *Copy1 = BuildMI(*MBB, Paired, DL, CopyDesc) .addOperand(*Dest1) .addReg(DestReg, RegState::Kill, SubRegIdx1); moveInstsAfter(Copy1, InstsToMove); MachineBasicBlock::iterator Next = std::next(I); I->eraseFromParent(); Paired->eraseFromParent(); DEBUG(dbgs() << "Inserted read2: " << *Read2 << '\n'); return Next; } MachineBasicBlock::iterator SILoadStoreOptimizer::mergeWrite2Pair( MachineBasicBlock::iterator I, MachineBasicBlock::iterator Paired, unsigned EltSize, ArrayRef InstsToMove) { MachineBasicBlock *MBB = I->getParent(); // Be sure to use .addOperand(), and not .addReg() with these. We want to be // sure we preserve the subregister index and any register flags set on them. const MachineOperand *Addr = TII->getNamedOperand(*I, AMDGPU::OpName::addr); const MachineOperand *Data0 = TII->getNamedOperand(*I, AMDGPU::OpName::data0); const MachineOperand *Data1 = TII->getNamedOperand(*Paired, AMDGPU::OpName::data0); unsigned Offset0 = TII->getNamedOperand(*I, AMDGPU::OpName::offset)->getImm() & 0xffff; unsigned Offset1 = TII->getNamedOperand(*Paired, AMDGPU::OpName::offset)->getImm() & 0xffff; unsigned NewOffset0 = Offset0 / EltSize; unsigned NewOffset1 = Offset1 / EltSize; unsigned Opc = (EltSize == 4) ? AMDGPU::DS_WRITE2_B32 : AMDGPU::DS_WRITE2_B64; // Prefer the st64 form if we can use it, even if we can fit the offset in the // non st64 version. I'm not sure if there's any real reason to do this. bool UseST64 = (NewOffset0 % 64 == 0) && (NewOffset1 % 64 == 0); if (UseST64) { NewOffset0 /= 64; NewOffset1 /= 64; Opc = (EltSize == 4) ? AMDGPU::DS_WRITE2ST64_B32 : AMDGPU::DS_WRITE2ST64_B64; } if (NewOffset0 > NewOffset1) { // Canonicalize the merged instruction so the smaller offset comes first. std::swap(NewOffset0, NewOffset1); std::swap(Data0, Data1); } assert((isUInt<8>(NewOffset0) && isUInt<8>(NewOffset1)) && (NewOffset0 != NewOffset1) && "Computed offset doesn't fit"); const MCInstrDesc &Write2Desc = TII->get(Opc); DebugLoc DL = I->getDebugLoc(); MachineInstrBuilder Write2 = BuildMI(*MBB, Paired, DL, Write2Desc) .addOperand(*Addr) // addr .addOperand(*Data0) // data0 .addOperand(*Data1) // data1 .addImm(NewOffset0) // offset0 .addImm(NewOffset1) // offset1 .addImm(0) // gds .addMemOperand(*I->memoperands_begin()) .addMemOperand(*Paired->memoperands_begin()); moveInstsAfter(Write2, InstsToMove); MachineBasicBlock::iterator Next = std::next(I); I->eraseFromParent(); Paired->eraseFromParent(); DEBUG(dbgs() << "Inserted write2 inst: " << *Write2 << '\n'); return Next; } // Scan through looking for adjacent LDS operations with constant offsets from // the same base register. We rely on the scheduler to do the hard work of // clustering nearby loads, and assume these are all adjacent. bool SILoadStoreOptimizer::optimizeBlock(MachineBasicBlock &MBB) { bool Modified = false; for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;) { MachineInstr &MI = *I; // Don't combine if volatile. if (MI.hasOrderedMemoryRef()) { ++I; continue; } SmallVector InstsToMove; unsigned Opc = MI.getOpcode(); if (Opc == AMDGPU::DS_READ_B32 || Opc == AMDGPU::DS_READ_B64) { unsigned Size = (Opc == AMDGPU::DS_READ_B64) ? 8 : 4; MachineBasicBlock::iterator Match = findMatchingDSInst(I, Size, InstsToMove); if (Match != E) { Modified = true; I = mergeRead2Pair(I, Match, Size, InstsToMove); } else { ++I; } continue; } else if (Opc == AMDGPU::DS_WRITE_B32 || Opc == AMDGPU::DS_WRITE_B64) { unsigned Size = (Opc == AMDGPU::DS_WRITE_B64) ? 8 : 4; MachineBasicBlock::iterator Match = findMatchingDSInst(I, Size, InstsToMove); if (Match != E) { Modified = true; I = mergeWrite2Pair(I, Match, Size, InstsToMove); } else { ++I; } continue; } ++I; } return Modified; } bool SILoadStoreOptimizer::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(*MF.getFunction())) return false; const SISubtarget &STM = MF.getSubtarget(); if (!STM.loadStoreOptEnabled()) return false; TII = STM.getInstrInfo(); TRI = &TII->getRegisterInfo(); MRI = &MF.getRegInfo(); AA = &getAnalysis().getAAResults(); DEBUG(dbgs() << "Running SILoadStoreOptimizer\n"); bool Modified = false; for (MachineBasicBlock &MBB : MF) Modified |= optimizeBlock(MBB); return Modified; }