//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the interfaces that Hexagon uses to lower LLVM code // into a selection DAG. // //===----------------------------------------------------------------------===// #include "Hexagon.h" #include "HexagonISelLowering.h" #include "HexagonMachineFunctionInfo.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "HexagonTargetMachine.h" #include "HexagonTargetObjectFile.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetCallingConv.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "hexagon-lowering" static cl::opt EmitJumpTables("hexagon-emit-jump-tables", cl::init(true), cl::Hidden, cl::desc("Control jump table emission on Hexagon target")); static cl::opt EnableHexSDNodeSched("enable-hexagon-sdnode-sched", cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::desc("Enable Hexagon SDNode scheduling")); static cl::opt EnableFastMath("ffast-math", cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::desc("Enable Fast Math processing")); static cl::opt MinimumJumpTables("minimum-jump-tables", cl::Hidden, cl::ZeroOrMore, cl::init(5), cl::desc("Set minimum jump tables")); static cl::opt MaxStoresPerMemcpyCL("max-store-memcpy", cl::Hidden, cl::ZeroOrMore, cl::init(6), cl::desc("Max #stores to inline memcpy")); static cl::opt MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", cl::Hidden, cl::ZeroOrMore, cl::init(4), cl::desc("Max #stores to inline memcpy")); static cl::opt MaxStoresPerMemmoveCL("max-store-memmove", cl::Hidden, cl::ZeroOrMore, cl::init(6), cl::desc("Max #stores to inline memmove")); static cl::opt MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", cl::Hidden, cl::ZeroOrMore, cl::init(4), cl::desc("Max #stores to inline memmove")); static cl::opt MaxStoresPerMemsetCL("max-store-memset", cl::Hidden, cl::ZeroOrMore, cl::init(8), cl::desc("Max #stores to inline memset")); static cl::opt MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", cl::Hidden, cl::ZeroOrMore, cl::init(4), cl::desc("Max #stores to inline memset")); namespace { class HexagonCCState : public CCState { unsigned NumNamedVarArgParams; public: HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF, SmallVectorImpl &locs, LLVMContext &C, int NumNamedVarArgParams) : CCState(CC, isVarArg, MF, locs, C), NumNamedVarArgParams(NumNamedVarArgParams) {} unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; } }; enum StridedLoadKind { Even = 0, Odd, NoPattern }; } // end anonymous namespace // Implement calling convention for Hexagon. static bool isHvxVectorType(MVT ty); static bool CC_Hexagon(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); static bool CC_Hexagon32(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); static bool CC_Hexagon64(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); static bool CC_HexagonVector(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); static bool RetCC_HexagonVector(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); static bool CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { HexagonCCState &HState = static_cast(State); if (ValNo < HState.getNumNamedVarArgParams()) { // Deal with named arguments. return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); } // Deal with un-named arguments. unsigned Offset; if (ArgFlags.isByVal()) { // If pass-by-value, the size allocated on stack is decided // by ArgFlags.getByValSize(), not by the size of LocVT. Offset = State.AllocateStack(ArgFlags.getByValSize(), ArgFlags.getByValAlign()); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) { LocVT = MVT::i32; ValVT = MVT::i32; if (ArgFlags.isSExt()) LocInfo = CCValAssign::SExt; else if (ArgFlags.isZExt()) LocInfo = CCValAssign::ZExt; else LocInfo = CCValAssign::AExt; } if (LocVT == MVT::i32 || LocVT == MVT::f32) { Offset = State.AllocateStack(4, 4); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } if (LocVT == MVT::i64 || LocVT == MVT::f64) { Offset = State.AllocateStack(8, 8); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } if (LocVT == MVT::v2i64 || LocVT == MVT::v4i32 || LocVT == MVT::v8i16 || LocVT == MVT::v16i8) { Offset = State.AllocateStack(16, 16); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } if (LocVT == MVT::v4i64 || LocVT == MVT::v8i32 || LocVT == MVT::v16i16 || LocVT == MVT::v32i8) { Offset = State.AllocateStack(32, 32); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } if (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 || LocVT == MVT::v64i8 || LocVT == MVT::v512i1) { Offset = State.AllocateStack(64, 64); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } if (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 || LocVT == MVT::v128i8 || LocVT == MVT::v1024i1) { Offset = State.AllocateStack(128, 128); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } if (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 || LocVT == MVT::v256i8) { Offset = State.AllocateStack(256, 256); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } llvm_unreachable(nullptr); } static bool CC_Hexagon (unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { if (ArgFlags.isByVal()) { // Passed on stack. unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), ArgFlags.getByValAlign()); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } if (LocVT == MVT::i1) { LocVT = MVT::i32; } else if (LocVT == MVT::i8 || LocVT == MVT::i16) { LocVT = MVT::i32; ValVT = MVT::i32; if (ArgFlags.isSExt()) LocInfo = CCValAssign::SExt; else if (ArgFlags.isZExt()) LocInfo = CCValAssign::ZExt; else LocInfo = CCValAssign::AExt; } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) { LocVT = MVT::i32; LocInfo = CCValAssign::BCvt; } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) { LocVT = MVT::i64; LocInfo = CCValAssign::BCvt; } if (LocVT == MVT::i32 || LocVT == MVT::f32) { if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) return false; } if (LocVT == MVT::i64 || LocVT == MVT::f64) { if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) return false; } if (LocVT == MVT::v8i32 || LocVT == MVT::v16i16 || LocVT == MVT::v32i8) { unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 32); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } if (isHvxVectorType(LocVT)) { if (!CC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) return false; } return true; // CC didn't match. } static bool CC_Hexagon32(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { static const MCPhysReg RegList[] = { Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4, Hexagon::R5 }; if (unsigned Reg = State.AllocateReg(RegList)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } unsigned Offset = State.AllocateStack(4, 4); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } static bool CC_Hexagon64(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { if (unsigned Reg = State.AllocateReg(Hexagon::D0)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } static const MCPhysReg RegList1[] = { Hexagon::D1, Hexagon::D2 }; static const MCPhysReg RegList2[] = { Hexagon::R1, Hexagon::R3 }; if (unsigned Reg = State.AllocateReg(RegList1, RegList2)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } static bool CC_HexagonVector(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { static const MCPhysReg VecLstS[] = { Hexagon::V0, Hexagon::V1, Hexagon::V2, Hexagon::V3, Hexagon::V4, Hexagon::V5, Hexagon::V6, Hexagon::V7, Hexagon::V8, Hexagon::V9, Hexagon::V10, Hexagon::V11, Hexagon::V12, Hexagon::V13, Hexagon::V14, Hexagon::V15 }; static const MCPhysReg VecLstD[] = { Hexagon::W0, Hexagon::W1, Hexagon::W2, Hexagon::W3, Hexagon::W4, Hexagon::W5, Hexagon::W6, Hexagon::W7 }; auto &MF = State.getMachineFunction(); auto &HST = MF.getSubtarget(); bool UseHVX = HST.useHVXOps(); bool UseHVXDbl = HST.useHVXDblOps(); if ((UseHVX && !UseHVXDbl) && (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 || LocVT == MVT::v64i8 || LocVT == MVT::v512i1)) { if (unsigned Reg = State.AllocateReg(VecLstS)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } unsigned Offset = State.AllocateStack(64, 64); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } if ((UseHVX && !UseHVXDbl) && (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 || LocVT == MVT::v128i8)) { if (unsigned Reg = State.AllocateReg(VecLstD)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } unsigned Offset = State.AllocateStack(128, 128); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } // 128B Mode if ((UseHVX && UseHVXDbl) && (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 || LocVT == MVT::v256i8)) { if (unsigned Reg = State.AllocateReg(VecLstD)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } unsigned Offset = State.AllocateStack(256, 256); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } if ((UseHVX && UseHVXDbl) && (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 || LocVT == MVT::v128i8 || LocVT == MVT::v1024i1)) { if (unsigned Reg = State.AllocateReg(VecLstS)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } unsigned Offset = State.AllocateStack(128, 128); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } return true; } static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { auto &MF = State.getMachineFunction(); auto &HST = MF.getSubtarget(); bool UseHVX = HST.useHVXOps(); bool UseHVXDbl = HST.useHVXDblOps(); if (LocVT == MVT::i1) { // Return values of type MVT::i1 still need to be assigned to R0, but // the value type needs to remain i1. LowerCallResult will deal with it, // but it needs to recognize i1 as the value type. LocVT = MVT::i32; } else if (LocVT == MVT::i8 || LocVT == MVT::i16) { LocVT = MVT::i32; ValVT = MVT::i32; if (ArgFlags.isSExt()) LocInfo = CCValAssign::SExt; else if (ArgFlags.isZExt()) LocInfo = CCValAssign::ZExt; else LocInfo = CCValAssign::AExt; } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) { LocVT = MVT::i32; LocInfo = CCValAssign::BCvt; } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) { LocVT = MVT::i64; LocInfo = CCValAssign::BCvt; } else if (LocVT == MVT::v64i8 || LocVT == MVT::v32i16 || LocVT == MVT::v16i32 || LocVT == MVT::v8i64 || LocVT == MVT::v512i1) { LocVT = MVT::v16i32; ValVT = MVT::v16i32; LocInfo = CCValAssign::Full; } else if (LocVT == MVT::v128i8 || LocVT == MVT::v64i16 || LocVT == MVT::v32i32 || LocVT == MVT::v16i64 || (LocVT == MVT::v1024i1 && UseHVX && UseHVXDbl)) { LocVT = MVT::v32i32; ValVT = MVT::v32i32; LocInfo = CCValAssign::Full; } else if (LocVT == MVT::v256i8 || LocVT == MVT::v128i16 || LocVT == MVT::v64i32 || LocVT == MVT::v32i64) { LocVT = MVT::v64i32; ValVT = MVT::v64i32; LocInfo = CCValAssign::Full; } if (LocVT == MVT::i32 || LocVT == MVT::f32) { if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) return false; } if (LocVT == MVT::i64 || LocVT == MVT::f64) { if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) return false; } if (LocVT == MVT::v16i32 || LocVT == MVT::v32i32 || LocVT == MVT::v64i32) { if (!RetCC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) return false; } return true; // CC didn't match. } static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { if (LocVT == MVT::i32 || LocVT == MVT::f32) { // Note that use of registers beyond R1 is not ABI compliant. However there // are (experimental) IR passes which generate internal functions that // return structs using these additional registers. static const uint16_t RegList[] = { Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4, Hexagon::R5 }; if (unsigned Reg = State.AllocateReg(RegList)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } return true; } static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { if (LocVT == MVT::i64 || LocVT == MVT::f64) { if (unsigned Reg = State.AllocateReg(Hexagon::D0)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } return true; } static bool RetCC_HexagonVector(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { auto &MF = State.getMachineFunction(); auto &HST = MF.getSubtarget(); bool UseHVX = HST.useHVXOps(); bool UseHVXDbl = HST.useHVXDblOps(); if (LocVT == MVT::v16i32) { if (unsigned Reg = State.AllocateReg(Hexagon::V0)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } else if (LocVT == MVT::v32i32) { unsigned Req = (UseHVX && UseHVXDbl) ? Hexagon::V0 : Hexagon::W0; if (unsigned Reg = State.AllocateReg(Req)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } else if (LocVT == MVT::v64i32) { if (unsigned