//===--- HexagonBitTracker.cpp --------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "Hexagon.h" #include "HexagonInstrInfo.h" #include "HexagonRegisterInfo.h" #include "HexagonTargetMachine.h" #include "HexagonBitTracker.h" using namespace llvm; typedef BitTracker BT; HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri, MachineRegisterInfo &mri, const HexagonInstrInfo &tii, MachineFunction &mf) : MachineEvaluator(tri, mri), MF(mf), MFI(*mf.getFrameInfo()), TII(tii) { // Populate the VRX map (VR to extension-type). // Go over all the formal parameters of the function. If a given parameter // P is sign- or zero-extended, locate the virtual register holding that // parameter and create an entry in the VRX map indicating the type of ex- // tension (and the source type). // This is a bit complicated to do accurately, since the memory layout in- // formation is necessary to precisely determine whether an aggregate para- // meter will be passed in a register or in memory. What is given in MRI // is the association between the physical register that is live-in (i.e. // holds an argument), and the virtual register that this value will be // copied into. This, by itself, is not sufficient to map back the virtual // register to a formal parameter from Function (since consecutive live-ins // from MRI may not correspond to consecutive formal parameters from Func- // tion). To avoid the complications with in-memory arguments, only consi- // der the initial sequence of formal parameters that are known to be // passed via registers. unsigned AttrIdx = 0; unsigned InVirtReg, InPhysReg = 0; const Function &F = *MF.getFunction(); typedef Function::const_arg_iterator arg_iterator; for (arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { AttrIdx++; const Argument &Arg = *I; Type *ATy = Arg.getType(); unsigned Width = 0; if (ATy->isIntegerTy()) Width = ATy->getIntegerBitWidth(); else if (ATy->isPointerTy()) Width = 32; // If pointer size is not set through target data, it will default to // Module::AnyPointerSize. if (Width == 0 || Width > 64) break; InPhysReg = getNextPhysReg(InPhysReg, Width); if (!InPhysReg) break; InVirtReg = getVirtRegFor(InPhysReg); if (!InVirtReg) continue; AttributeSet Attrs = F.getAttributes(); if (Attrs.hasAttribute(AttrIdx, Attribute::SExt)) VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width))); else if (Attrs.hasAttribute(AttrIdx, Attribute::ZExt)) VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width))); } } BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const { if (Sub == 0) return MachineEvaluator::mask(Reg, 0); using namespace Hexagon; const TargetRegisterClass *RC = MRI.getRegClass(Reg); unsigned ID = RC->getID(); uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub)); switch (ID) { case DoubleRegsRegClassID: case VecDblRegsRegClassID: case VecDblRegs128BRegClassID: return (Sub == subreg_loreg) ? BT::BitMask(0, RW-1) : BT::BitMask(RW, 2*RW-1); default: break; } #ifndef NDEBUG dbgs() << PrintReg(Reg, &TRI, Sub) << '\n'; #endif llvm_unreachable("Unexpected register/subregister"); } namespace { class RegisterRefs { std::vector Vector; public: RegisterRefs(const MachineInstr *MI) : Vector(MI->getNumOperands()) { for (unsigned i = 0, n = Vector.size(); i < n; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg()) Vector[i] = BT::RegisterRef(MO); // For indices that don't correspond to registers, the entry will // remain constructed via the default constructor. } } size_t size() const { return Vector.size(); } const BT::RegisterRef &operator[](unsigned n) const { // The main purpose of this operator is to assert with bad argument. assert(n < Vector.size()); return Vector[n]; } }; } bool HexagonEvaluator::evaluate(const MachineInstr *MI, const CellMapType &Inputs, CellMapType &Outputs) const { unsigned NumDefs = 0; // Sanity verification: there should not be any defs with