//===- BTFDebug.cpp - BTF Generator ---------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for writing BTF debug info. // //===----------------------------------------------------------------------===// #include "BTFDebug.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCStreamer.h" #include #include using namespace llvm; static const char *BTFKindStr[] = { #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, #include "BTF.def" }; /// Emit a BTF common type. void BTFTypeBase::emitType(MCStreamer &OS) { OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + ")"); OS.EmitIntValue(BTFType.NameOff, 4); OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); OS.EmitIntValue(BTFType.Info, 4); OS.EmitIntValue(BTFType.Size, 4); } BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag) : DTy(DTy) { switch (Tag) { case dwarf::DW_TAG_pointer_type: Kind = BTF::BTF_KIND_PTR; break; case dwarf::DW_TAG_const_type: Kind = BTF::BTF_KIND_CONST; break; case dwarf::DW_TAG_volatile_type: Kind = BTF::BTF_KIND_VOLATILE; break; case dwarf::DW_TAG_typedef: Kind = BTF::BTF_KIND_TYPEDEF; break; case dwarf::DW_TAG_restrict_type: Kind = BTF::BTF_KIND_RESTRICT; break; default: llvm_unreachable("Unknown DIDerivedType Tag"); } BTFType.Info = Kind << 24; } void BTFTypeDerived::completeType(BTFDebug &BDebug) { BTFType.NameOff = BDebug.addString(DTy->getName()); // The base type for PTR/CONST/VOLATILE could be void. const DIType *ResolvedType = DTy->getBaseType().resolve(); if (!ResolvedType) { assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || Kind == BTF::BTF_KIND_VOLATILE) && "Invalid null basetype"); BTFType.Type = 0; } else { BTFType.Type = BDebug.getTypeId(ResolvedType); } } void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } /// Represent a struct/union forward declaration. BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { Kind = BTF::BTF_KIND_FWD; BTFType.Info = IsUnion << 31 | Kind << 24; BTFType.Type = 0; } void BTFTypeFwd::completeType(BTFDebug &BDebug) { BTFType.NameOff = BDebug.addString(Name); } void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, uint32_t OffsetInBits, StringRef TypeName) : Name(TypeName) { // Translate IR int encoding to BTF int encoding. uint8_t BTFEncoding; switch (Encoding) { case dwarf::DW_ATE_boolean: BTFEncoding = BTF::INT_BOOL; break; case dwarf::DW_ATE_signed: case dwarf::DW_ATE_signed_char: BTFEncoding = BTF::INT_SIGNED; break; case dwarf::DW_ATE_unsigned: case dwarf::DW_ATE_unsigned_char: BTFEncoding = 0; break; default: llvm_unreachable("Unknown BTFTypeInt Encoding"); } Kind = BTF::BTF_KIND_INT; BTFType.Info = Kind << 24; BTFType.Size = roundupToBytes(SizeInBits); IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; } void BTFTypeInt::completeType(BTFDebug &BDebug) { BTFType.NameOff = BDebug.addString(Name); } void BTFTypeInt::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); OS.AddComment("0x" + Twine::utohexstr(IntVal)); OS.EmitIntValue(IntVal, 4); } BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) { Kind = BTF::BTF_KIND_ENUM; BTFType.Info = Kind << 24 | VLen; BTFType.Size = roundupToBytes(ETy->getSizeInBits()); } void BTFTypeEnum::completeType(BTFDebug &BDebug) { BTFType.NameOff = BDebug.addString(ETy->getName()); DINodeArray Elements = ETy->getElements(); for (const auto Element : Elements) { const auto *Enum = cast(Element); struct BTF::BTFEnum BTFEnum; BTFEnum.NameOff = BDebug.addString(Enum->getName()); // BTF enum value is 32bit, enforce it. BTFEnum.Val = static_cast(Enum->getValue()); EnumValues.push_back(BTFEnum); } } void BTFTypeEnum::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); for (const auto &Enum : EnumValues) { OS.EmitIntValue(Enum.NameOff, 4); OS.EmitIntValue(Enum.Val, 4); } } BTFTypeArray::BTFTypeArray(const DICompositeType *ATy) : ATy(ATy) { Kind = BTF::BTF_KIND_ARRAY; BTFType.Info = Kind << 24; } /// Represent a BTF array. BTF does not record array dimensions, /// so conceptually a BTF array is a one-dimensional array. void BTFTypeArray::completeType(BTFDebug &BDebug) { BTFType.NameOff = BDebug.addString(ATy->getName()); BTFType.Size = 0; auto *BaseType = ATy->getBaseType().resolve(); ArrayInfo.ElemType = BDebug.getTypeId(BaseType); // The IR does not really have a type for the index. // A special type for array index should have been // created during initial type traversal. Just // retrieve that type id. ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); // Get the number of array elements. // If the array size is 0, set the number of elements as 0. // Otherwise, recursively traverse the base types to // find the element size. The number of elements is // the totoal array size in bits divided by // element size in bits. uint64_t ArraySizeInBits = ATy->getSizeInBits(); if (!ArraySizeInBits) { ArrayInfo.Nelems = 0; } else { uint32_t BaseTypeSize = BaseType->getSizeInBits(); while (!BaseTypeSize) { const auto *DDTy = cast(BaseType); BaseType = DDTy->getBaseType().resolve(); assert(BaseType); BaseTypeSize = BaseType->getSizeInBits(); } ArrayInfo.Nelems = ATy->getSizeInBits() / BaseTypeSize; } } void BTFTypeArray::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); OS.EmitIntValue(ArrayInfo.ElemType, 4); OS.EmitIntValue(ArrayInfo.IndexType, 4); OS.EmitIntValue(ArrayInfo.Nelems, 4); } /// Represent either a struct or a union. BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, bool HasBitField, uint32_t Vlen) : STy(STy), HasBitField(HasBitField) { Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; BTFType.Size = roundupToBytes(STy->getSizeInBits()); BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; } void BTFTypeStruct::completeType(BTFDebug &BDebug) { BTFType.NameOff = BDebug.addString(STy->getName()); // Add struct/union members. const DINodeArray Elements = STy->getElements(); for (const auto *Element : Elements) { struct BTF::BTFMember BTFMember; const auto *DDTy = cast(Element); BTFMember.NameOff = BDebug.addString(DDTy->getName()); if (HasBitField) { uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); } else { BTFMember.Offset = DDTy->getOffsetInBits(); } BTFMember.Type = BDebug.getTypeId(DDTy->getBaseType().resolve()); Members.push_back(BTFMember); } } void BTFTypeStruct::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); for (const auto &Member : Members) { OS.EmitIntValue(Member.NameOff, 4); OS.EmitIntValue(Member.Type, 4); OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); OS.EmitIntValue(Member.Offset, 4); } } /// The Func kind represents both subprogram and pointee of function /// pointers. If the FuncName is empty, it represents a pointee of function /// pointer. Otherwise, it represents a subprogram. The func arg names /// are empty for pointee of function pointer case, and are valid names /// for subprogram. BTFTypeFuncProto::BTFTypeFuncProto( const DISubroutineType *STy, uint32_t VLen, const std::unordered_map &FuncArgNames) : STy(STy), FuncArgNames(FuncArgNames) { Kind = BTF::BTF_KIND_FUNC_PROTO; BTFType.Info = (Kind << 24) | VLen; } void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { DITypeRefArray Elements = STy->getTypeArray(); auto RetType = Elements[0].resolve(); BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; BTFType.NameOff = 0; // For null parameter which is typically the last one // to represent the vararg, encode the NameOff/Type to be 0. for (unsigned I = 1, N = Elements.size(); I < N; ++I) { struct BTF::BTFParam Param; auto Element = Elements[I].resolve(); if (Element) { Param.NameOff = BDebug.addString(FuncArgNames[I]); Param.Type = BDebug.getTypeId(Element); } else { Param.NameOff = 0; Param.Type = 0; } Parameters.push_back(Param); } } void BTFTypeFuncProto::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); for (const auto &Param : Parameters) { OS.EmitIntValue(Param.NameOff, 4); OS.EmitIntValue(Param.Type, 4); } } BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId) : Name(FuncName) { Kind = BTF::BTF_KIND_FUNC; BTFType.Info = Kind << 24; BTFType.Type = ProtoTypeId; } void BTFTypeFunc::completeType(BTFDebug &BDebug) { BTFType.NameOff = BDebug.addString(Name); } void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } uint32_t BTFStringTable::addString(StringRef S) { // Check whether the string already exists. for (auto &OffsetM : OffsetToIdMap) { if (Table[OffsetM.second] == S) return OffsetM.first; } // Not find, add to the string table. uint32_t Offset = Size; OffsetToIdMap[Offset] = Table.size(); Table.push_back(S); Size += S.size() + 1; return Offset; } BTFDebug::BTFDebug(AsmPrinter *AP) : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0) { addString("\0"); } void BTFDebug::addType(std::unique_ptr TypeEntry, const DIType *Ty) { TypeEntry->setId(TypeEntries.size() + 1); DIToIdMap[Ty] = TypeEntry->getId(); TypeEntries.push_back(std::move(TypeEntry)); } uint32_t BTFDebug::addType(std::unique_ptr TypeEntry) { TypeEntry->setId(TypeEntries.size() + 1); uint32_t Id = TypeEntry->getId(); TypeEntries.push_back(std::move(TypeEntry)); return Id; } void BTFDebug::visitBasicType(const DIBasicType *BTy) { // Only int types are supported in BTF. uint32_t Encoding = BTy->getEncoding(); if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed && Encoding != dwarf::DW_ATE_signed_char && Encoding != dwarf::DW_ATE_unsigned && Encoding != dwarf::DW_ATE_unsigned_char) return; // Create a BTF type instance for this DIBasicType and put it into // DIToIdMap for cross-type reference check. auto TypeEntry = llvm::make_unique( Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); addType(std::move(TypeEntry), BTy); } /// Handle subprogram or subroutine types. void BTFDebug::visitSubroutineType( const DISubroutineType *STy, bool ForSubprog, const std::unordered_map &FuncArgNames, uint32_t &TypeId) { DITypeRefArray Elements = STy->getTypeArray(); uint32_t VLen = Elements.size() - 1; if (VLen > BTF::MAX_VLEN) return; // Subprogram has a valid non-zero-length name, and the pointee of // a function pointer has an empty name. The subprogram type will // not be added to DIToIdMap as it should not be referenced by // any other types. auto TypeEntry = llvm::make_unique(STy, VLen, FuncArgNames); if (ForSubprog) TypeId = addType(std::move(TypeEntry)); // For subprogram else addType(std::move(TypeEntry), STy); // For func ptr // Visit return type and func arg types. for (const auto Element : Elements) { visitTypeEntry(Element.resolve()); } } /// Handle structure/union types. void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct) { const DINodeArray Elements = CTy->getElements(); uint32_t VLen = Elements.size(); if (VLen > BTF::MAX_VLEN) return; // Check whether we have any bitfield members or not bool HasBitField = false; for (const auto *Element : Elements) { auto E = cast(Element); if (E->isBitField()) { HasBitField = true; break; } } auto TypeEntry = llvm::make_unique(CTy, IsStruct, HasBitField, VLen); addType(std::move(TypeEntry), CTy); // Visit all struct members. for (const auto *Element : Elements) visitTypeEntry(cast(Element)); } void BTFDebug::visitArrayType(const DICompositeType *CTy) { auto TypeEntry = llvm::make_unique(CTy); addType(std::move(TypeEntry), CTy); // The IR does not have a type for array index while BTF wants one. // So create an array index type if there is none. if (!ArrayIndexTypeId) { auto TypeEntry = llvm::make_unique(dwarf::DW_ATE_unsigned, 32, 0, "__ARRAY_SIZE_TYPE__"); ArrayIndexTypeId = addType(std::move(TypeEntry)); } // Visit array element type. visitTypeEntry(CTy->getBaseType().resolve()); } void BTFDebug::visitEnumType(const DICompositeType *CTy) { DINodeArray Elements = CTy->getElements(); uint32_t VLen = Elements.size(); if (VLen > BTF::MAX_VLEN) return; auto TypeEntry = llvm::make_unique(CTy, VLen); addType(std::move(TypeEntry), CTy); // No need to visit base type as BTF does not encode it. } /// Handle structure/union forward declarations. void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion) { auto TypeEntry = llvm::make_unique(CTy->getName(), IsUnion); addType(std::move(TypeEntry), CTy); } /// Handle structure, union, array and enumeration types. void BTFDebug::visitCompositeType(const DICompositeType *CTy) { auto Tag = CTy->getTag(); if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { // Handle forward declaration differently as it does not have members. if (CTy->isForwardDecl()) visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type); else visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type); } else if (Tag == dwarf::DW_TAG_array_type) visitArrayType(CTy); else if (Tag == dwarf::DW_TAG_enumeration_type) visitEnumType(CTy); } /// Handle pointer, typedef, const, volatile, restrict and member types. void BTFDebug::visitDerivedType(const