Reg = State.AllocateReg(Hexagon::W0)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } return true; } void HexagonTargetLowering::promoteLdStType(MVT VT, MVT PromotedLdStVT) { if (VT != PromotedLdStVT) { setOperationAction(ISD::LOAD, VT, Promote); AddPromotedToType(ISD::LOAD, VT, PromotedLdStVT); setOperationAction(ISD::STORE, VT, Promote); AddPromotedToType(ISD::STORE, VT, PromotedLdStVT); } } SDValue HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { return SDValue(); } /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified /// by "Src" to address "Dst" of size "Size". Alignment information is /// specified by the specific parameter attribute. The copy will be passed as /// a byval function parameter. Sometimes what we are copying is the end of a /// larger object, the part that does not fit in registers. static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, const SDLoc &dl) { SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), /*isVolatile=*/false, /*AlwaysInline=*/false, /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo()); } static bool isHvxVectorType(MVT Ty) { switch (Ty.SimpleTy) { case MVT::v8i64: case MVT::v16i32: case MVT::v32i16: case MVT::v64i8: case MVT::v16i64: case MVT::v32i32: case MVT::v64i16: case MVT::v128i8: case MVT::v32i64: case MVT::v64i32: case MVT::v128i16: case MVT::v256i8: case MVT::v512i1: case MVT::v1024i1: return true; default: return false; } } bool HexagonTargetLowering::CanLowerReturn( CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); return CCInfo.CheckReturn(Outs, RetCC_Hexagon); } // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is // passed by value, the function prototype is modified to return void and // the value is stored in memory pointed by a pointer passed by caller. SDValue HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &dl, SelectionDAG &DAG) const { // CCValAssign - represent the assignment of the return value to locations. SmallVector RVLocs; // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); // Analyze return values of ISD::RET CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon); SDValue Flag; SmallVector RetOps(1, Chain); // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); // Guarantee that all emitted copies are stuck together with flags. Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps); } bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { // If either no tail call or told not to tail call at all, don't. auto Attr = CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); if (!CI->isTailCall() || Attr.getValueAsString() == "true") return false; return true; } /// LowerCallResult - Lower the result values of an ISD::CALL into the /// appropriate copies out of appropriate physical registers. This assumes that /// Chain/Glue are the input chain/glue to use, and that TheCall is the call /// being lowered. Returns a SDNode with the same number of values as the /// ISD::CALL. SDValue HexagonTargetLowering::LowerCallResult( SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals, const SmallVectorImpl &OutVals, SDValue Callee) const { // Assign locations to each value returned by this call. SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { SDValue RetVal; if (RVLocs[i].getValVT() == MVT::i1) { // Return values of type MVT::i1 require special handling. The reason // is that MVT::i1 is associated with the PredRegs register class, but // values of that type are still returned in R0. Generate an explicit // copy into a predicate register from R0, and treat the value of the // predicate register as the call result. auto &MRI = DAG.getMachineFunction().getRegInfo(); SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), MVT::i32, Glue); // FR0 = (Value, Chain, Glue) unsigned PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR, FR0.getValue(0), FR0.getValue(2)); // TPR = (Chain, Glue) // Don't glue this CopyFromReg, because it copies from a virtual // register. If it is glued to the call, InstrEmitter will add it // as an implicit def to the call (EmitMachineNode). RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1); Glue = TPR.getValue(1); } else { RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), RVLocs[i].getValVT(), Glue); Glue = RetVal.getValue(2); } InVals.push_back(RetVal.getValue(0)); Chain = RetVal.getValue(1); } return Chain; } /// LowerCall - Functions arguments are copied from virtual regs to /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. SDValue HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &dl = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; bool DoesNotReturn = CLI.DoesNotReturn; bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); MachineFunction &MF = DAG.getMachineFunction(); auto PtrVT = getPointerTy(MF.getDataLayout()); // Check for varargs. unsigned NumNamedVarArgParams = -1U; if (GlobalAddressSDNode *GAN = dyn_cast(Callee)) { const GlobalValue *GV = GAN->getGlobal(); Callee = DAG.getTargetGlobalAddress(GV, dl, MVT::i32); if (const Function* F = dyn_cast(GV)) { // If a function has zero args and is a vararg function, that's // disallowed so it must be an undeclared function. Do not assume // varargs if the callee is undefined. if (F->isVarArg() && F->getFunctionType()->getNumParams() != 0) NumNamedVarArgParams = F->getFunctionType()->getNumParams(); } } // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; HexagonCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(), NumNamedVarArgParams); if (IsVarArg) CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg); else CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon); auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls"); if (Attr.getValueAsString() == "true") IsTailCall = false; if (IsTailCall) { bool StructAttrFlag = MF.getFunction()->hasStructRetAttr(); IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, IsVarArg, IsStructRet, StructAttrFlag, Outs, OutVals, Ins, DAG); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; if (VA.isMemLoc()) { IsTailCall = false; break; } } DEBUG(dbgs() << (IsTailCall ? "Eligible for Tail Call\n" : "Argument must be passed on stack. " "Not eligible for Tail Call\n")); } // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); SmallVector, 16> RegsToPass; SmallVector MemOpChains; auto &HRI = *Subtarget.getRegisterInfo(); SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT); bool NeedsArgAlign = false; unsigned LargestAlignSeen = 0; // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; // Record if we need > 8 byte alignment on an argument. bool ArgAlign = isHvxVectorType(VA.getValVT()); NeedsArgAlign |= ArgAlign; // Promote the value if needed. switch (VA.getLocInfo()) { default: // Loc info must be one of Full, SExt, ZExt, or AExt. llvm_unreachable("Unknown loc info!"); case CCValAssign::BCvt: case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); break; } if (VA.isMemLoc()) { unsigned LocMemOffset = VA.getLocMemOffset(); SDValue MemAddr = DAG.getConstant(LocMemOffset, dl, StackPtr.getValueType()); MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr); if (ArgAlign) LargestAlignSeen = std::max(LargestAlignSeen, VA.getLocVT().getStoreSizeInBits() >> 3); if (Flags.isByVal()) { // The argument is a struct passed by value. According to LLVM, "Arg" // is is pointer. MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain, Flags, DAG, dl)); } else { MachinePointerInfo LocPI = MachinePointerInfo::getStack( DAG.getMachineFunction(), LocMemOffset); SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI); MemOpChains.push_back(S); } continue; } // Arguments that can be passed on register must be kept at RegsToPass // vector. if (VA.isRegLoc()) RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } if (NeedsArgAlign && Subtarget.hasV60TOps()) { DEBUG(dbgs() << "Function needs byte stack align due to call args\n"); MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); // V6 vectors passed by value have 64 or 128 byte alignment depending // on whether we are 64 byte vector mode or 128 byte. bool UseHVXDbl = Subtarget.useHVXDblOps(); assert(Subtarget.useHVXOps()); const unsigned ObjAlign = UseHVXDbl ? 128 : 64; LargestAlignSeen = std::max(LargestAlignSeen, ObjAlign); MFI.ensureMaxAlignment(LargestAlignSeen); } // Transform all store nodes into one single node because all store // nodes are independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); SDValue Glue; if (!IsTailCall) { SDValue C = DAG.getConstant(NumBytes, dl, PtrVT, true); Chain = DAG.getCALLSEQ_START(Chain, C, dl); Glue = Chain.getValue(1); } // Build a sequence of copy-to-reg nodes chained together with token // chain and flag operands which copy the outgoing args into registers. // The Glue is necessary since all emitted instructions must be // stuck together. if (!IsTailCall) { for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, Glue); Glue = Chain.getValue(1); } } else { // For tail calls lower the arguments to the 'real' stack slot. // // Force all the incoming stack arguments to be loaded from the stack // before any new outgoing arguments are stored to the stack, because the // outgoing stack slots may alias the incoming argument stack slots, and // the alias isn't otherwise explicit. This is slightly more conservative // than necessary, because it means that each store effectively depends // on every argument instead of just those arguments it would clobber. // // Do not flag preceding copytoreg stuff together with the following stuff. Glue = SDValue(); for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, Glue); Glue = Chain.getValue(1); } Glue = SDValue(); } bool LongCalls = MF.getSubtarget().useLongCalls(); unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0; // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. if (GlobalAddressSDNode *G = dyn_cast(Callee)) { Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags); } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) { Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags); } // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are // known live into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); } const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); if (Glue.getNode()) Ops.push_back(Glue); if (IsTailCall) { MF.getFrameInfo().setHasTailCall(); return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops); } unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL; Chain = DAG.getNode(OpCode, dl, NodeTys, Ops); Glue = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), DAG.getIntPtrConstant(0, dl, true), Glue, dl); Glue = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG, InVals, OutVals, Callee); } static bool getIndexedAddressParts(SDNode *Ptr, EVT VT, SDValue &Base, SDValue &Offset, bool &IsInc, SelectionDAG &DAG) { if (Ptr->getOpcode() != ISD::ADD) return false; auto &HST = static_cast(DAG.getSubtarget()); bool UseHVX = HST.useHVXOps(); bool UseHVXDbl = HST.useHVXDblOps(); bool ValidHVXDblType = (UseHVX && UseHVXDbl) && (VT == MVT::v32i32 || VT == MVT::v16i64 || VT == MVT::v64i16 || VT == MVT::v128i8); bool ValidHVXType = UseHVX && !UseHVXDbl && (VT == MVT::v16i32 || VT == MVT::v8i64 || VT == MVT::v32i16 || VT == MVT::v64i8); if (ValidHVXDblType || ValidHVXType || VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) { IsInc = (Ptr->getOpcode() == ISD::ADD); Base = Ptr->getOperand(0); Offset = Ptr->getOperand(1); // Ensure that Offset is a constant. return isa(Offset); } return false; } /// getPostIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if this node can be /// combined with a load / store to form a post-indexed load / store. bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { EVT VT; SDValue Ptr; if (LoadSDNode *LD = dyn_cast(N)) { VT = LD->getMemoryVT(); } else if (StoreSDNode *ST = dyn_cast(N)) { VT = ST->getMemoryVT(); if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) return false; } else { return false; } bool IsInc = false; bool isLegal = getIndexedAddressParts(Op, VT, Base, Offset, IsInc, DAG); if (isLegal) { auto &HII = *Subtarget.getInstrInfo(); int32_t OffsetVal = cast(Offset.getNode())->getSExtValue(); if (HII.isValidAutoIncImm(VT, OffsetVal)) { AM = IsInc ? ISD::POST_INC : ISD::POST_DEC; return true; } } return false; } SDValue HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { SDNode *Node = Op.getNode(); MachineFunction &MF = DAG.getMachineFunction(); auto &FuncInfo = *MF.getInfo(); switch (Node->getOpcode()) { case ISD::INLINEASM: { unsigned NumOps = Node->getNumOperands(); if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) --NumOps; // Ignore the flag operand. for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { if (FuncInfo.hasClobberLR()) break; unsigned Flags = cast(Node->getOperand(i))->getZExtValue(); unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); ++i; // Skip the ID value. switch (InlineAsm::getKind(Flags)) { default: llvm_unreachable("Bad flags!"); case InlineAsm::Kind_RegDef: case InlineAsm::Kind_RegUse: case InlineAsm::Kind_Imm: case InlineAsm::Kind_Clobber: case InlineAsm::Kind_Mem: { for (; NumVals; --NumVals, ++i) {} break; } case InlineAsm::Kind_RegDefEarlyClobber: { for (; NumVals; --NumVals, ++i) { unsigned Reg = cast(Node->getOperand(i))->getReg(); // Check it to be lr const HexagonRegisterInfo *QRI = Subtarget.getRegisterInfo(); if (Reg == QRI->getRARegister()) { FuncInfo.setHasClobberLR(true); break; } } break; } } } } } // Node->getOpcode return Op; } // Need to transform ISD::PREFETCH into something that doesn't inherit // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and // SDNPMayStore. SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Addr = Op.getOperand(1); // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in, // if the "reg" is fed by an "add". SDLoc DL(Op); SDValue Zero = DAG.getConstant(0, DL, MVT::i32); return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); } // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode // is marked as having side-effects, while the register read on Hexagon does // not have any. TableGen refuses to accept the direct pattern from that node // to the A4_tfrcpp. SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDLoc dl(Op); SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain); } SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); unsigned IntNo = cast(Op.getOperand(1))->getZExtValue(); // Lower the hexagon_prefetch builtin to DCFETCH, as above. if (IntNo == Intrinsic::hexagon_prefetch) { SDValue Addr = Op.getOperand(2); SDLoc DL(Op); SDValue Zero = DAG.getConstant(0, DL, MVT::i32); return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero); } return SDValue(); } SDValue HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); SDValue Align = Op.getOperand(2); SDLoc dl(Op); ConstantSDNode *AlignConst = dyn_cast(Align); assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC"); unsigned A = AlignConst->getSExtValue(); auto &HFI = *Subtarget.getFrameLowering(); // "Zero" means natural stack alignment. if (A == 0) A = HFI.getStackAlignment(); DEBUG({ dbgs () << __func__ << " Align: " << A << " Size: "; Size.getNode()->dump(&DAG); dbgs() << "\n"; }); SDValue AC = DAG.getConstant(A, dl, MVT::i32); SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC); DAG.ReplaceAllUsesOfValueWith(Op, AA); return AA; } SDValue HexagonTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); auto &FuncInfo = *MF.getInfo(); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon); // For LLVM, in the case when returning a struct by value (>8byte), // the first argument is a pointer that points to the location on caller's // stack where the return value will be stored. For Hexagon, the location on // caller's stack is passed only when the struct size is smaller than (and // equal to) 8 bytes. If not, no address will be passed into callee and // callee return the result direclty through R0/R1. SmallVector MemOps; bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps(); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; ISD::ArgFlagsTy Flags = Ins[i].Flags; unsigned ObjSize; unsigned StackLocation; int FI; if ( (VA.isRegLoc() && !Flags.isByVal()) || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) { // Arguments passed in registers // 1. int, long long, ptr args that get allocated in register. // 2. Large struct that gets an register to put its address in. EVT RegVT = VA.getLocVT(); if (RegVT == MVT::i8 || RegVT == MVT::i16 || RegVT == MVT::i32 || RegVT == MVT::f32) { unsigned VReg = RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); // Treat values of type MVT::i1 specially: they are passed in // registers of type i32, but they need to remain as values of // type i1 for consistency of the argument lowering. if (VA.getValVT() == MVT::i1) { // Generate a copy into a predicate register and use the value // of the register as the "InVal". unsigned PReg = RegInfo.createVirtualRegister(&Hexagon::PredRegsRegClass); SDNode *T = DAG.getMachineNode(Hexagon::C2_tfrrp, dl, MVT::i1, Copy.getValue(0)); Copy = DAG.getCopyToReg(Copy.getValue(1), dl, PReg, SDValue(T, 0)); Copy = DAG.getCopyFromReg(Copy, dl, PReg, MVT::i1); } InVals.push_back(Copy); Chain = Copy.getValue(1); } else if (RegVT == MVT::i64 || RegVT == MVT::f64) { unsigned VReg = RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); // Single Vector } else if ((RegVT == MVT::v8i64 || RegVT == MVT::v16i32 || RegVT == MVT::v32i16 || RegVT == MVT::v64i8)) { unsigned VReg = RegInfo.createVirtualRegister(&Hexagon::VectorRegsRegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); } else if (UseHVX && UseHVXDbl && ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 || RegVT == MVT::v64i16 || RegVT == MVT::v128i8))) { unsigned VReg = RegInfo.createVirtualRegister(&Hexagon::VectorRegs128BRegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); // Double Vector } else if ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 || RegVT == MVT::v64i16 || RegVT == MVT::v128i8)) { unsigned VReg = RegInfo.createVirtualRegister(&Hexagon::VecDblRegsRegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); } else if (UseHVX && UseHVXDbl && ((RegVT == MVT::v32i64 || RegVT == MVT::v64i32 || RegVT == MVT::v128i16 || RegVT == MVT::v256i8))) { unsigned VReg = RegInfo.createVirtualRegister(&Hexagon::VecDblRegs128BRegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); } else if (RegVT == MVT::v512i1 || RegVT == MVT::v1024i1) { assert(0 && "need to support VecPred regs"); unsigned VReg = RegInfo.createVirtualRegister(&Hexagon::VecPredRegsRegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); } else { assert (0); } } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) { assert (0 && "ByValSize must be bigger than 8 bytes"); } else { // Sanity check. assert(VA.isMemLoc()); if (Flags.isByVal()) { // If it's a byval parameter, then we need to compute the // "real" size, not the size of the pointer. ObjSize = Flags.getByValSize(); } else { ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3; } StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset(); // Create the frame index object for this incoming parameter... FI = MFI.CreateFixedObject(ObjSize, StackLocation, true); // Create the SelectionDAG nodes cordl, responding to a load // from this parameter. SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); if (Flags.isByVal()) { // If it's a pass-by-value aggregate, then do not dereference the stack // location. Instead, we should generate a reference to the stack // location. InVals.push_back(FIN); } else { InVals.push_back( DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); } } } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); if (isVarArg) { // This will point to the next argument passed via stack. int FrameIndex = MFI.CreateFixedObject(Hexagon_PointerSize, HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset(), true); FuncInfo.setVarArgsFrameIndex(FrameIndex); } return Chain; } SDValue HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { // VASTART stores the address of the VarArgsFrameIndex slot into the // memory location argument. MachineFunction &MF = DAG.getMachineFunction(); HexagonMachineFunctionInfo *QFI = MF.getInfo(); SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32); const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1), MachinePointerInfo(SV)); } // Creates a SPLAT instruction for a constant value VAL. static SDValue createSplat(SelectionDAG &DAG, const SDLoc &dl, EVT VT, SDValue Val) { if (VT.getSimpleVT() == MVT::v4i8) return DAG.getNode(HexagonISD::VSPLATB, dl, VT, Val); if (VT.getSimpleVT() == MVT::v4i16) return DAG.getNode(HexagonISD::VSPLATH, dl, VT, Val); return SDValue(); } static bool isSExtFree(SDValue N) { // A sign-extend of a truncate of a sign-extend is free. if (N.getOpcode() == ISD::TRUNCATE && N.getOperand(0).getOpcode() == ISD::AssertSext) return true; // We have sign-extended loads. if (N.getOpcode() == ISD::LOAD) return true; return false; } SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue Cmp = Op.getOperand(2); ISD::CondCode CC = cast(Cmp)->get(); EVT VT = Op.getValueType(); EVT LHSVT = LHS.getValueType(); EVT RHSVT = RHS.getValueType(); if (LHSVT == MVT::v2i16) { assert(ISD::isSignedIntSetCC(CC) || ISD::isUnsignedIntSetCC(CC)); unsigned ExtOpc = ISD::isSignedIntSetCC(CC) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; SDValue LX = DAG.getNode(ExtOpc, dl, MVT::v2i32, LHS); SDValue RX = DAG.getNode(ExtOpc, dl, MVT::v2i32, RHS); SDValue SC = DAG.getNode(ISD::SETCC, dl, MVT::v2i1, LX, RX, Cmp); return SC; } // Treat all other vector types as legal. if (VT.isVector()) return Op; // Equals and not equals should use sign-extend, not zero-extend, since // we can represent small negative values in the compare instructions. // The LLVM default is to use zero-extend arbitrarily in these cases. if ((CC == ISD::SETEQ || CC == ISD::SETNE) && (RHSVT == MVT::i8 || RHSVT == MVT::i16) && (LHSVT == MVT::i8 || LHSVT == MVT::i16)) { ConstantSDNode *C = dyn_cast(RHS); if (C && C->getAPIntValue().isNegative()) { LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS); RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS); return DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, Op.getOperand(2)); } if (isSExtFree(LHS) || isSExtFree(RHS)) { LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS); RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS); return DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, Op.getOperand(2)); } } return SDValue(); } SDValue HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { SDValue PredOp = Op.getOperand(0); SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2); EVT OpVT = Op1.getValueType(); SDLoc DL(Op); if (OpVT == MVT::v2i16) { SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1); SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2); SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2); SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL); return TR; } return SDValue(); } // Handle only specific vector loads. SDValue HexagonTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc DL(Op); LoadSDNode *LoadNode = cast(Op); SDValue Chain = LoadNode->getChain(); SDValue Ptr = Op.getOperand(1); SDValue LoweredLoad; SDValue Result; SDValue Base = LoadNode->getBasePtr(); ISD::LoadExtType Ext = LoadNode->getExtensionType(); unsigned Alignment = LoadNode->getAlignment(); SDValue LoadChain; if(Ext == ISD::NON_EXTLOAD) Ext = ISD::ZEXTLOAD; if (VT == MVT::v4i16) { if (Alignment == 2) { SDValue Loads[4]; // Base load. Loads[0] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Base, LoadNode->getPointerInfo(), MVT::i16, Alignment, LoadNode->getMemOperand()->getFlags()); // Base+2 load. SDValue Increment = DAG.getConstant(2, DL, MVT::i32); Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment); Loads[1] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr, LoadNode->getPointerInfo(), MVT::i16, Alignment, LoadNode->getMemOperand()->getFlags()); // SHL 16, then OR base and base+2. SDValue ShiftAmount = DAG.getConstant(16, DL, MVT::i32); SDValue Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[1], ShiftAmount); SDValue Tmp2 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[0]); // Base + 4. Increment = DAG.getConstant(4, DL, MVT::i32); Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment); Loads[2] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr, LoadNode->getPointerInfo(), MVT::i16, Alignment, LoadNode->getMemOperand()->getFlags()); // Base + 6. Increment = DAG.getConstant(6, DL, MVT::i32); Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment); Loads[3] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr, LoadNode->getPointerInfo(), MVT::i16, Alignment, LoadNode->getMemOperand()->getFlags()); // SHL 16, then OR base+4 and base+6. Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[3], ShiftAmount); SDValue Tmp4 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[2]); // Combine to i64. This could be optimised out later if we can // affect reg allocation of this code. Result = DAG.getNode(HexagonISD::COMBINE, DL, MVT::i64, Tmp4, Tmp2); LoadChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Loads[0].getValue(1), Loads[1].getValue(1), Loads[2].getValue(1), Loads[3].getValue(1)); } else { // Perform default type expansion. Result = DAG.getLoad(MVT::i64, DL, Chain, Ptr, LoadNode->getPointerInfo(), LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags()); LoadChain = Result.getValue(1); } } else llvm_unreachable("Custom lowering unsupported load"); Result = DAG.getNode(ISD::BITCAST, DL, VT, Result); // Since we pretend to lower a load, we need the original chain // info attached to the result. SDValue Ops[] = { Result, LoadChain }; return DAG.getMergeValues(Ops, DL); } SDValue HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { EVT ValTy = Op.getValueType(); ConstantPoolSDNode *CPN = cast(Op); unsigned Align = CPN->getAlignment(); bool IsPositionIndependent = isPositionIndependent(); unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0; unsigned Offset = 0; SDValue T; if (CPN->isMachineConstantPoolEntry()) T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset, TF); else T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF); assert(cast(T)->getTargetFlags() == TF && "Inconsistent target flag encountered"); if (IsPositionIndependent) return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T); return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T); } SDValue HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); int Idx = cast(Op)->getIndex(); if (isPositionIndependent()) { SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T); } SDValue T = DAG.getTargetJumpTable(Idx, VT); return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T); } SDValue HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setReturnAddressIsTaken(true); if (verifyReturnAddressArgumentIsConstant(Op, DAG)) return SDValue(); EVT VT = Op.getValueType(); SDLoc dl(Op); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); if (Depth) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(4, dl, MVT::i32); return DAG.getLoad(VT, dl, DAG.getEntryNode(), DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), MachinePointerInfo()); } // Return LR, which contains the return address. Mark it an implicit live-in. unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32)); return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); } SDValue HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); MFI.setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc dl(Op); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, HRI.getFrameRegister(), VT); while (Depth--) FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, MachinePointerInfo()); return FrameAddr; } SDValue HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const { SDLoc dl(Op); return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0)); } SDValue HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); auto *GAN = cast(Op); auto PtrVT = getPointerTy(DAG.getDataLayout()); auto *GV = GAN->getGlobal(); int64_t Offset = GAN->getOffset(); auto &HLOF = *HTM.getObjFileLowering(); Reloc::Model RM = HTM.getRelocationModel(); if (RM == Reloc::Static) { SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); const GlobalObject *GO = GV->getBaseObject(); if (GO && HLOF.isGlobalInSmallSection(GO, HTM)) return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA); return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA); } bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV); if (UsePCRel) { SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset, HexagonII::MO_PCREL); return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA); } // Use GOT index. SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT); SDValue Off = DAG.getConstant(Offset, dl, MVT::i32); return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off); } // Specifies that for loads and stores VT can be promoted to PromotedLdStVT. SDValue HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { const BlockAddress *BA = cast(Op)->getBlockAddress(); SDLoc dl(Op); EVT PtrVT = getPointerTy(DAG.getDataLayout()); Reloc::Model RM = HTM.getRelocationModel(); if (RM == Reloc::Static) { SDValue A = DAG.getTargetBlockAddress(BA, PtrVT); return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A); } SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL); return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A); } SDValue HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT, HexagonII::MO_PCREL); return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym); } SDValue HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg, unsigned char OperandFlags) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SDLoc dl(GA); SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), GA->getOffset(), OperandFlags); // Create Operands for the call.The Operands should have the following: // 1. Chain SDValue // 2. Callee which in this case is the Global address value. // 3. Registers live into the call.In this case its R0, as we // have just one argument to be passed. // 4. Glue. // Note: The order is important. const auto &HRI = *Subtarget.getRegisterInfo(); const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C); assert(Mask && "Missing call preserved mask for calling convention"); SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT), DAG.getRegisterMask(Mask), Glue }; Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops); // Inform MFI that function has calls. MFI.setAdjustsStack(true); Glue = Chain.getValue(1); return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue); } // // Lower using the intial executable model for TLS addresses // SDValue HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG) const { SDLoc dl(GA); int64_t Offset = GA->getOffset(); auto PtrVT = getPointerTy(DAG.getDataLayout()); // Get the thread pointer. SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); bool IsPositionIndependent = isPositionIndependent(); unsigned char TF = IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE; // First generate the TLS symbol address SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, TF); SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); if (IsPositionIndependent) { // Generate the GOT pointer in case of position independent code SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG); // Add the TLS Symbol address to GOT pointer.This gives // GOT relative relocation for the symbol. Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); } // Load the offset value for TLS symbol.This offset is relative to // thread pointer. SDValue LoadOffset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo()); // Address of the thread local variable is the add of thread // pointer and the offset of the variable. return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset); } // // Lower using the local executable model for TLS addresses // SDValue HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG) const { SDLoc dl(GA); int64_t Offset = GA->getOffset(); auto PtrVT = getPointerTy(DAG.getDataLayout()); // Get the thread pointer. SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT); // Generate the TLS symbol address SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, HexagonII::MO_TPREL); SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); // Address of the thread local variable is the add of thread // pointer and the offset of the variable. return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym); } // // Lower using the general dynamic model for TLS addresses // SDValue HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG) const { SDLoc dl(GA); int64_t Offset = GA->getOffset(); auto PtrVT = getPointerTy(DAG.getDataLayout()); // First generate the TLS symbol address SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset, HexagonII::MO_GDGOT); // Then, generate the GOT pointer SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG); // Add the TLS symbol and the GOT pointer SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA); SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym); // Copy over the argument to R0 SDValue InFlag; Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag); InFlag = Chain.getValue(1); return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT, Hexagon::R0, HexagonII::MO_GDPLT); } // // Lower TLS addresses. // // For now for dynamic models, we only support the general dynamic model. // SDValue HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GA = cast(Op); switch (HTM.getTLSModel(GA->getGlobal())) { case TLSModel::GeneralDynamic: case TLSModel::LocalDynamic: return LowerToTLSGeneralDynamicModel(GA, DAG); case TLSModel::InitialExec: return LowerToTLSInitialExecModel(GA, DAG); case TLSModel::LocalExec: return LowerToTLSLocalExecModel(GA, DAG); } llvm_unreachable("Bogus TLS model"); } //===----------------------------------------------------------------------===// // TargetLowering Implementation //===----------------------------------------------------------------------===// HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM, const HexagonSubtarget &ST) : TargetLowering(TM), HTM(static_cast(TM)), Subtarget(ST) { bool IsV4 = !Subtarget.hasV5TOps(); auto &HRI = *Subtarget.getRegisterInfo(); bool UseHVX = Subtarget.useHVXOps(); bool UseHVXSgl = Subtarget.useHVXSglOps(); bool UseHVXDbl = Subtarget.useHVXDblOps(); setPrefLoopAlignment(4); setPrefFunctionAlignment(4); setMinFunctionAlignment(2); setStackPointerRegisterToSaveRestore(HRI.getStackRegister()); setMaxAtomicSizeInBitsSupported(64); setMinCmpXchgSizeInBits(32); if (EnableHexSDNodeSched) setSchedulingPreference(Sched::VLIW); else setSchedulingPreference(Sched::Source); // Limits for inline expansion of memcpy/memmove MaxStoresPerMemcpy = MaxStoresPerMemcpyCL; MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL; MaxStoresPerMemmove = MaxStoresPerMemmoveCL; MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL; MaxStoresPerMemset = MaxStoresPerMemsetCL; MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL; // // Set up register classes. // addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass); addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass); addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass); addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass); addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass); addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass); addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass); addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass); if (Subtarget.hasV5TOps()) { addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass); addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass); } if (Subtarget.hasV60TOps()) { if (Subtarget.useHVXSglOps()) { addRegisterClass(MVT::v64i8, &Hexagon::VectorRegsRegClass); addRegisterClass(MVT::v32i16, &Hexagon::VectorRegsRegClass); addRegisterClass(MVT::v16i32, &Hexagon::VectorRegsRegClass); addRegisterClass(MVT::v8i64, &Hexagon::VectorRegsRegClass); addRegisterClass(MVT::v128i8, &Hexagon::VecDblRegsRegClass); addRegisterClass(MVT::v64i16, &Hexagon::VecDblRegsRegClass); addRegisterClass(MVT::v32i32, &Hexagon::VecDblRegsRegClass); addRegisterClass(MVT::v16i64, &Hexagon::VecDblRegsRegClass); addRegisterClass(MVT::v512i1, &Hexagon::VecPredRegsRegClass); } else if (Subtarget.useHVXDblOps()) { addRegisterClass(MVT::v128i8, &Hexagon::VectorRegs128BRegClass); addRegisterClass(MVT::v64i16, &Hexagon::VectorRegs128BRegClass); addRegisterClass(MVT::v32i32, &Hexagon::VectorRegs128BRegClass); addRegisterClass(MVT::v16i64, &Hexagon::VectorRegs128BRegClass); addRegisterClass(MVT::v256i8, &Hexagon::VecDblRegs128BRegClass); addRegisterClass(MVT::v128i16, &Hexagon::VecDblRegs128BRegClass); addRegisterClass(MVT::v64i32, &Hexagon::VecDblRegs128BRegClass); addRegisterClass(MVT::v32i64, &Hexagon::VecDblRegs128BRegClass); addRegisterClass(MVT::v1024i1, &Hexagon::VecPredRegs128BRegClass); } } // // Handling