subregisters. for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; NumDefs++; assert(MO.getSubReg() == 0); } if (NumDefs == 0) return false; if (MI->mayLoad()) return evaluateLoad(MI, Inputs, Outputs); // Check COPY instructions that copy formal parameters into virtual // registers. Such parameters can be sign- or zero-extended at the // call site, and we should take advantage of this knowledge. The MRI // keeps a list of pairs of live-in physical and virtual registers, // which provides information about which virtual registers will hold // the argument values. The function will still contain instructions // defining those virtual registers, and in practice those are COPY // instructions from a physical to a virtual register. In such cases, // applying the argument extension to the virtual register can be seen // as simply mirroring the extension that had already been applied to // the physical register at the call site. If the defining instruction // was not a COPY, it would not be clear how to mirror that extension // on the callee's side. For that reason, only check COPY instructions // for potential extensions. if (MI->isCopy()) { if (evaluateFormalCopy(MI, Inputs, Outputs)) return true; } // Beyond this point, if any operand is a global, skip that instruction. // The reason is that certain instructions that can take an immediate // operand can also have a global symbol in that operand. To avoid // checking what kind of operand a given instruction has individually // for each instruction, do it here. Global symbols as operands gene- // rally do not provide any useful information. for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() || MO.isCPI()) return false; } RegisterRefs Reg(MI); unsigned Opc = MI->getOpcode(); using namespace Hexagon; #define op(i) MI->getOperand(i) #define rc(i) RegisterCell::ref(getCell(Reg[i],Inputs)) #define im(i) MI->getOperand(i).getImm() // If the instruction has no register operands, skip it. if (Reg.size() == 0) return false; // Record result for register in operand 0. auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs) -> bool { putCell(Reg[0], Val, Outputs); return true; }; // Get the cell corresponding to the N-th operand. auto cop = [this,&Reg,&MI,&Inputs] (unsigned N, uint16_t W) -> BT::RegisterCell { const MachineOperand &Op = MI->getOperand(N); if (Op.isImm()) return eIMM(Op.getImm(), W); if (!Op.isReg()) return RegisterCell::self(0, W); assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch"); return rc(N); }; // Extract RW low bits of the cell. auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW) -> BT::RegisterCell { assert(RW <= RC.width()); return eXTR(RC, 0, RW); }; // Extract RW high bits of the cell. auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW) -> BT::RegisterCell { uint16_t W = RC.width(); assert(RW <= W); return eXTR(RC, W-RW, W); }; // Extract N-th halfword (counting from the least significant position). auto half = [this] (const BT::RegisterCell &RC, unsigned N) -> BT::RegisterCell { assert(N*16+16 <= RC.width()); return eXTR(RC, N*16, N*16+16); }; // Shuffle bits (pick even/odd from cells and merge into result). auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt, uint16_t BW, bool Odd) -> BT::RegisterCell { uint16_t I = Odd, Ws = Rs.width(); assert(Ws == Rt.width()); RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW)); I += 2; while (I*BW < Ws) { RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW)); I += 2; } return RC; }; // The bitwidth of the 0th operand. In most (if not all) of the // instructions below, the 0th operand is the defined register. // Pre-compute the bitwidth here, because it is needed in many cases // cases below. uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0; switch (Opc) { // Transfer immediate: case A2_tfrsi: case A2_tfrpi: case CONST32: case CONST32_Float_Real: case CONST32_Int_Real: case CONST64_Float_Real: case CONST64_Int_Real: return