DIDerivedType *DTy) { unsigned Tag = DTy->getTag(); if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type || Tag == dwarf::DW_TAG_restrict_type) { auto TypeEntry = llvm::make_unique(DTy, Tag); addType(std::move(TypeEntry), DTy); } else if (Tag != dwarf::DW_TAG_member) { return; } // Visit base type of pointer, typedef, const, volatile, restrict or // struct/union member. visitTypeEntry(DTy->getBaseType().resolve()); } void BTFDebug::visitTypeEntry(const DIType *Ty) { if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) return; uint32_t TypeId; if (const auto *BTy = dyn_cast(Ty)) visitBasicType(BTy); else if (const auto *STy = dyn_cast(Ty)) visitSubroutineType(STy, false, std::unordered_map(), TypeId); else if (const auto *CTy = dyn_cast(Ty)) visitCompositeType(CTy); else if (const auto *DTy = dyn_cast(Ty)) visitDerivedType(DTy); else llvm_unreachable("Unknown DIType"); } /// Read file contents from the actual file or from the source std::string BTFDebug::populateFileContent(const DISubprogram *SP) { auto File = SP->getFile(); std::string FileName; if (File->getDirectory().size()) FileName = File->getDirectory().str() + "/" + File->getFilename().str(); else FileName = File->getFilename(); // No need to populate the contends if it has been populated! if (FileContent.find(FileName) != FileContent.end()) return FileName; std::vector Content; std::string Line; Content.push_back(Line); // Line 0 for empty string auto Source = File->getSource(); if (Source) { std::istringstream InputString(Source.getValue()); while (std::getline(InputString, Line)) Content.push_back(Line); } else { std::ifstream InputFile(FileName); while (std::getline(InputFile, Line)) Content.push_back(Line); } FileContent[FileName] = Content; return FileName; } void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, uint32_t Line, uint32_t Column) { std::string FileName = populateFileContent(SP); BTFLineInfo LineInfo; LineInfo.Label = Label; LineInfo.FileNameOff = addString(FileName); // If file content is not available, let LineOff = 0. if (Line < FileContent[FileName].size()) LineInfo.LineOff = addString(FileContent[FileName][Line]); else LineInfo.LineOff = 0; LineInfo.LineNum = Line; LineInfo.ColumnNum = Column; LineInfoTable[SecNameOff].push_back(LineInfo); } void BTFDebug::emitCommonHeader() { OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); OS.EmitIntValue(BTF::MAGIC, 2); OS.EmitIntValue(BTF::VERSION, 1); OS.EmitIntValue(0, 1); } void BTFDebug::emitBTFSection() { MCContext &Ctx = OS.getContext(); OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0)); // Emit header. emitCommonHeader(); OS.EmitIntValue(BTF::HeaderSize, 4); uint32_t TypeLen = 0, StrLen; for (const auto &TypeEntry : TypeEntries) TypeLen += TypeEntry->getSize(); StrLen = StringTable.getSize(); OS.EmitIntValue(0, 4); OS.EmitIntValue(TypeLen, 4); OS.EmitIntValue(TypeLen, 4); OS.EmitIntValue(StrLen, 4); // Emit type table. for (const auto &TypeEntry : TypeEntries) TypeEntry->emitType(OS); // Emit string table. uint32_t StringOffset = 0; for (const auto &S : StringTable.getTable()) { OS.AddComment("string offset=" + std::to_string(StringOffset)); OS.EmitBytes(S); OS.EmitBytes(StringRef("\0", 1)); StringOffset += S.size() + 1; } } void BTFDebug::emitBTFExtSection() { MCContext &Ctx = OS.getContext(); OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0)); // Emit header. emitCommonHeader(); OS.EmitIntValue(BTF::ExtHeaderSize, 4); // Account for FuncInfo/LineInfo record size as well. uint32_t FuncLen = 4, LineLen = 4; for (const auto &FuncSec : FuncInfoTable) { FuncLen += BTF::SecFuncInfoSize; FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; } for (const auto &LineSec : LineInfoTable) { LineLen += BTF::SecLineInfoSize; LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; } OS.EmitIntValue(0, 4); OS.EmitIntValue(FuncLen, 4); OS.EmitIntValue(FuncLen, 4); OS.EmitIntValue(LineLen, 4); // Emit func_info table. OS.AddComment("FuncInfo"); OS.EmitIntValue(BTF::BPFFuncInfoSize, 4); for (const auto &FuncSec : FuncInfoTable) { OS.AddComment("FuncInfo section string offset=" + std::to_string(FuncSec.first)); OS.EmitIntValue(FuncSec.first, 4); OS.EmitIntValue(FuncSec.second.size(), 4); for (const