//===-- ARMISelLowering.h - ARM DAG Lowering Interface ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that ARM uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_ARM_ARMISELLOWERING_H #define LLVM_LIB_TARGET_ARM_ARMISELLOWERING_H #include "MCTargetDesc/ARMBaseInfo.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineValueType.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/Support/CodeGen.h" #include "llvm/Target/TargetLowering.h" #include namespace llvm { class ARMSubtarget; class InstrItineraryData; namespace ARMISD { // ARM Specific DAG Nodes enum NodeType : unsigned { // Start the numbering where the builtin ops and target ops leave off. FIRST_NUMBER = ISD::BUILTIN_OP_END, Wrapper, // Wrapper - A wrapper node for TargetConstantPool, // TargetExternalSymbol, and TargetGlobalAddress. WrapperPIC, // WrapperPIC - A wrapper node for TargetGlobalAddress in // PIC mode. WrapperJT, // WrapperJT - A wrapper node for TargetJumpTable // Add pseudo op to model memcpy for struct byval. COPY_STRUCT_BYVAL, CALL, // Function call. CALL_PRED, // Function call that's predicable. CALL_NOLINK, // Function call with branch not branch-and-link. BRCOND, // Conditional branch. BR_JT, // Jumptable branch. BR2_JT, // Jumptable branch (2 level - jumptable entry is a jump). RET_FLAG, // Return with a flag operand. INTRET_FLAG, // Interrupt return with an LR-offset and a flag operand. PIC_ADD, // Add with a PC operand and a PIC label. CMP, // ARM compare instructions. CMN, // ARM CMN instructions. CMPZ, // ARM compare that sets only Z flag. CMPFP, // ARM VFP compare instruction, sets FPSCR. CMPFPw0, // ARM VFP compare against zero instruction, sets FPSCR. FMSTAT, // ARM fmstat instruction. CMOV, // ARM conditional move instructions. SSAT, // Signed saturation BCC_i64, SRL_FLAG, // V,Flag = srl_flag X -> srl X, 1 + save carry out. SRA_FLAG, // V,Flag = sra_flag X -> sra X, 1 + save carry out. RRX, // V = RRX X, Flag -> srl X, 1 + shift in carry flag. ADDC, // Add with carry ADDE, // Add using carry SUBC, // Sub with carry SUBE, // Sub using carry VMOVRRD, // double to two gprs. VMOVDRR, // Two gprs to double. EH_SJLJ_SETJMP, // SjLj exception handling setjmp. EH_SJLJ_LONGJMP, // SjLj exception handling longjmp. EH_SJLJ_SETUP_DISPATCH, // SjLj exception handling setup_dispatch. TC_RETURN, // Tail call return pseudo. THREAD_POINTER, DYN_ALLOC, // Dynamic allocation on the stack. MEMBARRIER_MCR, // Memory barrier (MCR) PRELOAD, // Preload WIN__CHKSTK, // Windows' __chkstk call to do stack probing. WIN__DBZCHK, // Windows' divide by zero check VCEQ, // Vector compare equal. VCEQZ, // Vector compare equal to zero. VCGE, // Vector compare greater than or equal. VCGEZ, // Vector compare greater than or equal to zero. VCLEZ, // Vector compare less than or equal to zero. VCGEU, // Vector compare unsigned greater than or equal. VCGT, // Vector compare greater than. VCGTZ, // Vector compare greater than zero. VCLTZ, // Vector compare less than zero. VCGTU, // Vector compare unsigned greater than. VTST, // Vector test bits. // Vector shift by immediate: VSHL, // ...left VSHRs, // ...right (signed) VSHRu, // ...right (unsigned) // Vector rounding shift by immediate: VRSHRs, // ...right (signed) VRSHRu, // ...right (unsigned) VRSHRN, // ...right narrow // Vector saturating shift by immediate: VQSHLs, // ...left (signed) VQSHLu, // ...left (unsigned) VQSHLsu, // ...left (signed to unsigned) VQSHRNs, // ...right narrow (signed) VQSHRNu, // ...right narrow (unsigned) VQSHRNsu, // ...right narrow (signed to unsigned) // Vector saturating rounding shift by immediate: VQRSHRNs, // ...right narrow (signed) VQRSHRNu, // ...right narrow (unsigned) VQRSHRNsu, // ...right narrow (signed to unsigned) // Vector shift and insert: VSLI, // ...left VSRI, // ...right // Vector get lane (VMOV scalar to ARM core register) // (These are used for 8- and 16-bit element types only.) VGETLANEu, // zero-extend vector extract element VGETLANEs, // sign-extend vector extract element // Vector move immediate and move negated immediate: VMOVIMM, VMVNIMM, // Vector move f32 immediate: VMOVFPIMM, // Vector duplicate: VDUP, VDUPLANE, // Vector shuffles: VEXT, // extract VREV64, // reverse elements within 64-bit doublewords VREV32, // reverse elements within 32-bit words VREV16, // reverse elements within 16-bit halfwords VZIP, // zip (interleave) VUZP, // unzip (deinterleave) VTRN, // transpose VTBL1, // 1-register shuffle with mask VTBL2, // 2-register shuffle with mask // Vector multiply long: VMULLs, // ...signed VMULLu, // ...unsigned SMULWB, // Signed multiply word by half word, bottom SMULWT, // Signed multiply word by half word, top UMLAL, // 64bit Unsigned Accumulate Multiply SMLAL, // 64bit Signed Accumulate Multiply UMAAL, // 64-bit Unsigned Accumulate Accumulate Multiply SMLALBB, // 64-bit signed accumulate multiply bottom, bottom 16 SMLALBT, // 64-bit signed accumulate multiply bottom, top 16 SMLALTB, // 64-bit signed accumulate multiply top, bottom 16 SMLALTT, // 64-bit signed accumulate multiply top, top 16 // Operands of the standard BUILD_VECTOR node are not legalized, which // is fine if BUILD_VECTORs are always lowered to shuffles or other // operations, but for ARM some BUILD_VECTORs are legal as-is and their // operands need to be legalized. Define an ARM-specific version of // BUILD_VECTOR for this