rr0(eIMM(im(1), W0), Outputs); case TFR_PdFalse: return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs); case TFR_PdTrue: return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs); case TFR_FI: { int FI = op(1).getIndex(); int Off = op(2).getImm(); unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off); unsigned L = Log2_32(A); RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0); RC.fill(0, L, BT::BitValue::Zero); return rr0(RC, Outputs); } // Transfer register: case A2_tfr: case A2_tfrp: case C2_pxfer_map: return rr0(rc(1), Outputs); case C2_tfrpr: { uint16_t RW = W0; uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]); assert(PW <= RW); RegisterCell PC = eXTR(rc(1), 0, PW); RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1)); RC.fill(PW, RW, BT::BitValue::Zero); return rr0(RC, Outputs); } case C2_tfrrp: { RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0); W0 = 8; // XXX Pred size return rr0(eINS(RC, eXTR(rc(1), 0, W0), 0), Outputs); } // Arithmetic: case A2_abs: case A2_absp: // TODO break; case A2_addsp: { uint16_t W1 = getRegBitWidth(Reg[1]); assert(W0 == 64 && W1 == 32); RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1)); RegisterCell RC = eADD(eSXT(CW, W1), rc(2)); return rr0(RC, Outputs); } case A2_add: case A2_addp: return rr0(eADD(rc(1), rc(2)), Outputs); case A2_addi: return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs); case S4_addi_asl_ri: { RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3))); return rr0(RC, Outputs); } case S4_addi_lsr_ri: { RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3))); return rr0(RC, Outputs); } case S4_addaddi: { RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0))); return rr0(RC, Outputs); } case M4_mpyri_addi: { RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0)); return rr0(RC, Outputs); } case M4_mpyrr_addi: { RegisterCell M = eMLS(rc(2), rc(3)); RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0)); return rr0(RC, Outputs); } case M4_mpyri_addr_u2: { RegisterCell M = eMLS(eIMM(im(2), W0), rc(3)); RegisterCell RC = eADD(rc(1), lo(M, W0)); return rr0(RC, Outputs); } case M4_mpyri_addr: { RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); RegisterCell RC = eADD(rc(1), lo(M, W0)); return rr0(RC, Outputs); } case M4_mpyrr_addr: { RegisterCell M = eMLS(rc(2), rc(3)); RegisterCell RC = eADD(rc(1), lo(M, W0)); return rr0(RC, Outputs); } case S4_subaddi: { RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3))); return rr0(RC, Outputs); } case M2_accii: { RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0))); return rr0(RC, Outputs); } case M2_acci: { RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3))); return rr0(RC, Outputs); } case M2_subacc: { RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3))); return rr0(RC, Outputs); } case S2_addasl_rrri: { RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3))); return rr0(RC, Outputs); } case C4_addipc: { RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0); RPC.fill(0, 2, BT::BitValue::Zero); return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs); } case A2_sub: case A2_subp: return rr0(eSUB(rc(1), rc(2)), Outputs); case A2_subri: return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs); case S4_subi_asl_ri: { RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3))); return rr0(RC, Outputs); } case S4_subi_lsr_ri: { RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3))); return rr0(RC, Outputs); } case M2_naccii: { RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0))); return rr0(RC, Outputs); } case M2_nacci: { RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3))); return rr0(RC, Outputs); } // 32-bit negation is done by "Rd = A2_subri 0, Rs" case A2_negp: return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs); case M2_mpy_up: { RegisterCell M = eMLS(rc(1), rc(2)); return rr0(hi(M, W0), Outputs); } case M2_dpmpyss_s0: return