//===--- HexagonExpandCondsets.cpp ----------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Replace mux instructions with the corresponding legal instructions. // It is meant to work post-SSA, but still on virtual registers. It was // originally placed between register coalescing and machine instruction // scheduler. // In this place in the optimization sequence, live interval analysis had // been performed, and the live intervals should be preserved. A large part // of the code deals with preserving the liveness information. // // Liveness tracking aside, the main functionality of this pass is divided // into two steps. The first step is to replace an instruction // vreg0 = C2_mux vreg0, vreg1, vreg2 // with a pair of conditional transfers // vreg0 = A2_tfrt vreg0, vreg1 // vreg0 = A2_tfrf vreg0, vreg2 // It is the intention that the execution of this pass could be terminated // after this step, and the code generated would be functionally correct. // // If the uses of the source values vreg1 and vreg2 are kills, and their // definitions are predicable, then in the second step, the conditional // transfers will then be rewritten as predicated instructions. E.g. // vreg0 = A2_or vreg1, vreg2 // vreg3 = A2_tfrt vreg99, vreg0 // will be rewritten as // vreg3 = A2_port vreg99, vreg1, vreg2 // // This replacement has two variants: "up" and "down". Consider this case: // vreg0 = A2_or vreg1, vreg2 // ... [intervening instructions] ... // vreg3 = A2_tfrt vreg99, vreg0 // variant "up": // vreg3 = A2_port vreg99, vreg1, vreg2 // ... [intervening instructions, vreg0->vreg3] ... // [deleted] // variant "down": // [deleted] // ... [intervening instructions] ... // vreg3 = A2_port vreg99, vreg1, vreg2 // // Both, one or none of these variants may be valid, and checks are made // to rule out inapplicable variants. // // As an additional optimization, before either of the two steps above is // executed, the pass attempts to coalesce the target register with one of // the source registers, e.g. given an instruction // vreg3 = C2_mux vreg0, vreg1, vreg2 // vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds, // the instruction would then be (for example) // vreg3 = C2_mux vreg0, vreg3, vreg2 // and, under certain circumstances, this could result in only one predicated // instruction: // vreg3 = A2_tfrf vreg0, vreg2 // #define DEBUG_TYPE "expand-condsets" #include "HexagonTargetMachine.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; static cl::opt OptTfrLimit("expand-condsets-tfr-limit", cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions")); static cl::opt OptCoaLimit("expand-condsets-coa-limit", cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings")); namespace llvm { void initializeHexagonExpandCondsetsPass(PassRegistry&); FunctionPass *createHexagonExpandCondsets(); } namespace { class HexagonExpandCondsets : public MachineFunctionPass { public: static char ID; HexagonExpandCondsets() : MachineFunctionPass(ID), HII(0), TRI(0), MRI(0), LIS(0), CoaLimitActive(false), TfrLimitActive(false), CoaCounter(0), TfrCounter(0) { if (OptCoaLimit.getPosition()) CoaLimitActive = true, CoaLimit = OptCoaLimit; if (OptTfrLimit.getPosition()) TfrLimitActive = true, TfrLimit = OptTfrLimit; initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry()); } virtual const char *getPassName() const { return "Hexagon Expand Condsets"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreserved(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } virtual bool runOnMachineFunction(MachineFunction &MF); private: const HexagonInstrInfo *HII; const TargetRegisterInfo *TRI; MachineRegisterInfo *MRI; LiveIntervals *LIS; bool CoaLimitActive, TfrLimitActive; unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter; struct RegisterRef { RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()), Sub(Op.getSubReg()) {} RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {} bool operator== (RegisterRef RR) const { return Reg == RR.Reg && Sub == RR.Sub; } bool operator!= (RegisterRef RR) const { return !operator==(RR); } unsigned Reg, Sub; }; typedef DenseMap ReferenceMap; enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) }; enum { Exec_Then = 0x10, Exec_Else = 0x20 }; unsigned getMaskForSub(unsigned Sub); bool isCondset(const MachineInstr *MI); void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec); bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec); LiveInterval::iterator nextSegment(LiveInterval &LI, SlotIndex S); LiveInterval::iterator prevSegment(LiveInterval &LI, SlotIndex S); void makeDefined(unsigned Reg, SlotIndex S, bool SetDef); void makeUndead(unsigned Reg, SlotIndex S); void shrinkToUses(unsigned Reg, LiveInterval &LI); void updateKillFlags(unsigned Reg, LiveInterval &LI); void terminateSegment(LiveInterval::iterator LT, SlotIndex S, LiveInterval &LI); void addInstrToLiveness(MachineInstr *MI); void removeInstrFromLiveness(MachineInstr *MI); unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond); MachineInstr *genTfrFor(MachineOperand &SrcOp, unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, bool Cond); bool split(MachineInstr *MI); bool splitInBlock(MachineBasicBlock &B); bool isPredicable(MachineInstr *MI); MachineInstr *getReachingDefForPred(RegisterRef RD, MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond); bool canMoveOver(MachineInstr *MI, ReferenceMap &Defs, ReferenceMap &Uses); bool canMoveMemTo(MachineInstr *MI, MachineInstr *ToI, bool