purpose. BUILD_VECTOR, // Bit-field insert BFI, // Vector OR with immediate VORRIMM, // Vector AND with NOT of immediate VBICIMM, // Vector bitwise select VBSL, // Pseudo-instruction representing a memory copy using ldm/stm // instructions. MEMCPY, // Vector load N-element structure to all lanes: VLD1DUP = ISD::FIRST_TARGET_MEMORY_OPCODE, VLD2DUP, VLD3DUP, VLD4DUP, // NEON loads with post-increment base updates: VLD1_UPD, VLD2_UPD, VLD3_UPD, VLD4_UPD, VLD2LN_UPD, VLD3LN_UPD, VLD4LN_UPD, VLD1DUP_UPD, VLD2DUP_UPD, VLD3DUP_UPD, VLD4DUP_UPD, // NEON stores with post-increment base updates: VST1_UPD, VST2_UPD, VST3_UPD, VST4_UPD, VST2LN_UPD, VST3LN_UPD, VST4LN_UPD }; } // end namespace ARMISD /// Define some predicates that are used for node matching. namespace ARM { bool isBitFieldInvertedMask(unsigned v); } // end namespace ARM //===--------------------------------------------------------------------===// // ARMTargetLowering - ARM Implementation of the TargetLowering interface class ARMTargetLowering : public TargetLowering { public: explicit ARMTargetLowering(const TargetMachine &TM, const ARMSubtarget &STI); unsigned getJumpTableEncoding() const override; bool useSoftFloat() const override; SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; /// ReplaceNodeResults - Replace the results of node with an illegal result /// type with new values built out of custom code. /// void ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const override; const char *getTargetNodeName(unsigned Opcode) const override; bool isSelectSupported(SelectSupportKind Kind) const override { // ARM does not support scalar condition selects on vectors. return (Kind != ScalarCondVectorVal); } /// getSetCCResultType - Return the value type to use for ISD::SETCC. EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override; MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const override; void AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const override; SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const; SDValue PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const; SDValue PerformCMOVToBFICombine(SDNode *N, SelectionDAG &DAG) const; SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const override; /// allowsMisalignedMemoryAccesses - Returns true if the target allows /// unaligned memory accesses of the specified type. Returns whether it /// is "fast" by reference in the second argument. bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace, unsigned Align, bool *Fast) const override; EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const override; using TargetLowering::isZExtFree; bool isZExtFree(SDValue Val, EVT VT2) const override; bool isVectorLoadExtDesirable(SDValue ExtVal) const override; bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override; /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS) const override; /// getScalingFactorCost - Return the cost of the scaling used in /// addressing mode represented by AM. /// If the AM is supported, the return value must be >= 0. /// If the AM is not supported, the return value must be negative. int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS) const override; bool isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const; /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can /// compare a register against the immediate without having to materialize /// the immediate into a register. bool isLegalICmpImmediate(int64_t Imm) const override; /// isLegalAddImmediate - Return true if the specified immediate is legal /// add immediate, that is the target has add instructions which can /// add a register and the immediate without having to materialize /// the immediate into a register. bool isLegalAddImmediate(int64_t Imm) const override; /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const override; /// getPostIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if this node can be /// combined with a load / store to form a post-indexed load / store. bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const override; void computeKnownBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const override; bool ExpandInlineAsm(CallInst *CI) const override; ConstraintType getConstraintType(StringRef Constraint) const override; /// Examine constraint string and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. ConstraintWeight getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const override; std::pair getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override; const char *LowerXConstraint(EVT ConstraintVT) const override; /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. If hasMemory is /// true it means one of the asm constraint of the inline asm instruction /// being processed is 'm'. void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const override; unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override { if (ConstraintCode == "Q") return InlineAsm::Constraint_Q; else if (ConstraintCode == "o") return InlineAsm::Constraint_o; else if (ConstraintCode.size() == 2) { if (ConstraintCode[0] == 'U') { switch(ConstraintCode[1]) { default: break; case 'm': return InlineAsm::Constraint_Um; case 'n': return InlineAsm::Constraint_Un; case 'q': return InlineAsm::Constraint_Uq; case 's': return InlineAsm::Constraint_Us; case 't': return InlineAsm::Constraint_Ut; case 