rr0(eMLS(rc(1), rc(2)), Outputs); case M2_dpmpyss_acc_s0: return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs); case M2_dpmpyss_nac_s0: return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs); case M2_mpyi: { RegisterCell M = eMLS(rc(1), rc(2)); return rr0(lo(M, W0), Outputs); } case M2_macsip: { RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); RegisterCell RC = eADD(rc(1), lo(M, W0)); return rr0(RC, Outputs); } case M2_macsin: { RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); RegisterCell RC = eSUB(rc(1), lo(M, W0)); return rr0(RC, Outputs); } case M2_maci: { RegisterCell M = eMLS(rc(2), rc(3)); RegisterCell RC = eADD(rc(1), lo(M, W0)); return rr0(RC, Outputs); } case M2_mpysmi: { RegisterCell M = eMLS(rc(1), eIMM(im(2), W0)); return rr0(lo(M, 32), Outputs); } case M2_mpysin: { RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0)); return rr0(lo(M, 32), Outputs); } case M2_mpysip: { RegisterCell M = eMLS(rc(1), eIMM(im(2), W0)); return rr0(lo(M, 32), Outputs); } case M2_mpyu_up: { RegisterCell M = eMLU(rc(1), rc(2)); return rr0(hi(M, W0), Outputs); } case M2_dpmpyuu_s0: return rr0(eMLU(rc(1), rc(2)), Outputs); case M2_dpmpyuu_acc_s0: return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs); case M2_dpmpyuu_nac_s0: return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs); //case M2_mpysu_up: // Logical/bitwise: case A2_andir: return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs); case A2_and: case A2_andp: return rr0(eAND(rc(1), rc(2)), Outputs); case A4_andn: case A4_andnp: return rr0(eAND(rc(1), eNOT(rc(2))), Outputs); case S4_andi_asl_ri: { RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3))); return rr0(RC, Outputs); } case S4_andi_lsr_ri: { RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3))); return rr0(RC, Outputs); } case M4_and_and: return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs); case M4_and_andn: return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); case M4_and_or: return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs); case M4_and_xor: return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs); case A2_orir: return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs); case A2_or: case A2_orp: return rr0(eORL(rc(1), rc(2)), Outputs); case A4_orn: case A4_ornp: return rr0(eORL(rc(1), eNOT(rc(2))), Outputs); case S4_ori_asl_ri: { RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3))); return rr0(RC, Outputs); } case S4_ori_lsr_ri: { RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3))); return rr0(RC, Outputs); } case M4_or_and: return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs); case M4_or_andn: return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); case S4_or_andi: case S4_or_andix: { RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0))); return rr0(RC, Outputs); } case S4_or_ori: { RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0))); return rr0(RC, Outputs); } case M4_or_or: return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs); case M4_or_xor: return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs); case A2_xor: case A2_xorp: return rr0(eXOR(rc(1), rc(2)), Outputs); case M4_xor_and: return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs); case M4_xor_andn: return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); case M4_xor_or: return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs); case M4_xor_xacc: return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs); case A2_not: case A2_notp: return rr0(eNOT(rc(1)), Outputs); case S2_asl_i_r: case S2_asl_i_p: return rr0(eASL(rc(1), im(2)), Outputs); case A2_aslh: return rr0(eASL(rc(1), 16), Outputs); case S2_asl_i_r_acc: case S2_asl_i_p_acc: return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs); case S2_asl_i_r_nac: case S2_asl_i_p_nac: return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs); case S2_asl_i_r_and: case S2_asl_i_p_and: return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs); case S2_asl_i_r_or: case S2_asl_i_p_or: return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs); case S2_asl_i_r_xacc: case S2_asl_i_p_xacc: return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs); case S2_asl_i_vh: case S2_asl_i_vw: // TODO break; case S2_asr_i_r: case S2_asr_i_p: return rr0(eASR(rc(1), im(2)), Outputs); case A2_asrh: return rr0(eASR(rc(1), 16), Outputs); case S2_asr_i_r_acc: case S2_asr_i_p_acc: return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs); case S2_asr_i_r_nac: case S2_asr_i_p_nac: return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs); case S2_asr_i_r_and: case S2_asr_i_p_and: return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs); case S2_asr_i_r_or: case S2_asr_i_p_or: return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs); case S2_asr_i_r_rnd: { // The input is first sign-extended to 64 bits, then the output // is truncated back to 32 bits. assert(W0 == 32); RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0); RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1); return rr0(eXTR(RC, 0, W0), Outputs); } case S2_asr_i_r_rnd_goodsyntax: { int64_t S = im(2); if (S == 0) return rr0(rc(1), Outputs); // Result: S2_asr_i_r_rnd Rs, u5-1 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0); RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1); return rr0(eXTR(RC, 0, W0), Outputs); } case S2_asr_r_vh: case S2_asr_i_vw: case S2_asr_i_svw_trun: // TODO break; case S2_lsr_i_r: case S2_lsr_i_p: return rr0(eLSR(rc(1), im(2)), Outputs); case S2_lsr_i_r_acc: case S2_lsr_i_p_acc: return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs); case S2_lsr_i_r_nac: case S2_lsr_i_p_nac: return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs); case S2_lsr_i_r_and: case S2_lsr_i_p_and: return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs); case S2_lsr_i_r_or: case S2_lsr_i_p_or: return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs); case S2_lsr_i_r_xacc: case S2_lsr_i_p_xacc: return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs); case S2_clrbit_i: { RegisterCell RC = rc(1); RC[im(2)] = BT::BitValue::Zero; return rr0(RC, Outputs); } case S2_setbit_i: { RegisterCell RC = rc(1); RC[im(2)] = BT::BitValue::One; return rr0(RC, Outputs); } case S2_togglebit_i: { RegisterCell RC = rc(1); uint16_t BX = im(2); RC[BX] = RC[BX].is(0) ? BT::BitValue::One : RC[BX].is(1) ? BT::BitValue::Zero : BT::BitValue::self(); return rr0(RC, Outputs); } case A4_bitspliti: { uint16_t W1 = getRegBitWidth(Reg[1]); uint16_t BX = im(2); // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx] const BT::BitValue Zero = BT::BitValue::Zero; RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero) .fill(W1+(W1-BX), W0, Zero); RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1); RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1); return rr0(RC, Outputs); } case S4_extract: case S4_extractp: case S2_extractu: case S2_extractup: { uint16_t Wd = im(2), Of = im(3); assert(Wd <= W0); if (Wd == 0) return rr0(eIMM(0, W0), Outputs); // If the width extends beyond the register size, pad the register // with 0 bits. RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1); RegisterCell Ext = eXTR(Pad, Of, Wd+Of); // Ext is short, need to extend it with 0s or sign bit. RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1)); if (Opc == S2_extractu || Opc == S2_extractup) return rr0(eZXT(RC, Wd), Outputs); return rr0(eSXT(RC, Wd), Outputs); } case S2_insert: case S2_insertp: { uint16_t Wd = im(3), Of = im(4); assert(Wd < W0 && Of < W0); // If Wd+Of exceeds W0, the inserted bits are truncated. if (Wd+Of > W0) Wd = W0-Of; if (Wd == 0) return rr0(rc(1), Outputs); return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs); } // Bit permutations: case A2_combineii: case A4_combineii: case A4_combineir: case