of scalar operations. // // All operations default to "legal", except: // - indexed loads and stores (pre-/post-incremented), // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS, // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN, // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP, // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG, // which default to "expand" for at least one type. // Misc operations. setOperationAction(ISD::ConstantFP, MVT::f32, Legal); // Default: expand setOperationAction(ISD::ConstantFP, MVT::f64, Legal); // Default: expand setOperationAction(ISD::ConstantPool, MVT::i32, Custom); setOperationAction(ISD::JumpTable, MVT::i32, Custom); setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); setOperationAction(ISD::INLINEASM, MVT::Other, Custom); setOperationAction(ISD::PREFETCH, MVT::Other, Custom); setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); // Custom legalize GlobalAddress nodes into CONST32. setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i8, Custom); setOperationAction(ISD::BlockAddress, MVT::i32, Custom); // Hexagon needs to optimize cases with negative constants. setOperationAction(ISD::SETCC, MVT::i8, Custom); setOperationAction(ISD::SETCC, MVT::i16, Custom); // VASTART needs to be custom lowered to use the VarArgsFrameIndex. setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::VAARG, MVT::Other, Expand); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); if (EmitJumpTables) setMinimumJumpTableEntries(MinimumJumpTables); else setMinimumJumpTableEntries(std::numeric_limits::max()); setOperationAction(ISD::BR_JT, MVT::Other, Expand); // Hexagon has instructions for add/sub with carry. The problem with // modeling these instructions is that they produce 2 results: Rdd and Px. // To model the update of Px, we will have to use Defs[p0..p3] which will // cause any predicate live range to spill. So, we pretend we dont't have // these instructions. setOperationAction(ISD::ADDE, MVT::i8, Expand); setOperationAction(ISD::ADDE, MVT::i16, Expand); setOperationAction(ISD::ADDE, MVT::i32, Expand); setOperationAction(ISD::ADDE, MVT::i64, Expand); setOperationAction(ISD::SUBE, MVT::i8, Expand); setOperationAction(ISD::SUBE, MVT::i16, Expand); setOperationAction(ISD::SUBE, MVT::i32, Expand); setOperationAction(ISD::SUBE, MVT::i64, Expand); setOperationAction(ISD::ADDC, MVT::i8, Expand); setOperationAction(ISD::ADDC, MVT::i16, Expand); setOperationAction(ISD::ADDC, MVT::i32, Expand); setOperationAction(ISD::ADDC, MVT::i64, Expand); setOperationAction(ISD::SUBC, MVT::i8, Expand); setOperationAction(ISD::SUBC, MVT::i16, Expand); setOperationAction(ISD::SUBC, MVT::i32, Expand); setOperationAction(ISD::SUBC, MVT::i64, Expand); // Only add and sub that detect overflow are the saturating ones. for (MVT VT : MVT::integer_valuetypes()) { setOperationAction(ISD::UADDO, VT, Expand); setOperationAction(ISD::SADDO, VT, Expand); setOperationAction(ISD::USUBO, VT, Expand); setOperationAction(ISD::SSUBO, VT, Expand); } setOperationAction(ISD::CTLZ, MVT::i8, Promote); setOperationAction(ISD::CTLZ, MVT::i16, Promote); setOperationAction(ISD::CTTZ, MVT::i8, Promote); setOperationAction(ISD::CTTZ, MVT::i16, Promote); // In V5, popcount can count # of 1s in i64 but returns i32. // On V4 it will be expanded (set later). setOperationAction(ISD::CTPOP, MVT::i8, Promote); setOperationAction(ISD::CTPOP, MVT::i16, Promote); setOperationAction(ISD::CTPOP, MVT::i32, Promote); setOperationAction(ISD::CTPOP, MVT::i64, Legal); setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); setOperationAction(ISD::BSWAP, MVT::i32, Legal); setOperationAction(ISD::BSWAP, MVT::i64, Legal); // We custom lower i64 to i64 mul, so that it is not considered as a legal // operation. There is a pattern that will match i64 mul and transform it // to a series of instructions. setOperationAction(ISD::MUL, MVT::i64, Expand); for (unsigned IntExpOp : { ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR, ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS, ISD::SMUL_LOHI, ISD::UMUL_LOHI }) { setOperationAction(IntExpOp, MVT::i32, Expand); setOperationAction(IntExpOp, MVT::i64, Expand); } for (unsigned FPExpOp : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FCOPYSIGN}) { setOperationAction(FPExpOp, MVT::f32, Expand); setOperationAction(FPExpOp, MVT::f64, Expand); } // No extending loads from i32. for (MVT VT : MVT::integer_valuetypes()) { setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); } // Turn FP truncstore into trunc + store. setTruncStoreAction(MVT::f64, MVT::f32, Expand); // Turn FP extload into load/fpextend. for (MVT VT : MVT::fp_valuetypes()) setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); // Expand BR_CC and SELECT_CC for all integer and fp types. for (MVT VT : MVT::integer_valuetypes()) { setOperationAction(ISD::BR_CC, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); } for (MVT VT : MVT::fp_valuetypes()) { setOperationAction(ISD::BR_CC, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Expand); } setOperationAction(ISD::BR_CC, MVT::Other, Expand); // // Handling of vector operations. // // Custom lower v4i16 load only. Let v4i16 store to be // promoted for now. promoteLdStType(MVT::v4i8, MVT::i32); promoteLdStType(MVT::v2i16, MVT::i32); promoteLdStType(MVT::v8i8, MVT::i64); promoteLdStType(MVT::v2i32, MVT::i64); setOperationAction(ISD::LOAD, MVT::v4i16, Custom); setOperationAction(ISD::STORE, MVT::v4i16, Promote); AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::i64); AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::i64); // Set the action for vector operations to "expand", then override it with // either "custom" or "legal" for specific cases. static const unsigned VectExpOps[] = { // Integer arithmetic: ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::ADDC, ISD::SUBC, ISD::SADDO, ISD::UADDO, ISD::SSUBO, ISD::USUBO, ISD::SMUL_LOHI, ISD::UMUL_LOHI, // Logical/bit: ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR, ISD::CTPOP, ISD::CTLZ, ISD::CTTZ, // Floating point arithmetic/math functions: ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV, ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FPOWI, ISD::FPOW, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR, ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, // Misc: ISD::BR_CC, ISD::SELECT_CC, ISD::ConstantPool, // Vector: ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR, ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE }; for (MVT VT : MVT::vector_valuetypes()) { for (unsigned VectExpOp : VectExpOps) setOperationAction(VectExpOp, VT, Expand); // Expand all extending loads and truncating stores: for (MVT TargetVT : MVT::vector_valuetypes()) { if (TargetVT == VT) continue; setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand); setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand); setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand); setTruncStoreAction(VT, TargetVT, Expand); } // Normalize all inputs to SELECT to be vectors of i32. if (VT.getVectorElementType() != MVT::i32) { MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32); setOperationAction(ISD::SELECT, VT, Promote); AddPromotedToType(ISD::SELECT, VT, VT32); } setOperationAction(ISD::SRA, VT, Custom); setOperationAction(ISD::SHL, VT, Custom); setOperationAction(ISD::SRL, VT, Custom); } // Types natively supported: for (MVT NativeVT : {MVT::v2i1, MVT::v4i1, MVT::v8i1, MVT::v32i1, MVT::v64i1, MVT::v4i8, MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v1i32, MVT::v2i32, MVT::v1i64}) { setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom); setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom); setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom); setOperationAction(ISD::ADD, NativeVT, Legal); setOperationAction(ISD::SUB, NativeVT, Legal); setOperationAction(ISD::MUL, NativeVT, Legal); setOperationAction(ISD::AND, NativeVT, Legal); setOperationAction(ISD::OR, NativeVT, Legal); setOperationAction(ISD::XOR, NativeVT, Legal); } setOperationAction(ISD::SETCC, MVT::v2i16, Custom); setOperationAction(ISD::VSELECT, MVT::v2i16, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); if (UseHVX) { if (UseHVXSgl) { setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i8, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i16, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i32, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i64, Custom); // We try to generate the vpack{e/o} instructions. If we fail // we fall back upon ExpandOp. setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i8, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i16, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v64i8, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i16, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); } else if (UseHVXDbl) { setOperationAction(ISD::CONCAT_VECTORS, MVT::v256i8, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i16, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i32, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i64, Custom); // We try to generate the vpack{e/o} instructions. If we fail // we fall back upon ExpandOp. setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v128i8, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i16, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v128i8, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v64i16, Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); } else { llvm_unreachable("Unrecognized HVX mode"); } } // Subtarget-specific operation actions. // if (Subtarget.hasV5TOps()) { setOperationAction(ISD::FMA, MVT::f64, Expand); setOperationAction(ISD::FADD, MVT::f64, Expand); setOperationAction(ISD::FSUB, MVT::f64, Expand); setOperationAction(ISD::FMUL, MVT::f64, Expand); setOperationAction(ISD::FMINNUM, MVT::f32, Legal); setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote); setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote); setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); } else { // V4 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand); setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand); setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand); setOperationAction(ISD::FP_ROUND, MVT::f64, Expand); setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); setOperationAction(ISD::CTPOP, MVT::i8, Expand); setOperationAction(ISD::CTPOP, MVT::i16, Expand); setOperationAction(ISD::CTPOP, MVT::i32, Expand); setOperationAction(ISD::CTPOP, MVT::i64, Expand); // Expand these operations for both f32 and f64: for (unsigned FPExpOpV4 : {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FABS, ISD::FNEG, ISD::FMA}) { setOperationAction(FPExpOpV4, MVT::f32, Expand); setOperationAction(FPExpOpV4, MVT::f64, Expand); } for (ISD::CondCode FPExpCCV4 : {ISD::SETOEQ, ISD::SETOGT, ISD::SETOLT, ISD::SETOGE, ISD::SETOLE, ISD::SETUO, ISD::SETO}) { setCondCodeAction(FPExpCCV4, MVT::f32, Expand); setCondCodeAction(FPExpCCV4, MVT::f64, Expand); } } // Handling of indexed loads/stores: default is "expand". // for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) { setIndexedLoadAction(ISD::POST_INC, VT, Legal); setIndexedStoreAction(ISD::POST_INC, VT, Legal); } if (UseHVXSgl) { for (MVT VT : {MVT::v64i8, MVT::v32i16, MVT::v16i32, MVT::v8i64, MVT::v128i8, MVT::v64i16, MVT::v32i32, MVT::v16i64}) { setIndexedLoadAction(ISD::POST_INC, VT, Legal); setIndexedStoreAction(ISD::POST_INC, VT, Legal); } } else if (UseHVXDbl) { for (MVT VT : {MVT::v128i8, MVT::v64i16, MVT::v32i32, MVT::v16i64, MVT::v256i8, MVT::v128i16, MVT::v64i32, MVT::v32i64}) { setIndexedLoadAction(ISD::POST_INC, VT, Legal); setIndexedStoreAction(ISD::POST_INC, VT, Legal); } } computeRegisterProperties(&HRI); // // Library calls for unsupported operations // bool FastMath = EnableFastMath; setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3"); setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3"); setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3"); setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3"); setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3"); setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3"); setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3"); setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3"); setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf"); setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf"); setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti"); setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti"); setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti"); setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti"); if (IsV4) { // Handle single-precision floating point operations on V4. if (FastMath) { setLibcallName(RTLIB::ADD_F32, "__hexagon_fast_addsf3"); setLibcallName(RTLIB::SUB_F32, "__hexagon_fast_subsf3"); setLibcallName(RTLIB::MUL_F32, "__hexagon_fast_mulsf3"); setLibcallName(RTLIB::OGT_F32, "__hexagon_fast_gtsf2"); setLibcallName(RTLIB::OLT_F32, "__hexagon_fast_ltsf2"); // Double-precision compares. setLibcallName(RTLIB::OGT_F64, "__hexagon_fast_gtdf2"); setLibcallName(RTLIB::OLT_F64, "__hexagon_fast_ltdf2"); } else { setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3"); setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3"); setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3"); setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2"); setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2"); // Double-precision compares. setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2"); setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2"); } } // This is the only fast library function for sqrtd. if (FastMath) setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2"); // Prefix is: nothing for "slow-math", // "fast2_" for V4 fast-math and V5+ fast-math double-precision // (actually, keep fast-math and fast-math2 separate for now) if (FastMath) { setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3"); setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3"); setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3"); setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3"); // Calling __hexagon_fast2_divsf3 with fast-math on V5 (ok). setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3"); } else { setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3"); setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3"); setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3"); setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3"); setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3"); } if (Subtarget.hasV5TOps()) { if (FastMath) setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf"); else setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf"); } else { // V4 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf"); setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf"); setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf"); setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf"); setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf"); setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf"); setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf"); setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf"); setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi"); setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi"); setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi"); setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi"); setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi"); setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi"); setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi"); setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi"); setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2"); setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2"); setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2"); setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2"); setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2"); setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2"); setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2"); setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2"); setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2"); setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2"); setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2"); setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2"); setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2"); setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2"); } // These cause problems when the shift amount is non-constant. setLibcallName(RTLIB::SHL_I128, nullptr); setLibcallName(RTLIB::SRL_I128, nullptr); setLibcallName(RTLIB::SRA_I128, nullptr); } const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const { switch ((HexagonISD::NodeType)Opcode) { case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA"; case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT"; case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL"; case HexagonISD::BARRIER: return "HexagonISD::BARRIER"; case HexagonISD::CALL: return "HexagonISD::CALL"; case HexagonISD::CALLnr: return "HexagonISD::CALLnr"; case HexagonISD::CALLR: return "HexagonISD::CALLR"; case HexagonISD::COMBINE: return "HexagonISD::COMBINE"; case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP"; case HexagonISD::CONST32: return "HexagonISD::CONST32"; case HexagonISD::CP: return "HexagonISD::CP"; case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH"; case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN"; case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU"; case HexagonISD::EXTRACTURP: return "HexagonISD::EXTRACTURP"; case HexagonISD::INSERT: return "HexagonISD::INSERT"; case HexagonISD::INSERTRP: return "HexagonISD::INSERTRP"; case HexagonISD::JT: return "HexagonISD::JT"; case HexagonISD::PACKHL: return "HexagonISD::PACKHL"; case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG"; case HexagonISD::SHUFFEB: return "HexagonISD::SHUFFEB"; case HexagonISD::SHUFFEH: return "HexagonISD::SHUFFEH"; case HexagonISD::SHUFFOB: return "HexagonISD::SHUFFOB"; case HexagonISD::SHUFFOH: return "HexagonISD::SHUFFOH"; case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN"; case HexagonISD::VCMPBEQ: return "HexagonISD::VCMPBEQ"; case HexagonISD::VCMPBGT: return "HexagonISD::VCMPBGT"; case HexagonISD::VCMPBGTU: return "HexagonISD::VCMPBGTU"; case HexagonISD::VCMPHEQ: return "HexagonISD::VCMPHEQ"; case HexagonISD::VCMPHGT: return "HexagonISD::VCMPHGT"; case HexagonISD::VCMPHGTU: return "HexagonISD::VCMPHGTU"; case HexagonISD::VCMPWEQ: return "HexagonISD::VCMPWEQ"; case HexagonISD::VCMPWGT: return "HexagonISD::VCMPWGT"; case HexagonISD::VCMPWGTU: return "HexagonISD::VCMPWGTU"; case HexagonISD::VCOMBINE: return "HexagonISD::VCOMBINE"; case HexagonISD::VPACK: return "HexagonISD::VPACK"; case HexagonISD::VSHLH: return "HexagonISD::VSHLH"; case HexagonISD::VSHLW: return "HexagonISD::VSHLW"; case HexagonISD::VSPLATB: return "HexagonISD::VSPLTB"; case HexagonISD::VSPLATH: return "HexagonISD::VSPLATH"; case HexagonISD::VSRAH: return "HexagonISD::VSRAH"; case HexagonISD::VSRAW: return "HexagonISD::VSRAW"; case HexagonISD::VSRLH: return "HexagonISD::VSRLH"; case HexagonISD::VSRLW: return "HexagonISD::VSRLW"; case HexagonISD::VSXTBH: return "HexagonISD::VSXTBH"; case HexagonISD::VSXTBW: return "HexagonISD::VSXTBW"; case HexagonISD::READCYCLE: return "HexagonISD::READCYCLE"; case HexagonISD::OP_END: break; } return nullptr; } bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { EVT MTy1 = EVT::getEVT(Ty1); EVT MTy2 = EVT::getEVT(Ty2); if (!MTy1.isSimple() || !MTy2.isSimple()) return false; return (MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32); } bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { if (!VT1.isSimple() || !VT2.isSimple()) return false; return (VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32); } bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { return isOperationLegalOrCustom(ISD::FMA, VT); } // Should we expand the build vector with shuffles? bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT, unsigned DefinedValues) const { // Hexagon vector shuffle operates on element sizes of bytes or halfwords EVT EltVT = VT.getVectorElementType(); int EltBits = EltVT.getSizeInBits(); if ((EltBits != 8) && (EltBits != 16)) return false; return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); } static StridedLoadKind isStridedLoad(const ArrayRef &Mask) { int even_start = -2; int odd_start = -1; size_t mask_len = Mask.size(); for (auto idx : Mask) { if ((idx - even_start) == 2) even_start = idx; else break; } if (even_start == (int)(mask_len * 2) - 2) return StridedLoadKind::Even; for (auto idx : Mask) { if ((idx - odd_start) == 2) odd_start = idx; else break; } if (odd_start == (int)(mask_len * 2) - 1) return StridedLoadKind::Odd; return StridedLoadKind::NoPattern; } bool HexagonTargetLowering::isShuffleMaskLegal(const SmallVectorImpl &Mask, EVT VT) const { if (Subtarget.useHVXOps()) return isStridedLoad(Mask) != StridedLoadKind::NoPattern; return true; } // Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors // to select data from, V3 is the permutation. SDValue HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { const ShuffleVectorSDNode *SVN = cast(Op); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDLoc dl(Op); EVT VT = Op.getValueType(); bool UseHVX = Subtarget.useHVXOps(); if (V2.isUndef()) V2 = V1; if (SVN->isSplat()) { int Lane = SVN->getSplatIndex(); if (Lane == -1) Lane = 0; // Test if V1 is a SCALAR_TO_VECTOR. if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) return createSplat(DAG, dl, VT, V1.getOperand(0)); // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR // (and probably will turn into a SCALAR_TO_VECTOR once legalization // reaches it). if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR && !isa(V1.getOperand(0))) { bool IsScalarToVector = true; for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i) { if (!V1.getOperand(i).isUndef()) { IsScalarToVector = false; break; } } if (IsScalarToVector) return createSplat(DAG, dl, VT, V1.getOperand(0)); } return createSplat(DAG, dl, VT, DAG.getConstant(Lane, dl, MVT::i32)); } if (UseHVX) { ArrayRef Mask = SVN->getMask(); size_t MaskLen = Mask.size(); int ElemSizeInBits = VT.getScalarSizeInBits(); if ((Subtarget.useHVXSglOps() && (ElemSizeInBits * MaskLen) == 64 * 8) || (Subtarget.useHVXDblOps() && (ElemSizeInBits * MaskLen) == 128 * 8)) { // Return 1 for odd and 2 of even StridedLoadKind Pattern = isStridedLoad(Mask); if (Pattern == StridedLoadKind::NoPattern) return SDValue(); SDValue Vec0 = Op.getOperand(0); SDValue Vec1 = Op.getOperand(1); SDValue StridePattern = DAG.getConstant(Pattern, dl, MVT::i32); SDValue Ops[] = { Vec1, Vec0, StridePattern }; return DAG.getNode(HexagonISD::VPACK, dl, VT, Ops); } // We used to assert in the "else" part here, but that is bad for Halide // Halide creates intermediate double registers by interleaving two // concatenated vector registers. The interleaving requires vector_shuffle // nodes and we shouldn't barf on a double register result of a // vector_shuffle because it is most likely an intermediate result. } // FIXME: We need to support more general vector shuffles. See // below the comment from the ARM backend that deals in the general // case with the vector shuffles. For now, let expand handle these. return SDValue(); // If the shuffle is not directly supported and it has 4 elements, use // the PerfectShuffle-generated table to synthesize it from other shuffles. } // If BUILD_VECTOR has same base element repeated several times, // report true. static bool isCommonSplatElement(BuildVectorSDNode *BVN) { unsigned NElts = BVN->getNumOperands(); SDValue V0 = BVN->getOperand(0); for (unsigned i = 1, e = NElts; i != e; ++i) { if (BVN->getOperand(i) != V0) return false; } return true; } // Lower a vector shift. Try to convert // = SHL/SRA/SRL by to Hexagon specific // = SHL/SRA/SRL by . SDValue HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const { BuildVectorSDNode *BVN = nullptr; SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDValue V3; SDLoc dl(Op); EVT VT = Op.getValueType(); if ((BVN = dyn_cast(V1.getNode())) && isCommonSplatElement(BVN)) V3 = V2; else if ((BVN = dyn_cast(V2.getNode())) && isCommonSplatElement(BVN)) V3 = V1; else return