'v': return InlineAsm::Constraint_Uv; case 'y': return InlineAsm::Constraint_Uy; } } } return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); } const ARMSubtarget* getSubtarget() const { return Subtarget; } /// getRegClassFor - Return the register class that should be used for the /// specified value type. const TargetRegisterClass *getRegClassFor(MVT VT) const override; /// Returns true if a cast between SrcAS and DestAS is a noop. bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override { // Addrspacecasts are always noops. return true; } bool shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, unsigned &PrefAlign) const override; /// createFastISel - This method returns a target specific FastISel object, /// or null if the target does not support "fast" ISel. FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const override; Sched::Preference getSchedulingPreference(SDNode *N) const override; bool isShuffleMaskLegal(const SmallVectorImpl &M, EVT VT) const override; bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override; /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. bool isFPImmLegal(const APFloat &Imm, EVT VT) const override; bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const override; /// \brief Returns true if it is beneficial to convert a load of a constant /// to just the constant itself. bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override; /// Return true if EXTRACT_SUBVECTOR is cheap for this result type /// with this index. bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const override; /// \brief Returns true if an argument of type Ty needs to be passed in a /// contiguous block of registers in calling convention CallConv. bool functionArgumentNeedsConsecutiveRegisters( Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override; /// If a physical register, this returns the register that receives the /// exception address on entry to an EH pad. unsigned getExceptionPointerRegister(const Constant *PersonalityFn) const override; /// If a physical register, this returns the register that receives the /// exception typeid on entry to a landing pad. unsigned getExceptionSelectorRegister(const Constant *PersonalityFn) const override; Instruction *makeDMB(IRBuilder<> &Builder, ARM_MB::MemBOpt Domain) const; Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr, AtomicOrdering Ord) const override; Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const override; void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const override; Instruction* emitLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord, bool IsStore, bool IsLoad) const override; Instruction* emitTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord, bool IsStore, bool IsLoad) const override; unsigned getMaxSupportedInterleaveFactor() const override { return 4; } bool lowerInterleavedLoad(LoadInst *LI, ArrayRef Shuffles, ArrayRef Indices, unsigned Factor) const override; bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const override; bool shouldInsertFencesForAtomic(const Instruction *I) const override; TargetLoweringBase::AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override; bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override; TargetLoweringBase::AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override; bool shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override; bool useLoadStackGuardNode() const override; bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx, unsigned &Cost) const override; bool canMergeStoresTo(EVT MemVT) const override { // Do not merge to larger than i32. return (MemVT.getSizeInBits() <= 32); } bool isCheapToSpeculateCttz() const override; bool isCheapToSpeculateCtlz() const override; bool convertSetCCLogicToBitwiseLogic(EVT VT) const override { return VT.isScalarInteger(); } bool supportSwiftError() const override { return true; } bool hasStandaloneRem(EVT VT) const override { return HasStandaloneRem; } CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isVarArg) const; CCAssignFn *CCAssignFnForReturn(CallingConv::ID CC, bool isVarArg) const; /// Returns true if \p VecTy is a legal interleaved access type. This /// function checks the vector element type and the overall width of the /// vector. bool isLegalInterleavedAccessType(VectorType *VecTy, const DataLayout &DL) const; /// Returns the number of interleaved accesses that will be generated when /// lowering accesses of the given type. unsigned getNumInterleavedAccesses(VectorType *VecTy, const DataLayout &DL) const; protected: std::pair findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const override; private: /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can /// make the right decision when generating code for different targets. const ARMSubtarget *Subtarget; const TargetRegisterInfo *RegInfo; const InstrItineraryData *Itins; /// ARMPCLabelIndex - Keep track of the number of ARM PC labels created. /// unsigned ARMPCLabelIndex; // TODO: remove this, and have shouldInsertFencesForAtomic do the proper // check. bool InsertFencesForAtomic; bool HasStandaloneRem = true; void addTypeForNEON(MVT VT, MVT PromotedLdStVT, MVT PromotedBitwiseVT); void addDRTypeForNEON(MVT VT); void addQRTypeForNEON(MVT VT); std::pair getARMXALUOOp(SDValue Op, SelectionDAG &DAG, SDValue &ARMcc) const; typedef SmallVector, 