A4_combineri: case A2_combinew: assert(W0 % 2 == 0); return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs); case A2_combine_ll: case A2_combine_lh: case A2_combine_hl: case A2_combine_hh: { assert(W0 == 32); assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32); // Low half in the output is 0 for _ll and _hl, 1 otherwise: unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl); // High half in the output is 0 for _ll and _lh, 1 otherwise: unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh); RegisterCell R1 = rc(1); RegisterCell R2 = rc(2); RegisterCell RC = half(R2, LoH).cat(half(R1, HiH)); return rr0(RC, Outputs); } case S2_packhl: { assert(W0 == 64); assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32); RegisterCell R1 = rc(1); RegisterCell R2 = rc(2); RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1)) .cat(half(R1, 1)); return rr0(RC, Outputs); } case S2_shuffeb: { RegisterCell RC = shuffle(rc(1), rc(2), 8, false); return rr0(RC, Outputs); } case S2_shuffeh: { RegisterCell RC = shuffle(rc(1), rc(2), 16, false); return rr0(RC, Outputs); } case S2_shuffob: { RegisterCell RC = shuffle(rc(1), rc(2), 8, true); return rr0(RC, Outputs); } case S2_shuffoh: { RegisterCell RC = shuffle(rc(1), rc(2), 16, true); return rr0(RC, Outputs); } case C2_mask: { uint16_t WR = W0; uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]); assert(WR == 64 && WP == 8); RegisterCell R1 = rc(1); RegisterCell RC(WR); for (uint16_t i = 0; i < WP; ++i) { const BT::BitValue &V = R1[i]; BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self(); RC.fill(i*8, i*8+8, F); } return rr0(RC, Outputs); } // Mux: case C2_muxii: case C2_muxir: case C2_muxri: case C2_mux: { BT::BitValue PC0 = rc(1)[0]; RegisterCell R2 = cop(2, W0); RegisterCell R3 = cop(3, W0); if (PC0.is(0) || PC0.is(1)) return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs); R2.meet(R3, Reg[0].Reg); return rr0(R2, Outputs); } case C2_vmux: // TODO break; // Sign- and zero-extension: case A2_sxtb: return rr0(eSXT(rc(1), 8), Outputs); case A2_sxth: return rr0(eSXT(rc(1), 16), Outputs); case A2_sxtw: { uint16_t W1 = getRegBitWidth(Reg[1]); assert(W0 == 64 && W1 == 32); RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1); return rr0(RC, Outputs); } case A2_zxtb: return rr0(eZXT(rc(1), 8), Outputs); case A2_zxth: return rr0(eZXT(rc(1), 16), Outputs); // Bit count: case S2_cl0: case S2_cl0p: // Always produce a 32-bit result. return rr0(eCLB(rc(1), 0/*bit*/, 32), Outputs); case S2_cl1: case S2_cl1p: return rr0(eCLB(rc(1), 1/*bit*/, 32), Outputs); case S2_clb: case S2_clbp: { uint16_t W1 = getRegBitWidth(Reg[1]); RegisterCell R1 = rc(1); BT::BitValue TV = R1[W1-1]; if (TV.is(0) || TV.is(1)) return rr0(eCLB(R1, TV, 32), Outputs); break; } case S2_ct0: case S2_ct0p: return rr0(eCTB(rc(1), 0/*bit*/, 32), Outputs); case S2_ct1: case S2_ct1p: return rr0(eCTB(rc(1), 1/*bit*/, 32), Outputs); case S5_popcountp: // TODO break; case C2_all8: { RegisterCell P1 = rc(1); bool Has0 = false, All1 = true; for (uint16_t i = 0; i < 8/*XXX*/; ++i) { if (!P1[i].is(1)) All1 = false; if (!P1[i].is(0)) continue; Has0 = true; break; } if (!Has0 && !All1) break; RegisterCell RC(W0); RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero)); return rr0(RC, Outputs); } case C2_any8: { RegisterCell P1 = rc(1); bool Has1 = false, All0 = true; for (uint16_t i = 0; i < 8/*XXX*/; ++i) { if (!P1[i].is(0)) All0 = false; if (!P1[i].is(1)) continue; Has1 = true; break; } if (!Has1 && !All0) break; RegisterCell RC(W0); RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero)); return rr0(RC, Outputs); } case C2_and: return rr0(eAND(rc(1), rc(2)), Outputs); case C2_andn: return rr0(eAND(rc(1), eNOT(rc(2))), Outputs); case C2_not: return rr0(eNOT(rc(1)), Outputs); case C2_or: return rr0(eORL(rc(1), rc(2)), Outputs); case C2_orn: return rr0(eORL(rc(1), eNOT(rc(2))), Outputs); case C2_xor: return rr0(eXOR(rc(1), rc(2)), Outputs); case