//===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ARM specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #include "ARMSubtarget.h" #include "ARMFrameLowering.h" #include "ARMInstrInfo.h" #include "ARMSubtarget.h" #include "ARMTargetMachine.h" #include "MCTargetDesc/ARMMCTargetDesc.h" #include "Thumb1FrameLowering.h" #include "Thumb1InstrInfo.h" #include "Thumb2InstrInfo.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/TargetParser.h" #include "llvm/Target/TargetOptions.h" #include #include using namespace llvm; #define DEBUG_TYPE "arm-subtarget" #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #include "ARMGenSubtargetInfo.inc" static cl::opt UseFusedMulOps("arm-use-mulops", cl::init(true), cl::Hidden); enum ITMode { DefaultIT, RestrictedIT, NoRestrictedIT }; static cl::opt IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::ZeroOrMore, cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate IT block based on arch"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow deprecated IT based on ARMv8"), clEnumValN(NoRestrictedIT, "arm-no-restrict-it", "Allow IT blocks based on ARMv7"))); /// ForceFastISel - Use the fast-isel, even for subtargets where it is not /// currently supported (for testing only). static cl::opt ForceFastISel("arm-force-fast-isel", cl::init(false), cl::Hidden); /// initializeSubtargetDependencies - Initializes using a CPU and feature string /// so that we can use initializer lists for subtarget initialization. ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) { initializeEnvironment(); initSubtargetFeatures(CPU, FS); return *this; } /// EnableExecuteOnly - Enables the generation of execute-only code on supported /// targets static cl::opt EnableExecuteOnly("arm-execute-only"); ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU, StringRef FS) { ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS); if (STI.isThumb1Only()) return (ARMFrameLowering *)new Thumb1FrameLowering(STI); return new ARMFrameLowering(STI); } ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS, const ARMBaseTargetMachine &TM, bool IsLittle) : ARMGenSubtargetInfo(TT, CPU, FS), UseMulOps(UseFusedMulOps), GenExecuteOnly(EnableExecuteOnly), CPUString(CPU), IsLittle(IsLittle), TargetTriple(TT), Options(TM.Options), TM(TM), FrameLowering(initializeFrameLowering(CPU, FS)), // At this point initializeSubtargetDependencies has been called so // we can query directly. InstrInfo(isThumb1Only() ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this) : !isThumb() ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this) : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)), TLInfo(TM, *this) {} const CallLowering *ARMSubtarget::getCallLowering() const { assert(GISel && "Access to GlobalISel APIs not set"); return GISel->getCallLowering(); } const InstructionSelector *ARMSubtarget::getInstructionSelector() const { assert(GISel && "Access to GlobalISel APIs not set"); return GISel->getInstructionSelector(); } const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const { assert(GISel && "Access to GlobalISel APIs not set"); return GISel->getLegalizerInfo(); } const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const { assert(GISel && "Access to GlobalISel APIs not set"); return GISel->getRegBankInfo(); } bool ARMSubtarget::isXRaySupported() const { // We don't currently suppport Thumb, but Windows requires Thumb. return hasV6Ops() && hasARMOps() && !isTargetWindows(); } void ARMSubtarget::initializeEnvironment() { // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this // directly from it, but we can try to make sure they're consistent when both // available. UseSjLjEH = isTargetDarwin() && !isTargetWatchABI(); assert((!TM.getMCAsmInfo() || (TM.getMCAsmInfo()->getExceptionHandlingType() == ExceptionHandling::SjLj) == UseSjLjEH) && "inconsistent sjlj choice between CodeGen and MC"); } void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) { if (CPUString.empty()) { CPUString = "generic"; if (isTargetDarwin()) { StringRef ArchName = TargetTriple.getArchName(); unsigned ArchKind = ARM::parseArch(ArchName); if (ArchKind == ARM::AK_ARMV7S) // Default to the Swift CPU when targeting armv7s/thumbv7s. CPUString = "swift"; else if (ArchKind == ARM::AK_ARMV7K) // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k. // ARMv7k does not use SjLj exception handling. CPUString = "cortex-a7"; } } // Insert the architecture feature derived from the target triple into the // feature string. This is important for setting features that are implied // based on the architecture version. std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString); if (!FS.empty()) { if (!ArchFS.empty()) ArchFS = (Twine(ArchFS) + "," + FS).str(); else ArchFS = FS; } ParseSubtargetFeatures(CPUString, ArchFS); // FIXME: This used enable V6T2 support implicitly for Thumb2 mode. // Assert this for now to make the change obvious. assert(hasV6T2Ops() || !hasThumb2()); // Execute only support requires movt support if (genExecuteOnly()) assert(hasV8MBaselineOps() && !NoMovt && "Cannot generate execute-only code for this target"); // Keep a pointer to static instruction cost data for the specified CPU. SchedModel = getSchedModelForCPU(CPUString); // Initialize scheduling itinerary for the specified CPU. InstrItins = getInstrItineraryForCPU(CPUString); // FIXME: this is invalid for WindowsCE if (isTargetWindows()) NoARM = true; if (isAAPCS_ABI()) stackAlignment = 8; if (isTargetNaCl() || isAAPCS16_ABI()) stackAlignment = 16; // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo:: // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation // support in the assembler and linker to be used. This would need to be // fixed to fully support tail calls in Thumb1. // // For ARMv8-M, we /do/ implement tail calls. Doing this is tricky for v8-M // baseline, since the LDM/POP instruction on Thumb doesn't take LR. This // means if we need to reload LR, it takes extra instructions, which outweighs // the value of the tail call; but here we don't know yet whether LR is going // to be used. We generate the tail call here and turn it back into CALL/RET // in emitEpilogue if LR is used. // Thumb1 PIC calls to external symbols use BX, so they can be tail calls, // but we need to make sure there are enough registers; the only valid // registers are the 4 used for parameters. We don't currently do this // case. SupportsTailCall = !isThumb() || hasV8MBaselineOps(); if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0)) SupportsTailCall = false; switch (IT) { case DefaultIT: RestrictIT = hasV8Ops(); break; case RestrictedIT: RestrictIT = true; break; case NoRestrictedIT: RestrictIT = false; break; } // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default. const FeatureBitset &Bits = getFeatureBits(); if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters (Options.UnsafeFPMath || isTargetDarwin())) UseNEONForSinglePrecisionFP = true; if (isRWPI()) ReserveR9 = true; // FIXME: Teach TableGen to deal with these instead of doing it manually here. switch (ARMProcFamily) { case Others: case CortexA5: break; case CortexA7: LdStMultipleTiming = DoubleIssue; break; case CortexA8: LdStMultipleTiming = DoubleIssue; break; case CortexA9: LdStMultipleTiming = DoubleIssueCheckUnalignedAccess; PreISelOperandLatencyAdjustment = 1; break; case CortexA12: break; case CortexA15: MaxInterleaveFactor = 2; PreISelOperandLatencyAdjustment = 1; PartialUpdateClearance = 12; break; case CortexA17: case CortexA32: case CortexA35: case CortexA53: case CortexA57: case CortexA72: case CortexA73: case CortexR4: case CortexR4F: case CortexR5: case CortexR7: case CortexM3: case ExynosM1: case CortexR52: case Kryo: break; case Krait: PreISelOperandLatencyAdjustment = 1; break; case Swift: MaxInterleaveFactor = 2; LdStMultipleTiming = SingleIssuePlusExtras; PreISelOperandLatencyAdjustment = 1; PartialUpdateClearance = 12; break; } } bool ARMSubtarget::isAPCS_ABI() const { assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS; } bool ARMSubtarget::isAAPCS_ABI() const { assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS || TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16; } bool ARMSubtarget::isAAPCS16_ABI() const { assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16; } bool ARMSubtarget::isROPI() const { return TM.getRelocationModel() == Reloc::ROPI || TM.getRelocationModel() == Reloc::ROPI_RWPI; } bool ARMSubtarget::isRWPI() const { return TM.getRelocationModel() == Reloc::RWPI || TM.getRelocationModel() == Reloc::ROPI_RWPI; } bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const { if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) return true; // 32 bit macho has no relocation for a-b if a is undefined, even if b is in // the section that is being relocated. This means we have to use o load even // for GVs that are known to be local to the dso. if (isTargetMachO() && TM.isPositionIndependent() && (GV->isDeclarationForLinker() || GV->hasCommonLinkage())) return true; return false; } unsigned ARMSubtarget::getMispredictionPenalty() const { return SchedModel.MispredictPenalty; } bool ARMSubtarget::hasSinCos() const { return isTargetWatchOS() || (isTargetIOS() && !getTargetTriple().isOSVersionLT(7, 0)); } bool ARMSubtarget::enableMachineScheduler() const { // Enable the MachineScheduler before register allocation for out-of-order // architectures where we do not use the PostRA scheduler anymore (for now // restricted to swift). return getSchedModel().isOutOfOrder() && isSwift(); } // This overrides the PostRAScheduler bit in the SchedModel for any CPU. bool ARMSubtarget::enablePostRAScheduler() const { // No need for PostRA scheduling on out of order CPUs (for now restricted to // swift). if (getSchedModel().isOutOfOrder() && isSwift()) return false; return (!isThumb() || hasThumb2()); } bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); } bool ARMSubtarget::useStride4VFPs(const MachineFunction &MF) const { // For general targets, the prologue can grow when VFPs are allocated with // stride 4 (more vpush instructions). But WatchOS uses a compact unwind // format which it's more important to get right. return isTargetWatchABI() || (isSwift() && !MF.getFunction()->optForMinSize()); } bool ARMSubtarget::useMovt(const MachineFunction &MF) const { // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit // immediates as it is inherently position independent, and may be out of // range otherwise. return !NoMovt && hasV8MBaselineOps() && (isTargetWindows() || !MF.getFunction()->optForMinSize() || genExecuteOnly()); } bool ARMSubtarget::useFastISel() const { // Enable fast-isel for any target, for testing only. if (ForceFastISel) return true; // Limit fast-isel to the targets that are or have been tested. if (!hasV6Ops()) return false; // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. return TM.Options.EnableFastISel && ((isTargetMachO() && !isThumb1Only()) || (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb())); }