8> RegsToPassVector; void PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG, SDValue Chain, SDValue &Arg, RegsToPassVector &RegsToPass, CCValAssign &VA, CCValAssign &NextVA, SDValue &StackPtr, SmallVectorImpl &MemOpChains, ISD::ArgFlagsTy Flags) const; SDValue GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA, SDValue &Root, SelectionDAG &DAG, const SDLoc &dl) const; CallingConv::ID getEffectiveCallingConv(CallingConv::ID CC, bool isVarArg) const; CCAssignFn *CCAssignFnForNode(CallingConv::ID CC, bool Return, bool isVarArg) const; SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, const SDLoc &dl, SelectionDAG &DAG, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const; SDValue LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const; SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddressDarwin(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddressWindows(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG) const; SDValue LowerToTLSExecModels(GlobalAddressSDNode *GA, SelectionDAG &DAG, TLSModel::Model model) const; SDValue LowerGlobalTLSAddressDarwin(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalTLSAddressWindows(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const; SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const; SDValue LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; SDValue LowerConstantFP(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) const; SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST) const; SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const; SDValue LowerDivRem(SDValue Op, SelectionDAG &DAG) const; SDValue LowerDIV_Windows(SDValue Op, SelectionDAG &DAG, bool Signed) const; void ExpandDIV_Windows(SDValue Op, SelectionDAG &DAG, bool Signed, SmallVectorImpl &Results) const; SDValue LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG, bool Signed, SDValue &Chain) const; SDValue LowerREM(SDNode *N, SelectionDAG &DAG) const; SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; unsigned getRegisterByName(const char* RegName, EVT VT, SelectionDAG &DAG) const override; /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be /// expanded to FMAs when this method returns true, otherwise fmuladd is /// expanded to fmul + fadd. /// /// ARM supports both fused and unfused multiply-add operations; we already /// lower a pair of fmul and fadd to the latter so it's not clear that there /// would be a gain or that the gain would be worthwhile enough to risk /// correctness bugs. bool isFMAFasterThanFMulAndFAdd(EVT VT) const override { return false; } SDValue ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const; SDValue LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals, bool isThisReturn, SDValue ThisVal) const; bool supportSplitCSR(MachineFunction *MF) const override { return MF->getFunction()->getCallingConv() == CallingConv::CXX_FAST_TLS && MF->getFunction()->hasFnAttribute(Attribute::NoUnwind); } void initializeSplitCSR(MachineBasicBlock *Entry) const override; void insertCopiesSplitCSR( MachineBasicBlock *Entry, const SmallVectorImpl &Exits) const override; SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const override; int StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, const Value *OrigArg, unsigned InRegsParamRecordIdx, int ArgOffset, unsigned ArgSize) const; void VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, unsigned ArgOffset, unsigned TotalArgRegsSaveSize, bool ForceMutable = false) const; SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const override; /// HandleByVal - Target-specific cleanup for ByVal support. void HandleByVal(CCState *, unsigned &, unsigned) const override; /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, bool isCallerStructRet, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG& DAG) const; bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const override; SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &dl, SelectionDAG &DAG) const override; bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override; bool mayBeEmittedAsTailCall(CallInst *CI) const override; SDValue getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal, SDValue TrueVal, SDValue ARMcc, SDValue CCR, SDValue Cmp, SelectionDAG &DAG) const; SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue &ARMcc, SelectionDAG &DAG, const SDLoc &dl) const; SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, const SDLoc &dl, bool InvalidOnQNaN) const; SDValue duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const; SDValue OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const; void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB, MachineBasicBlock *DispatchBB, int FI) const; void EmitSjLjDispatchBlock(MachineInstr &MI, MachineBasicBlock *MBB) const; bool RemapAddSubWithFlags(MachineInstr &MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitStructByval(MachineInstr &MI, MachineBasicBlock *MBB) const; MachineBasicBlock *EmitLowered__chkstk(MachineInstr &MI, MachineBasicBlock *MBB) const; MachineBasicBlock *EmitLowered__dbzchk(MachineInstr &MI, MachineBasicBlock *MBB) const; }; enum NEONModImmType { VMOVModImm, VMVNModImm, OtherModImm }; namespace ARM { FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo); } // end namespace ARM } // end namespace llvm #endif // LLVM_LIB_TARGET_ARM_ARMISELLOWERING_H