C4_and_and: return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs); case C4_and_andn: return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); case C4_and_or: return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs); case C4_and_orn: return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs); case C4_or_and: return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs); case C4_or_andn: return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); case C4_or_or: return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs); case C4_or_orn: return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs); case C2_bitsclr: case C2_bitsclri: case C2_bitsset: case C4_nbitsclr: case C4_nbitsclri: case C4_nbitsset: // TODO break; case S2_tstbit_i: case S4_ntstbit_i: { BT::BitValue V = rc(1)[im(2)]; if (V.is(0) || V.is(1)) { // If instruction is S2_tstbit_i, test for 1, otherwise test for 0. bool TV = (Opc == S2_tstbit_i); BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero; return rr0(RegisterCell(W0).fill(0, W0, F), Outputs); } break; } default: return MachineEvaluator::evaluate(MI, Inputs, Outputs); } #undef im #undef rc #undef op return false; } bool HexagonEvaluator::evaluate(const MachineInstr *BI, const CellMapType &Inputs, BranchTargetList &Targets, bool &FallsThru) const { // We need to evaluate one branch at a time. TII::AnalyzeBranch checks // all the branches in a basic block at once, so we cannot use it. unsigned Opc = BI->getOpcode(); bool SimpleBranch = false; bool Negated = false; switch (Opc) { case Hexagon::J2_jumpf: case Hexagon::J2_jumpfnew: case Hexagon::J2_jumpfnewpt: Negated = true; case Hexagon::J2_jumpt: case Hexagon::J2_jumptnew: case Hexagon::J2_jumptnewpt: // Simple branch: if([!]Pn) jump ... // i.e. Op0 = predicate, Op1 = branch target. SimpleBranch = true; break; case Hexagon::J2_jump: Targets.insert(BI->getOperand(0).getMBB()); FallsThru = false; return true; default: // If the branch is of unknown type, assume that all successors are // executable. return false; } if (!SimpleBranch) return false; // BI is a conditional branch if we got here. RegisterRef PR = BI->getOperand(0); RegisterCell PC = getCell(PR, Inputs); const BT::BitValue &Test = PC[0]; // If the condition is neither true nor false, then it's unknown. if (!Test.is(0) && !Test.is(1)) return false; // "Test.is(!Negated)" means "branch condition is true". if (!Test.is(!Negated)) { // Condition known to be false. FallsThru = true; return true; } Targets.insert(BI->getOperand(1).getMBB()); FallsThru = false; return true; } bool HexagonEvaluator::evaluateLoad(const MachineInstr *MI, const CellMapType &Inputs, CellMapType &Outputs) const { if (TII.isPredicated(MI)) return false; assert(MI->mayLoad() && "A load that mayn't?"); unsigned Opc = MI->getOpcode(); uint16_t BitNum; bool SignEx; using namespace Hexagon; switch (Opc) { default: return false; #if 0 // memb_fifo case L2_loadalignb_pbr: case L2_loadalignb_pcr: case L2_loadalignb_pi: // memh_fifo case L2_loadalignh_pbr: case L2_loadalignh_pcr: case L2_loadalignh_pi: // membh case L2_loadbsw2_pbr: case L2_loadbsw2_pci: case L2_loadbsw2_pcr: case L2_loadbsw2_pi: case L2_loadbsw4_pbr: case L2_loadbsw4_pci: case L2_loadbsw4_pcr: case L2_loadbsw4_pi: // memubh case L2_loadbzw2_pbr: case L2_loadbzw2_pci: case L2_loadbzw2_pcr: case L2_loadbzw2_pi: case L2_loadbzw4_pbr: case L2_loadbzw4_pci: case L2_loadbzw4_pcr: case L2_loadbzw4_pi: #endif case L2_loadrbgp: case L2_loadrb_io: case L2_loadrb_pbr: case L2_loadrb_pci: case L2_loadrb_pcr: case L2_loadrb_pi: case L4_loadrb_abs: case L4_loadrb_ap: case L4_loadrb_rr: case L4_loadrb_ur: BitNum = 8; SignEx = true; break; case L2_loadrubgp: case L2_loadrub_io: case L2_loadrub_pbr: case L2_loadrub_pci: case L2_loadrub_pcr: case L2_loadrub_pi: case L4_loadrub_abs: case L4_loadrub_ap: case L4_loadrub_rr: case L4_loadrub_ur: BitNum = 8; SignEx = false; break; case L2_loadrhgp: case L2_loadrh_io: case L2_loadrh_pbr: case L2_loadrh_pci: case L2_loadrh_pcr: case L2_loadrh_pi: case L4_loadrh_abs: case L4_loadrh_ap: case L4_loadrh_rr: case L4_loadrh_ur: BitNum = 16; SignEx = true; break; case L2_loadruhgp: case L2_loadruh_io: case L2_loadruh_pbr: case L2_loadruh_pci: case L2_loadruh_pcr: case L2_loadruh_pi: case L4_loadruh_rr: case L4_loadruh_abs: case L4_loadruh_ap: case L4_loadruh_ur: BitNum = 16; SignEx = false; break; case L2_loadrigp: case L2_loadri_io: case L2_loadri_pbr: case L2_loadri_pci: case L2_loadri_pcr: case L2_loadri_pi: case L2_loadw_locked: case L4_loadri_abs: case L4_loadri_ap: case L4_loadri_rr: case L4_loadri_ur: case LDriw_pred: BitNum = 32; SignEx = true; break; case L2_loadrdgp: case L2_loadrd_io: case L2_loadrd_pbr: case L2_loadrd_pci: case L2_loadrd_pcr: case L2_loadrd_pi: case L4_loadd_locked: case L4_loadrd_abs: case L4_loadrd_ap: case L4_loadrd_rr: case L4_loadrd_ur: BitNum = 64; SignEx = true; break; } const MachineOperand &MD = MI->getOperand(0); assert(MD.isReg() && MD.isDef()); RegisterRef RD = MD; uint16_t W = getRegBitWidth(RD); assert(W >= BitNum && BitNum > 0); RegisterCell Res(W); for (uint16_t i = 0; i < BitNum; ++i) Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i)); if (SignEx) { const BT::BitValue &Sign = Res[BitNum-1]; for (uint16_t i = BitNum; i < W; ++i) Res[i] = BT::BitValue::ref(Sign); } else { for (uint16_t i = BitNum; i < W; ++i) Res[i] = BT::BitValue::Zero; } putCell(RD, Res, Outputs); return true; } bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr *MI, const CellMapType &Inputs, CellMapType &Outputs) const { // If MI defines a formal parameter, but is not a copy (loads are handled // in evaluateLoad), then it's not clear what to do. assert(MI->isCopy()); RegisterRef RD = MI->getOperand(0); RegisterRef RS = MI->getOperand(1); assert(RD.Sub == 0); if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg)) return false; RegExtMap::const_iterator F = VRX.find(RD.Reg); if (F == VRX.end()) return false; uint16_t EW = F->second.Width; // Store RD's cell into the map. This will associate the cell with a virtual // register, and make zero-/sign-extends possible (otherwise we would be ex- // tending "self" bit values, which will have no effect, since "self" values // cannot be references to anything). putCell(RD, getCell(RS, Inputs), Outputs); RegisterCell Res; // Read RD's cell from the outputs instead of RS's cell from the inputs: if (F->second.Type == ExtType::SExt) Res = eSXT(getCell(RD, Outputs), EW); else if (F->second.Type == ExtType::ZExt) Res = eZXT(getCell(RD, Outputs), EW); putCell(RD, Res, Outputs); return true; } unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const { using namespace Hexagon; bool Is64 = DoubleRegsRegClass.contains(PReg); assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg)); static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 }; static const unsigned Phys64[] = { D0, D1, D2 }; const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned); const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned); // Return the first parameter register of the required width. if (PReg == 0) return (Width <= 32) ? Phys32[0] : Phys64[0]; // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the // next register. unsigned Idx32 = 0, Idx64 = 0; if (!Is64) { while (Idx32 < Num32) { if (Phys32[Idx32] == PReg) break; Idx32++; } Idx64 = Idx32/2; } else { while (Idx64 < Num64) { if (Phys64[Idx64] == PReg) break; Idx64++; } Idx32 = Idx64*2+1; } if (Width <= 32) return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0; return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0; } unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const { typedef MachineRegisterInfo::livein_iterator iterator; for (iterator I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) { if (I->first == PReg) return I->second; } return 0; }