IsDown); void predicateAt(RegisterRef RD, MachineInstr *MI, MachineBasicBlock::iterator Where, unsigned PredR, bool Cond); void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR, bool Cond, MachineBasicBlock::iterator First, MachineBasicBlock::iterator Last); bool predicate(MachineInstr *TfrI, bool Cond); bool predicateInBlock(MachineBasicBlock &B); void postprocessUndefImplicitUses(MachineBasicBlock &B); void removeImplicitUses(MachineInstr *MI); void removeImplicitUses(MachineBasicBlock &B); bool isIntReg(RegisterRef RR, unsigned &BW); bool isIntraBlocks(LiveInterval &LI); bool coalesceRegisters(RegisterRef R1, RegisterRef R2); bool coalesceSegments(MachineFunction &MF); }; } char HexagonExpandCondsets::ID = 0; unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) { switch (Sub) { case Hexagon::subreg_loreg: return Sub_Low; case Hexagon::subreg_hireg: return Sub_High; case Hexagon::NoSubRegister: return Sub_None; } llvm_unreachable("Invalid subregister"); } bool HexagonExpandCondsets::isCondset(const MachineInstr *MI) { unsigned Opc = MI->getOpcode(); switch (Opc) { case Hexagon::C2_mux: case Hexagon::C2_muxii: case Hexagon::C2_muxir: case Hexagon::C2_muxri: case Hexagon::MUX64_rr: return true; break; } return false; } void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec) { unsigned Mask = getMaskForSub(RR.Sub) | Exec; ReferenceMap::iterator F = Map.find(RR.Reg); if (F == Map.end()) Map.insert(std::make_pair(RR.Reg, Mask)); else F->second |= Mask; } bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec) { ReferenceMap::iterator F = Map.find(RR.Reg); if (F == Map.end()) return false; unsigned Mask = getMaskForSub(RR.Sub) | Exec; if (Mask & F->second) return true; return false; } LiveInterval::iterator HexagonExpandCondsets::nextSegment(LiveInterval &LI, SlotIndex S) { for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { if (I->start >= S) return I; } return LI.end(); } LiveInterval::iterator HexagonExpandCondsets::prevSegment(LiveInterval &LI, SlotIndex S) { LiveInterval::iterator P = LI.end(); for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { if (I->end > S) return P; P = I; } return P; } /// Find the implicit use of register Reg in slot index S, and make sure /// that the "defined" flag is set to SetDef. While the mux expansion is /// going on, predicated instructions will have implicit uses of the /// registers that are being defined. This is to keep any preceding /// definitions live. If there is no preceding definition, the implicit /// use will be marked as "undef", otherwise it will be "defined". This /// function is used to update the flag. void HexagonExpandCondsets::makeDefined(unsigned Reg, SlotIndex S, bool SetDef) { if (!S.isRegister()) return; MachineInstr *MI = LIS->getInstructionFromIndex(S); assert(MI && "Expecting instruction"); for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg) continue; bool IsDef = !Op.isUndef(); if (Op.isImplicit() && IsDef != SetDef) Op.setIsUndef(!SetDef); } } void HexagonExpandCondsets::makeUndead(unsigned Reg, SlotIndex S) { // If S is a block boundary, then there can still be a dead def reaching // this point. Instead of traversing the CFG, queue start points of all // live segments that begin with a register, and end at a block boundary. // This may "resurrect" some truly dead definitions, but doing so is // harmless. SmallVector Defs; if (S.isBlock()) { LiveInterval &LI = LIS->getInterval(Reg); for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { if (!I->start.isRegister() || !I->end.isBlock()) continue; MachineInstr *MI = LIS->getInstructionFromIndex(I->start); Defs.push_back(MI); } } else if (S.isRegister()) { MachineInstr *MI = LIS->getInstructionFromIndex(S); Defs.push_back(MI); } for (unsigned i = 0, n = Defs.size(); i < n; ++i) { MachineInstr *MI = Defs[i]; for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) continue; Op.setIsDead(false); } } } /// Shrink the segments in the live interval for a given register to the last /// use before each subsequent def. Unlike LiveIntervals::shrinkToUses, this /// function will not mark any definitions of Reg as dead. The reason for this /// is that this function is used while a MUX instruction is being expanded, /// or while a conditional copy is undergoing predication. During these /// processes, there may be defs present in the instruction sequence that have /// not yet been removed, or there may be missing uses that have not yet been /// added. We want to utilize LiveIntervals::shrinkToUses as much as possible, /// but since it does not extend any intervals that are too short, we need to /// pre-emptively extend them here in anticipation of further changes. void HexagonExpandCondsets::shrinkToUses(unsigned Reg, LiveInterval &LI) { SmallVector Deads; LIS->shrinkToUses(&LI, &Deads); // Need to undo the deadification made by "shrinkToUses". It's easier to // do it here, since we have a list of all instructions that were just // marked as dead. for (unsigned i = 0, n = Deads.size(); i < n; ++i) { MachineInstr *MI = Deads[i]; // Clear the "dead" flag. for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) continue; Op.setIsDead(false); } // Extend the live segment to the beginning of the next one. LiveInterval::iterator End = LI.end(); SlotIndex S = LIS->getInstructionIndex(MI).getRegSlot(); LiveInterval::iterator T = LI.FindSegmentContaining(S); assert(T != End); LiveInterval::iterator N = std::next(T); if (N != End) T->end = N->start; else T->end = LIS->getMBBEndIdx(MI->getParent()); } updateKillFlags(Reg, LI); } /// Given an updated live interval LI for register Reg, update the kill flags /// in instructions using Reg to reflect the liveness changes. void HexagonExpandCondsets::updateKillFlags(unsigned Reg, LiveInterval &LI) { MRI->clearKillFlags(Reg); for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { SlotIndex EX = I->end; if (!EX.isRegister()) continue; MachineInstr *MI = LIS->getInstructionFromIndex(EX); for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg) continue; // Only set the kill flag on the first encountered use of Reg in this // instruction. Op.setIsKill(true); break; } } } /// When adding a new instruction to liveness, the newly added definition /// will start a new live segment. This may happen at a position that falls /// within an existing live segment. In such case that live segment needs to /// be truncated to make room for the new segment. Ultimately, the truncation /// will occur at the last use, but for now the segment can be terminated /// right at the place where the new segment will start. The segments will be /// shrunk-to-uses later. void HexagonExpandCondsets::terminateSegment(LiveInterval::iterator LT, SlotIndex S, LiveInterval &LI) { // Terminate the live segment pointed to by LT within a live interval LI. if (LT == LI.end()) return; VNInfo *OldVN = LT->valno; SlotIndex EX = LT->end; LT->end = S; // If LT does not end at a block boundary, the termination is done. if (!EX.isBlock()) return; // If LT ended at a block boundary, it's possible that its value number // is picked up at the beginning other blocks. Create a new value number // and change such blocks to use it instead. VNInfo *NewVN = 0; for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { if (!I->start.isBlock() || I->valno != OldVN) continue; // Generate on-demand a new value number that is defined by the // block beginning (i.e. -phi). if (!NewVN) NewVN = LI.getNextValue(I->start, LIS->getVNInfoAllocator()); I->valno = NewVN; } } /// Add the specified instruction to live intervals. This function is used /// to update the live intervals while the program code is being changed. /// Neither the expansion of a MUX, nor the predication are atomic, and this /// function is used to update the live intervals while these transformations /// are being done. void HexagonExpandCondsets::addInstrToLiveness(MachineInstr *MI) { SlotIndex MX = LIS->isNotInMIMap(MI) ? LIS->InsertMachineInstrInMaps(MI) : LIS->getInstructionIndex(MI); DEBUG(dbgs() << "adding liveness info for instr\n " << MX << " " << *MI); MX = MX.getRegSlot(); bool Predicated = HII->isPredicated(MI); MachineBasicBlock *MB = MI->getParent(); // Strip all implicit uses from predicated instructions. They will be // added again, according to the updated information. if (Predicated) removeImplicitUses(MI); // For each def in MI we need to insert a new live segment starting at MX // into the interval. If there already exists a live segment in the interval // that contains MX, we need to terminate it at MX. SmallVector Defs; for (auto &Op : MI->operands()) if (Op.isReg() && Op.isDef()) Defs.push_back(RegisterRef(Op)); for (unsigned i = 0, n = Defs.size(); i < n; ++i) { unsigned DefR = Defs[i].Reg; LiveInterval &LID = LIS->getInterval(DefR); DEBUG(dbgs() << "adding def " << PrintReg(DefR, TRI) << " with interval\n " << LID << "\n"); // If MX falls inside of an existing live segment, terminate it. LiveInterval::iterator LT = LID.FindSegmentContaining(MX); if (LT != LID.end()) terminateSegment(LT, MX, LID); DEBUG(dbgs() << "after terminating segment\n " << LID << "\n"); // Create a new segment starting from MX. LiveInterval::iterator P = prevSegment(LID, MX), N = nextSegment(LID, MX); SlotIndex EX; VNInfo *VN = LID.getNextValue(MX, LIS->getVNInfoAllocator()); if (N == LID.end()) { // There is no live segment after MX. End this segment at the end of // the block. EX = LIS->getMBBEndIdx(MB); } else { // If the next segment starts at the block boundary, end the new segment // at the boundary of the preceding block (i.e. the previous index). // Otherwise, end the segment at the beginning of the next segment. In // either case it will be "shrunk-to-uses" later. EX = N->start.isBlock() ? N->start.getPrevIndex() : N->start; } if (Predicated) { // Predicated instruction will have an implicit use of the defined // register. This is necessary so that this definition will not make // any previous definitions dead. If there are no previous live // segments, still add the implicit use, but make it "undef". // Because of the implicit use, the preceding definition is not // dead. Mark is as such (if necessary). MachineOperand ImpUse = MachineOperand::CreateReg(DefR, false, true); ImpUse.setSubReg(Defs[i].Sub); bool Undef = false; if (P == LID.end()) Undef = true; else { // If the previous segment extends to the end of the previous block, // the end index may actually be the beginning of this block. If // the previous segment ends at a block boundary, move it back by one, // to get the proper block for it. SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end; MachineBasicBlock *PB = LIS->getMBBFromIndex(PE); if (PB != MB && !LIS->isLiveInToMBB(LID, MB)) Undef = true; } if (!Undef) { makeUndead(DefR, P->valno->def); // We are adding a live use, so extend the previous segment to // include it. P->end = MX; } else { ImpUse.setIsUndef(true); } if (!MI->readsRegister(DefR)) MI->addOperand(ImpUse); if (N != LID.end()) makeDefined(DefR, N->start, true); } LiveRange::Segment NR = LiveRange::Segment(MX, EX, VN); LID.addSegment(NR); DEBUG(dbgs() << "added a new segment " << NR << "\n " << LID << "\n"); shrinkToUses(DefR, LID); DEBUG(dbgs() << "updated imp-uses: " << *MI); LID.verify(); } // For each use in MI: // - If there is no live segment that contains MX for the used register, // extend the previous one. Ignore implicit uses. for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isUse() || Op.isImplicit() || Op.isUndef()) continue; unsigned UseR = Op.getReg(); LiveInterval &LIU = LIS->getInterval(UseR); // Find the last segment P that starts before MX. LiveInterval::iterator P = LIU.FindSegmentContaining(MX); if (P == LIU.end()) P = prevSegment(LIU, MX); assert(P != LIU.end() && "MI uses undefined register?"); SlotIndex EX = P->end; // If P contains MX, there is not much to do. if (EX > MX) { Op.setIsKill(false); continue; } // Otherwise, extend P to "next(MX)". P->end = MX.getNextIndex(); Op.setIsKill(true); // Get the old "kill" instruction, and remove the kill flag. if (MachineInstr *KI = LIS->getInstructionFromIndex(MX)) KI->clearRegisterKills(UseR, nullptr); shrinkToUses(UseR, LIU); LIU.verify(); } } /// Update the live interval information to reflect the removal of the given /// instruction from the program. As with "addInstrToLiveness", this function /// is called while the program code is being changed. void HexagonExpandCondsets::removeInstrFromLiveness(MachineInstr *MI) { SlotIndex MX = LIS->getInstructionIndex(MI).getRegSlot(); DEBUG(dbgs() << "removing instr\n " << MX << " " << *MI); // For each def in MI: // If MI starts a live segment, merge this segment with the previous segment. // for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isDef()) continue; unsigned DefR = Op.getReg(); LiveInterval &LID = LIS->getInterval(DefR); LiveInterval::iterator LT = LID.FindSegmentContaining(MX); assert(LT != LID.end() && "Expecting live segments"); DEBUG(dbgs() << "removing def at " << MX << " of " << PrintReg(DefR, TRI) << " with interval\n " << LID << "\n"); if (LT->start != MX) continue; VNInfo *MVN = LT->valno; if (LT != LID.begin()) { // If the current live segment is not the first, the task is easy. If // the previous segment continues into the current block, extend it to // the end of the current one, and merge the value numbers. // Otherwise, remove the current segment, and make the end of it "undef". LiveInterval::iterator P = std::prev(LT); SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end; MachineBasicBlock *MB = MI->getParent(); MachineBasicBlock *PB = LIS->getMBBFromIndex(PE); if (PB != MB && !LIS->isLiveInToMBB(LID, MB)) { makeDefined(DefR, LT->end, false); LID.removeSegment(*LT); } else { // Make the segments adjacent, so that merge-vn can also merge the // segments. P->end = LT->start; makeUndead(DefR, P->valno->def); LID.MergeValueNumberInto(MVN, P->valno); } } else { LiveInterval::iterator N = std::next(LT); LiveInterval::iterator RmB = LT, RmE = N; while (N != LID.end()) { // Iterate until the first register-based definition is found // (i.e. skip all block-boundary entries). LiveInterval::iterator Next = std::next(N); if (N->start.isRegister()) { makeDefined(DefR, N->start, false); break; } if (N->end.isRegister()) { makeDefined(DefR, N->end, false); RmE = Next; break; } RmE = Next; N = Next; } // Erase the segments in one shot to avoid invalidating iterators. LID.segments.erase(RmB, RmE); } bool VNUsed = false; for (LiveInterval::iterator I = LID.begin(), E = LID.end(); I != E; ++I) { if (I->valno != MVN) continue; VNUsed = true; break; } if (!VNUsed) MVN->markUnused(); DEBUG(dbgs() << "new interval: "); if (!LID.empty()) { DEBUG(dbgs() << LID << "\n"); LID.verify(); } else { DEBUG(dbgs() << "\n"); LIS->removeInterval(DefR); } } // For uses there is nothing to do. The intervals will be updated via // shrinkToUses. SmallVector Uses; for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isUse()) continue; unsigned R = Op.getReg(); if (!TargetRegisterInfo::isVirtualRegister(R)) continue; Uses.push_back(R); } LIS->RemoveMachineInstrFromMaps(MI); MI->eraseFromParent(); for (unsigned i = 0, n = Uses.size(); i < n; ++i) { LiveInterval &LI = LIS->getInterval(Uses[i]); shrinkToUses(Uses[i], LI); } } /// Get the opcode for a conditional transfer of the value in SO (source /// operand). The condition (true/false) is given in Cond. unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO, bool Cond) { using namespace Hexagon; if (SO.isReg()) { unsigned PhysR; RegisterRef RS = SO; if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) { const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg); assert(VC->begin() != VC->end() && "Empty register class"); PhysR = *VC->begin(); } else { assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg)); PhysR = RS.Reg; } unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub); const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS); switch (RC->getSize()) { case 4: return Cond ? A2_tfrt : A2_tfrf; case 8: return Cond ? A2_tfrpt : A2_tfrpf; } llvm_unreachable("Invalid register operand"); } if (SO.isImm() || SO.isFPImm()) return Cond ? C2_cmoveit : C2_cmoveif; llvm_unreachable("Unexpected source operand"); } /// Generate a conditional transfer, copying the value SrcOp to the /// destination register DstR:DstSR, and using the predicate register from /// PredOp. The Cond argument specifies whether