SDValue(); SDValue CommonSplat = BVN->getOperand(0); SDValue Result; if (VT.getSimpleVT() == MVT::v4i16) { switch (Op.getOpcode()) { case ISD::SRA: Result = DAG.getNode(HexagonISD::VSRAH, dl, VT, V3, CommonSplat); break; case ISD::SHL: Result = DAG.getNode(HexagonISD::VSHLH, dl, VT, V3, CommonSplat); break; case ISD::SRL: Result = DAG.getNode(HexagonISD::VSRLH, dl, VT, V3, CommonSplat); break; default: return SDValue(); } } else if (VT.getSimpleVT() == MVT::v2i32) { switch (Op.getOpcode()) { case ISD::SRA: Result = DAG.getNode(HexagonISD::VSRAW, dl, VT, V3, CommonSplat); break; case ISD::SHL: Result = DAG.getNode(HexagonISD::VSHLW, dl, VT, V3, CommonSplat); break; case ISD::SRL: Result = DAG.getNode(HexagonISD::VSRLW, dl, VT, V3, CommonSplat); break; default: return SDValue(); } } else { return SDValue(); } return DAG.getNode(ISD::BITCAST, dl, VT, Result); } SDValue HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { BuildVectorSDNode *BVN = cast(Op.getNode()); SDLoc dl(Op); EVT VT = Op.getValueType(); unsigned Size = VT.getSizeInBits(); // Only handle vectors of 64 bits or shorter. if (Size > 64) return SDValue(); APInt APSplatBits, APSplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; unsigned NElts = BVN->getNumOperands(); // Try to generate a SPLAT instruction. if ((VT.getSimpleVT() == MVT::v4i8 || VT.getSimpleVT() == MVT::v4i16) && (BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, HasAnyUndefs, 0, true) && SplatBitSize <= 16)) { unsigned SplatBits = APSplatBits.getZExtValue(); int32_t SextVal = ((int32_t) (SplatBits << (32 - SplatBitSize)) >> (32 - SplatBitSize)); return createSplat(DAG, dl, VT, DAG.getConstant(SextVal, dl, MVT::i32)); } // Try to generate COMBINE to build v2i32 vectors. if (VT.getSimpleVT() == MVT::v2i32) { SDValue V0 = BVN->getOperand(0); SDValue V1 = BVN->getOperand(1); if (V0.isUndef()) V0 = DAG.getConstant(0, dl, MVT::i32); if (V1.isUndef()) V1 = DAG.getConstant(0, dl, MVT::i32); ConstantSDNode *C0 = dyn_cast(V0); ConstantSDNode *C1 = dyn_cast(V1); // If the element isn't a constant, it is in a register: // generate a COMBINE Register Register instruction. if (!C0 || !C1) return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0); // If one of the operands is an 8 bit integer constant, generate // a COMBINE Immediate Immediate instruction. if (isInt<8>(C0->getSExtValue()) || isInt<8>(C1->getSExtValue())) return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0); } // Try to generate a S2_packhl to build v2i16 vectors. if (VT.getSimpleVT() == MVT::v2i16) { for (unsigned i = 0, e = NElts; i != e; ++i) { if (BVN->getOperand(i).isUndef()) continue; ConstantSDNode *Cst = dyn_cast(BVN->getOperand(i)); // If the element isn't a constant, it is in a register: // generate a S2_packhl instruction. if (!Cst) { SDValue pack = DAG.getNode(HexagonISD::PACKHL, dl, MVT::v4i16, BVN->getOperand(1), BVN->getOperand(0)); return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::v2i16, pack); } } } // In the general case, generate a CONST32 or a CONST64 for constant vectors, // and insert_vector_elt for all the other cases. uint64_t Res = 0; unsigned EltSize = Size / NElts; SDValue ConstVal; uint64_t Mask = ~uint64_t(0ULL) >> (64 - EltSize); bool HasNonConstantElements = false; for (unsigned i = 0, e = NElts; i != e; ++i) { // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon's // combine, const64, etc. are Big Endian. unsigned OpIdx = NElts - i - 1; SDValue Operand = BVN->getOperand(OpIdx); if (Operand.isUndef()) continue; int64_t Val = 0; if (ConstantSDNode *Cst = dyn_cast(Operand)) Val = Cst->getSExtValue(); else HasNonConstantElements = true; Val &= Mask; Res = (Res << EltSize) | Val; } if (Size > 64) return SDValue(); if (Size == 64) ConstVal = DAG.getConstant(Res, dl, MVT::i64); else ConstVal = DAG.getConstant(Res, dl, MVT::i32); // When there are non constant operands, add them with INSERT_VECTOR_ELT to // ConstVal, the constant part of the vector. if (HasNonConstantElements) { EVT EltVT = VT.getVectorElementType(); SDValue Width = DAG.getConstant(EltVT.getSizeInBits(), dl, MVT::i64); SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width, DAG.getConstant(32, dl, MVT::i64)); for (unsigned i = 0, e = NElts; i != e; ++i) { // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon // is Big Endian. unsigned OpIdx = NElts - i - 1; SDValue Operand = BVN->getOperand(OpIdx); if (isa(Operand)) // This operand is already in ConstVal. continue; if (VT.getSizeInBits() == 64 && Operand.getValueSizeInBits() == 32) { SDValue C = DAG.getConstant(0, dl, MVT::i32); Operand = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Operand); } SDValue Idx = DAG.getConstant(OpIdx, dl, MVT::i64); SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, Width); SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset); const SDValue Ops[] = {ConstVal, Operand, Combined}; if (VT.getSizeInBits() == 32) ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops); else ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops); } } return DAG.getNode(ISD::BITCAST, dl, VT, ConstVal); } SDValue HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); bool UseHVX = Subtarget.useHVXOps(); EVT VT = Op.getValueType(); unsigned NElts = Op.getNumOperands(); SDValue Vec0 = Op.getOperand(0); EVT VecVT = Vec0.getValueType(); unsigned Width = VecVT.getSizeInBits(); if (NElts == 2) { MVT ST = VecVT.getSimpleVT(); // We are trying to concat two v2i16 to a single v4i16, or two v4i8 // into a single v8i8. if (ST == MVT::v2i16 || ST == MVT::v4i8) return DAG.getNode(HexagonISD::COMBINE, dl, VT, Op.getOperand(1), Vec0); if (UseHVX) { assert((Width == 64*8 && Subtarget.useHVXSglOps()) || (Width == 128*8 && Subtarget.useHVXDblOps())); SDValue Vec1 = Op.getOperand(1); MVT OpTy = Subtarget.useHVXSglOps() ? MVT::v16i32 : MVT::v32i32; MVT ReTy = Subtarget.useHVXSglOps() ? MVT::v32i32 : MVT::v64i32; SDValue B0 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec0); SDValue B1 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec1); SDValue VC = DAG.getNode(HexagonISD::VCOMBINE, dl, ReTy, B1, B0); return DAG.getNode(ISD::BITCAST, dl, VT, VC); } } if (VT.getSizeInBits() != 32 && VT.getSizeInBits() != 64) return SDValue(); SDValue C0 = DAG.getConstant(0, dl, MVT::i64); SDValue C32 = DAG.getConstant(32, dl, MVT::i64); SDValue W = DAG.getConstant(Width, dl, MVT::i64); // Create the "width" part of the argument to insert_rp/insertp_rp. SDValue S = DAG.getNode(ISD::SHL, dl, MVT::i64, W, C32); SDValue V = C0; for (unsigned i = 0, e = NElts; i != e; ++i) { unsigned N = NElts-i-1; SDValue OpN = Op.getOperand(N); if (VT.getSizeInBits() == 64 && OpN.getValueSizeInBits() == 32) { SDValue C = DAG.getConstant(0, dl, MVT::i32); OpN = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, OpN); } SDValue Idx = DAG.getConstant(N, dl, MVT::i64); SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, W); SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, S, Offset); if (VT.getSizeInBits() == 32) V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, {V, OpN, Or}); else if (VT.getSizeInBits() == 64) V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, {V, OpN, Or}); else return SDValue(); } return DAG.getNode(ISD::BITCAST, dl, VT, V); } SDValue HexagonTargetLowering::LowerEXTRACT_SUBVECTOR_HVX(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getOperand(0).getValueType(); SDLoc dl(Op); bool UseHVX = Subtarget.useHVXOps(); bool UseHVXSgl = Subtarget.useHVXSglOps(); // Just in case... if (!VT.isVector() || !UseHVX) return SDValue(); EVT ResVT = Op.getValueType(); unsigned ResSize = ResVT.getSizeInBits(); unsigned VectorSizeInBits = UseHVXSgl ? (64 * 8) : (128 * 8); unsigned OpSize = VT.getSizeInBits(); // We deal only with cases where the result is the vector size // and the vector operand is a double register. if (!(ResVT.isByteSized() && ResSize == VectorSizeInBits) || !(VT.isByteSized() && OpSize == 2 * VectorSizeInBits)) return SDValue(); ConstantSDNode *Cst = dyn_cast(Op.getOperand(1)); if (!Cst) return SDValue(); unsigned Val = Cst->getZExtValue(); // These two will get lowered to an appropriate EXTRACT_SUBREG in ISel. if (Val == 0) { SDValue Vec = Op.getOperand(0); return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, ResVT, Vec); } if (ResVT.getVectorNumElements() == Val) { SDValue Vec = Op.getOperand(0); return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, ResVT, Vec); } return SDValue(); } SDValue HexagonTargetLowering::LowerEXTRACT_VECTOR(SDValue Op, SelectionDAG &DAG) const { // If we are dealing with EXTRACT_SUBVECTOR on a HVX type, we may // be able to simplify it to an EXTRACT_SUBREG. if (Op.getOpcode() == ISD::EXTRACT_SUBVECTOR && Subtarget.useHVXOps() && isHvxVectorType(Op.getValueType().getSimpleVT())) return LowerEXTRACT_SUBVECTOR_HVX(Op, DAG); EVT VT = Op.getValueType(); int VTN = VT.isVector() ? VT.getVectorNumElements() : 1; SDLoc dl(Op); SDValue Idx = Op.getOperand(1); SDValue Vec = Op.getOperand(0); EVT VecVT = Vec.getValueType(); EVT EltVT = VecVT.getVectorElementType(); int EltSize = EltVT.getSizeInBits(); SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT ? EltSize : VTN * EltSize, dl, MVT::i64); // Constant element number. if (ConstantSDNode *CI = dyn_cast(Idx)) { uint64_t X = CI->getZExtValue(); SDValue Offset = DAG.getConstant(X * EltSize, dl, MVT::i32); const SDValue Ops[] = {Vec, Width, Offset}; ConstantSDNode *CW = dyn_cast(Width); assert(CW && "Non constant width in LowerEXTRACT_VECTOR"); SDValue N; MVT SVT = VecVT.getSimpleVT(); uint64_t W = CW->getZExtValue(); if (W == 32) { // Translate this node into EXTRACT_SUBREG. unsigned Subreg = (X == 0) ? Hexagon::isub_lo : 0; if (X == 0) Subreg = Hexagon::isub_lo; else if (SVT == MVT::v2i32 && X == 1) Subreg = Hexagon::isub_hi; else if (SVT == MVT::v4i16 && X == 2) Subreg = Hexagon::isub_hi; else if (SVT == MVT::v8i8 && X == 4) Subreg = Hexagon::isub_hi; else llvm_unreachable("Bad offset"); N = DAG.getTargetExtractSubreg(Subreg, dl, MVT::i32, Vec); } else if (SVT.getSizeInBits() == 32) { N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i32, Ops); } else if (SVT.getSizeInBits() == 64) { N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i64, Ops); if (VT.getSizeInBits() == 32) N = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, N); } else return SDValue(); return DAG.getNode(ISD::BITCAST, dl, VT, N); } // Variable element number. SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx, DAG.getConstant(EltSize, dl, MVT::i32)); SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width, DAG.getConstant(32, dl, MVT::i64)); SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset); const SDValue Ops[] = {Vec, Combined}; SDValue N; if (VecVT.getSizeInBits() == 32) { N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i32, Ops); } else { N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i64, Ops); if (VT.getSizeInBits() == 32) N = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, N); } return DAG.getNode(ISD::BITCAST, dl, VT, N); } SDValue HexagonTargetLowering::LowerINSERT_VECTOR(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); int VTN = VT.isVector() ? VT.getVectorNumElements() : 1; SDLoc dl(Op); SDValue Vec = Op.getOperand(0); SDValue Val = Op.getOperand(1); SDValue Idx = Op.getOperand(2); EVT VecVT = Vec.getValueType(); EVT EltVT = VecVT.getVectorElementType(); int EltSize = EltVT.getSizeInBits(); SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::INSERT_VECTOR_ELT ? EltSize : VTN * EltSize, dl, MVT::i64); if (ConstantSDNode *C = cast(Idx)) { SDValue Offset = DAG.getConstant(C->getSExtValue() * EltSize, dl, MVT::i32); const SDValue Ops[] = {Vec, Val, Width, Offset}; SDValue N; if (VT.getSizeInBits() == 32) N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, Ops); else if (VT.getSizeInBits() == 64) N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, Ops); else return SDValue(); return DAG.getNode(ISD::BITCAST, dl, VT, N); } // Variable element number. SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx, DAG.getConstant(EltSize, dl, MVT::i32)); SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width, DAG.getConstant(32, dl, MVT::i64)); SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset); if (VT.getSizeInBits() == 64 && Val.getValueSizeInBits() == 32) { SDValue C = DAG.getConstant(0, dl, MVT::i32); Val = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Val); } const SDValue Ops[] = {Vec, Val, Combined}; SDValue N; if (VT.getSizeInBits() == 32) N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops); else if (VT.getSizeInBits() == 64) N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops); else return SDValue(); return DAG.getNode(ISD::BITCAST, dl, VT, N); } bool HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { // Assuming the caller does not have either a signext or zeroext modifier, and // only one value is accepted, any reasonable truncation is allowed. if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; // FIXME: in principle up to 64-bit could be made safe, but it would be very // fragile at the moment: any support for multiple value returns would be // liable to disallow tail calls involving i64 -> iN truncation in many cases. return Ty1->getPrimitiveSizeInBits() <= 32; } SDValue HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Offset = Op.getOperand(1); SDValue Handler = Op.getOperand(2); SDLoc dl(Op); auto PtrVT = getPointerTy(DAG.getDataLayout()); // Mark function as containing a call to EH_RETURN. HexagonMachineFunctionInfo *FuncInfo = DAG.getMachineFunction().getInfo(); FuncInfo->setHasEHReturn(); unsigned OffsetReg = Hexagon::R28; SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT), DAG.getIntPtrConstant(4, dl)); Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo()); Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset); // Not needed we already use it as explict input to EH_RETURN. // MF.getRegInfo().addLiveOut(OffsetReg); return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain); } SDValue HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { unsigned Opc = Op.getOpcode(); switch (Opc) { default: #ifndef NDEBUG Op.getNode()->dumpr(&DAG); if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END) errs() << "Check for a non-legal type in this operation\n"; #endif llvm_unreachable("Should not custom lower this!"); case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); case ISD::INSERT_SUBVECTOR: return LowerINSERT_VECTOR(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR(Op, DAG); case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_VECTOR(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR(Op, DAG); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::SRA: case ISD::SHL: case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); // Frame & Return address. Currently unimplemented. case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); // Custom lower some vector loads. case ISD::LOAD: return LowerLOAD(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::VSELECT: return LowerVSELECT(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); case ISD::INLINEASM: return LowerINLINEASM(Op, DAG); case ISD::PREFETCH: return LowerPREFETCH(Op, DAG); case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG); } } /// Returns relocation base for the given PIC jumptable. SDValue HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const { int Idx = cast(Table)->getIndex(); EVT VT = Table.getValueType(); SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T); } //===----------------------------------------------------------------------===// // Inline Assembly Support //===----------------------------------------------------------------------===// TargetLowering::ConstraintType HexagonTargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'q': case 'v': if (Subtarget.useHVXOps()) return C_Register; break; } } return TargetLowering::getConstraintType(Constraint); } std::pair HexagonTargetLowering::getRegForInlineAsmConstraint( const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps(); if (Constraint.size() == 1) { switch (Constraint[0]) { case 'r': // R0-R31 switch (VT.SimpleTy) { default: llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: case MVT::f32: return std::make_pair(0U, &Hexagon::IntRegsRegClass); case MVT::i64: case MVT::f64: return std::make_pair(0U, &Hexagon::DoubleRegsRegClass); } case 'q': // q0-q3 switch (VT.getSizeInBits()) { default: llvm_unreachable("getRegForInlineAsmConstraint Unhandled vector size"); case 512: return std::make_pair(0U, &Hexagon::VecPredRegsRegClass); case 1024: return std::make_pair(0U, &Hexagon::VecPredRegs128BRegClass); } case 'v': // V0-V31 switch (VT.getSizeInBits()) { default: llvm_unreachable("getRegForInlineAsmConstraint Unhandled vector size"); case 512: return std::make_pair(0U, &Hexagon::VectorRegsRegClass); case 1024: if (Subtarget.hasV60TOps() && UseHVX && UseHVXDbl) return std::make_pair(0U, &Hexagon::VectorRegs128BRegClass); return std::make_pair(0U, &Hexagon::VecDblRegsRegClass); case 2048: return std::make_pair(0U, &Hexagon::VecDblRegs128BRegClass); } default: llvm_unreachable("Unknown asm register class"); } } return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); } /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { return Subtarget.hasV5TOps(); } /// isLegalAddressingMode - Return true if the addressing mode represented by /// AM is legal for this target, for a load/store of the specified type. bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS) const { if (Ty->isSized()) { // When LSR detects uses of the same base address to access different // types (e.g. unions), it will assume a conservative type for these // uses: // LSR Use: Kind=Address of void in addrspace(4294967295), ... // The type Ty passed here would then be "void". Skip the alignment // checks, but do not return false right away, since that confuses // LSR into crashing. unsigned A = DL.getABITypeAlignment(Ty); // The base offset must be a multiple of the alignment. if ((AM.BaseOffs % A) != 0) return false; // The shifted offset must fit in 11 bits. if (!isInt<11>(AM.BaseOffs >> Log2_32(A))) return false; } // No global is ever allowed as a base. if (AM.BaseGV) return false; int Scale = AM.Scale; if (Scale < 0) Scale = -Scale; switch (Scale) { case 0: // No scale reg, "r+i", "r", or just "i". break; default: // No scaled addressing mode. return false; } return true; } /// Return true if folding a constant offset with the given GlobalAddress is /// legal. It is frequently not legal in PIC relocation models. bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { return HTM.getRelocationModel() == Reloc::Static; } /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can compare /// a register against the immediate without having to materialize the /// immediate into a register. bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const { return Imm >= -512 && Imm <= 511; } /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool HexagonTargetLowering::IsEligibleForTailCallOptimization( SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, bool isCallerStructRet, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG& DAG) const { const Function *CallerF = DAG.getMachineFunction().getFunction(); CallingConv::ID CallerCC = CallerF->getCallingConv(); bool CCMatch = CallerCC == CalleeCC; // *************************************************************************** // Look for obvious safe cases to perform tail call optimization that do not // require ABI changes. // *************************************************************************** // If this is a tail call via a function pointer, then don't do it! if (!isa(Callee) && !isa(Callee)) { return false; } // Do not optimize if the calling conventions do not match and the conventions // used are not C or Fast. if (!CCMatch) { bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast); bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast); // If R & E, then ok. if (!R || !E) return false; } // Do not tail call optimize vararg calls. if (isVarArg) return false; // Also avoid tail call optimization if either caller or callee uses struct // return semantics. if (isCalleeStructRet || isCallerStructRet) return false; // In addition to the cases above, we also disable Tail Call Optimization if // the calling convention code that at least one outgoing argument needs to // go on the stack. We cannot check that here because at this point that // information is not available. return true; } /// Returns the target specific optimal type for load and store operations as /// a result of memset, memcpy, and memmove lowering. /// /// If DstAlign is zero that means it's safe to destination alignment can /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't /// a need to check it against alignment requirement, probably because the /// source does not need to be loaded. If 'IsMemset' is true, that means it's /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it /// does not need to be loaded. It returns EVT::Other if the type should be /// determined using generic target-independent logic. EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const { auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool { return (GivenA % MinA) == 0; }; if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8))) return MVT::i64; if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4))) return MVT::i32; if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2))) return MVT::i16; return MVT::Other; } bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align, bool *Fast) const { if (Fast) *Fast = false; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::v64i8: case MVT::v128i8: case MVT::v256i8: case MVT::v32i16: case MVT::v64i16: case MVT::v128i16: case MVT::v16i32: case MVT::v32i32: case MVT::v64i32: case MVT::v8i64: case MVT::v16i64: case MVT::v32i64: return true; } return false; } std::pair HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const { const TargetRegisterClass *RRC = nullptr; uint8_t Cost = 1; switch (VT.SimpleTy) { default: return TargetLowering::findRepresentativeClass(TRI, VT); case MVT::v64i8: case MVT::v32i16: case MVT::v16i32: case MVT::v8i64: RRC = &Hexagon::VectorRegsRegClass; break; case MVT::v128i8: case MVT::v64i16: case MVT::v32i32: case MVT::v16i64: if (Subtarget.hasV60TOps() && Subtarget.useHVXOps() && Subtarget.useHVXDblOps()) RRC = &Hexagon::VectorRegs128BRegClass; else RRC = &Hexagon::VecDblRegsRegClass; break; case MVT::v256i8: case MVT::v128i16: case MVT::v64i32: case MVT::v32i64: RRC = &Hexagon::VecDblRegs128BRegClass; break; } return std::make_pair(RRC, Cost); } Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, AtomicOrdering Ord) const { BasicBlock *BB = Builder.GetInsertBlock(); Module *M = BB->getParent()->getParent(); Type *Ty = cast(Addr->getType())->getElementType(); unsigned SZ = Ty->getPrimitiveSizeInBits(); assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported"); Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked : Intrinsic::hexagon_L4_loadd_locked; Value *Fn = Intrinsic::getDeclaration(M, IntID); return Builder.CreateCall(Fn, Addr, "larx"); } /// Perform a store-conditional operation to Addr. Return the status of the /// store. This should be 0 if the store succeeded, non-zero otherwise. Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const { BasicBlock *BB = Builder.GetInsertBlock(); Module *M = BB->getParent()->getParent(); Type *Ty = Val->getType(); unsigned SZ = Ty->getPrimitiveSizeInBits(); assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported"); Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked : Intrinsic::hexagon_S4_stored_locked; Value *Fn = Intrinsic::getDeclaration(M, IntID); Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx"); Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), ""); Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext())); return Ext; } TargetLowering::AtomicExpansionKind HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { // Do not expand loads and stores that don't exceed 64 bits. return LI->getType()->getPrimitiveSizeInBits() > 64 ? AtomicExpansionKind::LLOnly : AtomicExpansionKind::None; } bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { // Do not expand loads and stores that don't exceed 64 bits. return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64; } bool HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR( AtomicCmpXchgInst *AI) const { const DataLayout &DL = AI->getModule()->getDataLayout(); unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType()); return Size >= 4 && Size <= 8; }