auto &FuncInfo : FuncSec.second) { Asm->EmitLabelReference(FuncInfo.Label, 4); OS.EmitIntValue(FuncInfo.TypeId, 4); } } // Emit line_info table. OS.AddComment("LineInfo"); OS.EmitIntValue(BTF::BPFLineInfoSize, 4); for (const auto &LineSec : LineInfoTable) { OS.AddComment("LineInfo section string offset=" + std::to_string(LineSec.first)); OS.EmitIntValue(LineSec.first, 4); OS.EmitIntValue(LineSec.second.size(), 4); for (const auto &LineInfo : LineSec.second) { Asm->EmitLabelReference(LineInfo.Label, 4); OS.EmitIntValue(LineInfo.FileNameOff, 4); OS.EmitIntValue(LineInfo.LineOff, 4); OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + std::to_string(LineInfo.ColumnNum)); OS.EmitIntValue(LineInfo.LineNum << 10 | LineInfo.ColumnNum, 4); } } } void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { auto *SP = MF->getFunction().getSubprogram(); auto *Unit = SP->getUnit(); if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { SkipInstruction = true; return; } SkipInstruction = false; // Collect all types locally referenced in this function. // Use RetainedNodes so we can collect all argument names // even if the argument is not used. std::unordered_map FuncArgNames; for (const DINode *DN : SP->getRetainedNodes()) { if (const auto *DV = dyn_cast(DN)) { visitTypeEntry(DV->getType().resolve()); // Collect function arguments for subprogram func type. uint32_t Arg = DV->getArg(); if (Arg) FuncArgNames[Arg] = DV->getName(); } } // Construct subprogram func proto type. uint32_t ProtoTypeId; visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); // Construct subprogram func type auto FuncTypeEntry = llvm::make_unique(SP->getName(), ProtoTypeId); uint32_t FuncTypeId = addType(std::move(FuncTypeEntry)); // Construct funcinfo and the first lineinfo for the function. MCSymbol *FuncLabel = Asm->getFunctionBegin(); BTFFuncInfo FuncInfo; FuncInfo.Label = FuncLabel; FuncInfo.TypeId = FuncTypeId; if (FuncLabel->isInSection()) { MCSection &Section = FuncLabel->getSection(); const MCSectionELF *SectionELF = dyn_cast(&Section); assert(SectionELF && "Null section for Function Label"); SecNameOff = addString(SectionELF->getSectionName()); } else { SecNameOff = addString(".text"); } FuncInfoTable[SecNameOff].push_back(FuncInfo); } void BTFDebug::endFunctionImpl(const MachineFunction *MF) { SkipInstruction = false; LineInfoGenerated = false; SecNameOff = 0; } void BTFDebug::beginInstruction(const MachineInstr *MI) { DebugHandlerBase::beginInstruction(MI); if (SkipInstruction || MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) return; if (MI->isInlineAsm()) { // Count the number of register definitions to find the asm string. unsigned NumDefs = 0; for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); ++NumDefs) ; // Skip this inline asm instruction if the asmstr is empty. const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); if (AsmStr[0] == 0) return; } // Skip this instruction if no DebugLoc or the DebugLoc // is the same as the previous instruction. const DebugLoc &DL = MI->getDebugLoc(); if (!DL || PrevInstLoc == DL) { // This instruction will be skipped, no LineInfo has // been generated, construct one based on function signature. if (LineInfoGenerated == false) { auto *S = MI->getMF()->getFunction().getSubprogram(); MCSymbol *FuncLabel = Asm->getFunctionBegin(); constructLineInfo(S, FuncLabel, S->getLine(), 0); LineInfoGenerated = true; } return; } // Create a temporary label to remember the insn for lineinfo. MCSymbol *LineSym = OS.getContext().createTempSymbol(); OS.EmitLabel(LineSym); // Construct the lineinfo. auto SP = DL.get()->getScope()->getSubprogram(); constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); LineInfoGenerated = true; PrevInstLoc = DL; } void BTFDebug::endModule() { // Collect all types referenced by globals. const Module *M = MMI->getModule(); for (const DICompileUnit *CUNode : M->debug_compile_units()) { for (const auto *GVE : CUNode->getGlobalVariables()) { DIGlobalVariable *GV = GVE->getVariable(); visitTypeEntry(GV->getType().resolve()); } } // Complete BTF type cross refereences. for (const auto &TypeEntry : TypeEntries) TypeEntry->completeType(*this); // Emit BTF sections. emitBTFSection(); emitBTFExtSection(); }