the predicate is to be /// if(PredOp), or if(!PredOp). MachineInstr *HexagonExpandCondsets::genTfrFor(MachineOperand &SrcOp, unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, bool Cond) { MachineInstr *MI = SrcOp.getParent(); MachineBasicBlock &B = *MI->getParent(); MachineBasicBlock::iterator At = MI; DebugLoc DL = MI->getDebugLoc(); // Don't avoid identity copies here (i.e. if the source and the destination // are the same registers). It is actually better to generate them here, // since this would cause the copy to potentially be predicated in the next // step. The predication will remove such a copy if it is unable to /// predicate. unsigned Opc = getCondTfrOpcode(SrcOp, Cond); MachineInstr *TfrI = BuildMI(B, At, DL, HII->get(Opc)) .addReg(DstR, RegState::Define, DstSR) .addOperand(PredOp) .addOperand(SrcOp); // We don't want any kills yet. TfrI->clearKillInfo(); DEBUG(dbgs() << "created an initial copy: " << *TfrI); return TfrI; } /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function /// performs all necessary changes to complete the replacement. bool HexagonExpandCondsets::split(MachineInstr *MI) { if (TfrLimitActive) { if (TfrCounter >= TfrLimit) return false; TfrCounter++; } DEBUG(dbgs() << "\nsplitting BB#" << MI->getParent()->getNumber() << ": " << *MI); MachineOperand &MD = MI->getOperand(0); // Definition MachineOperand &MP = MI->getOperand(1); // Predicate register assert(MD.isDef()); unsigned DR = MD.getReg(), DSR = MD.getSubReg(); // First, create the two invididual conditional transfers, and add each // of them to the live intervals information. Do that first and then remove // the old instruction from live intervals. if (MachineInstr *TfrT = genTfrFor(MI->getOperand(2), DR, DSR, MP, true)) addInstrToLiveness(TfrT); if (MachineInstr *TfrF = genTfrFor(MI->getOperand(3), DR, DSR, MP, false)) addInstrToLiveness(TfrF); removeInstrFromLiveness(MI); return true; } /// Split all MUX instructions in the given block into pairs of contitional /// transfers. bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B) { bool Changed = false; MachineBasicBlock::iterator I, E, NextI; for (I = B.begin(), E = B.end(); I != E; I = NextI) { NextI = std::next(I); if (isCondset(I)) Changed |= split(I); } return Changed; } bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) { if (HII->isPredicated(MI) || !HII->isPredicable(MI)) return false; if (MI->hasUnmodeledSideEffects() || MI->mayStore()) return false; // Reject instructions with multiple defs (e.g. post-increment loads). bool HasDef = false; for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isDef()) continue; if (HasDef) return false; HasDef = true; } for (auto &Mo : MI->memoperands()) if (Mo->isVolatile()) return false; return true; } /// Find the reaching definition for a predicated use of RD. The RD is used /// under the conditions given by PredR and Cond, and this function will ignore /// definitions that set RD under the opposite conditions. MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD, MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) { MachineBasicBlock &B = *UseIt->getParent(); MachineBasicBlock::iterator I = UseIt, S = B.begin(); if (I == S) return 0; bool PredValid = true; do { --I; MachineInstr *MI = &*I; // Check if this instruction can be ignored, i.e. if it is predicated // on the complementary condition. if (PredValid && HII->isPredicated(MI)) { if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(MI))) continue; } // Check the defs. If the PredR is defined, invalidate it. If RD is // defined, return the instruction or 0, depending on the circumstances. for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isDef()) continue; RegisterRef RR = Op; if (RR.Reg == PredR) { PredValid = false; continue; } if (RR.Reg != RD.Reg) continue; // If the "Reg" part agrees, there is still the subregister to check. // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but // not vreg1 (w/o subregisters). if (RR.Sub == RD.Sub) return MI; if (RR.Sub == 0 || RD.Sub == 0) return 0; // We have different subregisters, so we can continue looking. } } while (I != S); return 0; } /// Check if the instruction MI can be safely moved over a set of instructions /// whose side-effects (in terms of register defs and uses) are expressed in /// the maps Defs and Uses. These maps reflect the conditional defs and uses /// that depend on the same predicate register to allow moving instructions /// over instructions predicated on the opposite condition. bool HexagonExpandCondsets::canMoveOver(MachineInstr *MI, ReferenceMap &Defs, ReferenceMap &Uses) { // In order to be able to safely move MI over instructions that define // "Defs" and use "Uses", no def operand from MI can be defined or used // and no use operand can be defined. for (auto &Op : MI->operands()) { if (!Op.isReg()) continue; RegisterRef RR = Op; // For physical register we would need to check register aliases, etc. // and we don't want to bother with that. It would be of little value // before the actual register rewriting (from virtual to physical). if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) return false; // No redefs for any operand. if (isRefInMap(RR, Defs, Exec_Then)) return false; // For defs, there cannot be uses. if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then)) return false; } return true; } /// Check if the instruction accessing memory (TheI) can be moved to the /// location ToI. bool HexagonExpandCondsets::canMoveMemTo(MachineInstr *TheI, MachineInstr *ToI, bool IsDown) { bool IsLoad = TheI->mayLoad(), IsStore = TheI->mayStore(); if (!IsLoad && !IsStore) return true; if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI)) return true; if (TheI->hasUnmodeledSideEffects()) return false; MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI; MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI; bool Ordered = TheI->hasOrderedMemoryRef(); // Search for aliased memory reference in (StartI, EndI). for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) { MachineInstr *MI = &*I; if (MI->hasUnmodeledSideEffects()) return false; bool L = MI->mayLoad(), S = MI->mayStore(); if (!L && !S) continue; if (Ordered && MI->hasOrderedMemoryRef()) return false; bool Conflict = (L && IsStore) || S; if (Conflict) return false; } return true; } /// Generate a predicated version of MI (where the condition is given via /// PredR and Cond) at the point indicated by Where. void HexagonExpandCondsets::predicateAt(RegisterRef RD, MachineInstr *MI, MachineBasicBlock::iterator Where, unsigned PredR, bool Cond) { // The problem with updating live intervals is that we can move one def // past another def. In particular, this can happen when moving an A2_tfrt // over an A2_tfrf defining the same register. From the point of view of // live intervals, these two instructions are two separate definitions, // and each one starts another live segment. LiveIntervals's "handleMove" // does not allow such moves, so we need to handle it ourselves. To avoid // invalidating liveness data while we are using it, the move will be // implemented in 4 steps: (1) add a clone of the instruction MI at the // target location, (2) update liveness, (3) delete the old instruction, // and (4) update liveness again. MachineBasicBlock &B = *MI->getParent(); DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction. unsigned Opc = MI->getOpcode(); unsigned PredOpc = HII->getCondOpcode(Opc, !Cond); MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc)); unsigned Ox = 0, NP = MI->getNumOperands(); // Skip all defs from MI first. while (Ox < NP) { MachineOperand &MO = MI->getOperand(Ox); if (!MO.isReg() || !MO.isDef()) break; Ox++; } // Add the new def, then the predicate register, then the rest of the // operands. MB.addReg(RD.Reg, RegState::Define, RD.Sub); MB.addReg(PredR); while (Ox < NP) { MachineOperand &MO = MI->getOperand(Ox); if (!MO.isReg() || !MO.isImplicit()) MB.addOperand(MO); Ox++; } MachineFunction &MF = *B.getParent(); MachineInstr::mmo_iterator I = MI->memoperands_begin(); unsigned NR = std::distance(I, MI->memoperands_end()); MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR); for (unsigned i = 0; i < NR; ++i) MemRefs[i] = *I++; MB.setMemRefs(MemRefs, MemRefs+NR); MachineInstr *NewI = MB; NewI->clearKillInfo(); addInstrToLiveness(NewI); } /// In the range [First, Last], rename all references to the "old" register RO /// to the "new" register RN, but only in instructions predicated on the given /// condition. void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR, bool Cond, MachineBasicBlock::iterator First, MachineBasicBlock::iterator Last) { MachineBasicBlock::iterator End = std::next(Last); for (MachineBasicBlock::iterator I = First; I != End; ++I) { MachineInstr *MI = &*I; // Do not touch instructions that are not predicated, or are predicated // on the opposite condition. if (!HII->isPredicated(MI)) continue; if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(MI))) continue; for (auto &Op : MI->operands()) { if (!Op.isReg() || RO != RegisterRef(Op)) continue; Op.setReg(RN.Reg); Op.setSubReg(RN.Sub); // In practice, this isn't supposed to see any defs. assert(!Op.isDef() && "Not expecting a def"); } } } /// For a given conditional copy, predicate the definition of the source of /// the copy under the given condition (using the same predicate register as /// the copy). bool HexagonExpandCondsets::predicate(MachineInstr *TfrI, bool Cond) { // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi). unsigned Opc = TfrI->getOpcode(); (void)Opc; assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf); DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false") << ": " << *TfrI); MachineOperand &MD = TfrI->getOperand(0); MachineOperand &MP = TfrI->getOperand(1); MachineOperand &MS = TfrI->getOperand(2); // The source operand should be a . This is not strictly necessary, // but it makes things a lot simpler. Otherwise, we would need to rename // some registers, which would complicate the transformation considerably. if (!MS.isKill()) return false; RegisterRef RT(MS); unsigned PredR = MP.getReg(); MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond); if (!DefI || !isPredicable(DefI)) return false; DEBUG(dbgs() << "Source def: " << *DefI); // Collect the information about registers defined and used between the // DefI and the TfrI. // Map: reg -> bitmask of subregs ReferenceMap Uses, Defs; MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI; // Check if the predicate register is valid between DefI and TfrI. // If it is, we can then ignore instructions predicated on the negated // conditions when collecting def and use information. bool PredValid = true; for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) { if (!I->modifiesRegister(PredR, 0)) continue; PredValid = false; break; } for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) { MachineInstr *MI = &*I; // If this instruction is predicated on the same register, it could // potentially be ignored. // By default assume that the instruction executes on the same condition // as TfrI (Exec_Then), and also on the opposite one (Exec_Else). unsigned Exec = Exec_Then | Exec_Else; if (PredValid && HII->isPredicated(MI) && MI->readsRegister(PredR)) Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else; for (auto &Op : MI->operands()) { if (!Op.isReg()) continue; // We don't want to deal with physical registers. The reason is that // they can be aliased with other physical registers. Aliased virtual // registers must share the same register number, and can only differ // in the subregisters, which we are keeping track of. Physical // registers ters no longer have subregisters---their super- and // subregisters are other physical registers, and we are not checking // that. RegisterRef RR = Op; if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) return false; ReferenceMap &Map = Op.isDef() ? Defs : Uses; addRefToMap(RR, Map, Exec); } } // The situation: // RT = DefI // ... // RD = TfrI ..., RT // If the register-in-the-middle (RT) is used or redefined between // DefI and TfrI, we may not be able proceed with this transformation. // We can ignore a def that will not execute together with TfrI, and a // use that will. If there is such a use (that does execute together with // TfrI), we will not be able to move DefI down. If there is a use that // executed if TfrI's condition is false, then RT must be available // unconditionally (cannot be predicated). // Essentially, we need to be able to rename RT to RD in this segment. if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else)) return false; RegisterRef RD = MD; // If the predicate register is defined between DefI and TfrI, the only // potential thing to do would be to move the DefI down to TfrI, and then // predicate. The reaching def (DefI) must be movable down to the location // of the TfrI. // If the target register of the TfrI (RD) is not used or defined between // DefI and TfrI, consider moving TfrI up to DefI. bool CanUp = canMoveOver(TfrI, Defs, Uses); bool CanDown = canMoveOver(DefI, Defs, Uses); // The TfrI does not access memory, but DefI could. Check if it's safe // to move DefI down to TfrI. if (DefI->mayLoad() || DefI->mayStore()) if (!canMoveMemTo(DefI, TfrI, true)) CanDown = false; DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no") << ", can move down: " << (CanDown ? "yes\n" : "no\n")); MachineBasicBlock::iterator PastDefIt = std::next(DefIt); if (CanUp) predicateAt(RD, DefI, PastDefIt, PredR, Cond); else if (CanDown) predicateAt(RD, DefI, TfrIt, PredR, Cond); else return false; if (RT != RD) renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt); // Delete the user of RT first (it should work either way, but this order // of deleting is more natural). removeInstrFromLiveness(TfrI); removeInstrFromLiveness(DefI); return true; } /// Predicate all cases of conditional copies in the specified block. bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B) { bool Changed = false; MachineBasicBlock::iterator I, E, NextI; for (I = B.begin(), E = B.end(); I != E; I = NextI) { NextI = std::next(I); unsigned Opc = I->getOpcode(); if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) { bool Done = predicate(I, (Opc == Hexagon::A2_tfrt)); if (!Done) { // If we didn't predicate I, we may need to remove it in case it is // an "identity" copy, e.g. vreg1 = A2_tfrt vreg2, vreg1. if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) removeInstrFromLiveness(I); } Changed |= Done; } } return Changed; } void HexagonExpandCondsets::removeImplicitUses(MachineInstr *MI) { for (unsigned i = MI->getNumOperands(); i > 0; --i) { MachineOperand &MO = MI->getOperand(i-1); if (MO.isReg() && MO.isUse() && MO.isImplicit()) MI->RemoveOperand(i-1); } } void HexagonExpandCondsets::removeImplicitUses(MachineBasicBlock &B) { for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) { MachineInstr *MI = &*I; if (HII->isPredicated(MI)) removeImplicitUses(MI); } } void HexagonExpandCondsets::postprocessUndefImplicitUses(MachineBasicBlock &B) { // Implicit uses that are "undef" are only meaningful (outside of the // internals of this pass) when the instruction defines a subregister, // and the implicit-undef use applies to the defined register. In such // cases, the proper way to record the information in the IR is to mark // the definition as "undef", which will be interpreted as "read-undef". typedef SmallSet RegisterSet; for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) { MachineInstr *MI = &*I; RegisterSet Undefs; for (unsigned i = MI->getNumOperands(); i > 0; --i) { MachineOperand &MO = MI->getOperand(i-1); if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.isUndef()) { MI->RemoveOperand(i-1); Undefs.insert(MO.getReg()); } } for (auto &Op : MI->operands()) { if (!Op.isReg() || !Op.isDef() || !Op.getSubReg()) continue; if (Undefs.count(Op.getReg())) Op.setIsUndef(true); } } } bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) { if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) return false; const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg); if (RC == &Hexagon::IntRegsRegClass) { BW = 32; return true; } if (RC == &Hexagon::DoubleRegsRegClass) { BW = (RR.Sub != 0) ? 32 : 64; return true; } return false; } bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) { for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { LiveRange::Segment &LR = *I; // Range must start at a register... if (!LR.start.isRegister()) return false; // ...and end in a register or in a dead slot. if (!LR.end.isRegister() && !LR.end.isDead()) return false; } return true; } bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) { if (CoaLimitActive) { if (CoaCounter >= CoaLimit) return false; CoaCounter++; } unsigned BW1, BW2; if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2) return false; if (MRI->isLiveIn(R1.Reg)) return false; if (MRI->isLiveIn(R2.Reg)) return false; LiveInterval &L1 = LIS->getInterval(R1.Reg); LiveInterval &L2 = LIS->getInterval(R2.Reg); bool Overlap = L1.overlaps(L2); DEBUG(dbgs() << "compatible registers: (" << (Overlap ? "overlap" : "disjoint") << ")\n " << PrintReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n " << PrintReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n"); if (R1.Sub || R2.Sub) return false; if (Overlap) return false; // Coalescing could have a negative impact on scheduling, so try to limit // to some reasonable extent. Only consider coalescing segments, when one // of them does not cross basic block boundaries. if (!isIntraBlocks(L1) && !isIntraBlocks(L2)) return false; MRI->replaceRegWith(R2.Reg, R1.Reg); // Move all live segments from L2 to L1. typedef DenseMap ValueInfoMap; ValueInfoMap VM; for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) { VNInfo *NewVN, *OldVN = I->valno; ValueInfoMap::iterator F = VM.find(OldVN); if (F == VM.end()) { NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator()); VM.insert(std::make_pair(OldVN, NewVN)); } else { NewVN = F->second; } L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN)); } while (L2.begin() != L2.end()) L2.removeSegment(*L2.begin()); updateKillFlags(R1.Reg, L1); DEBUG(dbgs() << "coalesced: " << L1 << "\n"); L1.verify(); return true; } /// Attempt to coalesce one of the source registers to a MUX intruction with /// the destination register. This could lead to having only one predicated /// instruction in the end instead of two. bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) { SmallVector Condsets; for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { MachineBasicBlock &B = *I; for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) { MachineInstr *MI = &*J; if (!isCondset(MI)) continue; MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3); if (!S1.isReg() && !S2.isReg()) continue; Condsets.push_back(MI); } } bool Changed = false; for (unsigned i = 0, n = Condsets.size(); i < n; ++i) { MachineInstr *CI = Condsets[i]; RegisterRef RD = CI->getOperand(0); RegisterRef RP = CI->getOperand(1); MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3); bool Done = false; // Consider this case: // vreg1 = instr1 ... // vreg2 = instr2 ... // vreg0 = C2_mux ..., vreg1, vreg2 // If vreg0 was coalesced with vreg1, we could end up with the following // code: // vreg0 = instr1 ... // vreg2 = instr2 ... // vreg0 = A2_tfrf ..., vreg2 // which will later become: // vreg0 = instr1 ... // vreg0 = instr2_cNotPt ... // i.e. there will be an unconditional definition (instr1) of vreg0 // followed by a conditional one. The output dependency was there before // and it unavoidable, but if instr1 is predicable, we will no longer be // able to predicate it here. // To avoid this scenario, don't coalesce the destination register with // a source register that is defined by a predicable instruction. if (S1.isReg()) { RegisterRef RS = S1; MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true); if (!RDef || !HII->isPredicable(RDef)) Done = coalesceRegisters(RD, RegisterRef(S1)); } if (!Done && S2.isReg()) { RegisterRef RS = S2; MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false); if (!RDef || !HII->isPredicable(RDef)) Done = coalesceRegisters(RD, RegisterRef(S2)); } Changed |= Done; } return Changed; } bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) { HII = static_cast(MF.getSubtarget().getInstrInfo()); TRI = MF.getSubtarget().getRegisterInfo(); LIS = &getAnalysis(); MRI = &MF.getRegInfo(); bool Changed = false; // Try to coalesce the target of a mux with one of its sources. // This could eliminate a register copy in some circumstances. Changed |= coalesceSegments(MF); for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // First, simply split all muxes into a pair of conditional transfers // and update the live intervals to reflect the new arrangement. // This is done mainly to make the live interval update simpler, than it // would be while trying to predicate instructions at the same time. Changed |= splitInBlock(*I); // Traverse all blocks and collapse predicable instructions feeding // conditional transfers into predicated instructions. // Walk over all the instructions again, so we may catch pre-existing // cases that were not created in the previous step. Changed |= predicateInBlock(*I); } for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) postprocessUndefImplicitUses(*I); return Changed; } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// static void initializePassOnce(PassRegistry &Registry) { const char *Name = "Hexagon Expand Condsets"; PassInfo *PI = new PassInfo(Name, "expand-condsets", &HexagonExpandCondsets::ID, 0, false, false); Registry.registerPass(*PI, true); } void llvm::initializeHexagonExpandCondsetsPass(PassRegistry &Registry) { CALL_ONCE_INITIALIZATION(initializePassOnce) } FunctionPass *llvm::createHexagonExpandCondsets() { return new HexagonExpandCondsets(); }