//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Hexagon implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "HexagonInstrInfo.h" #include "Hexagon.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/DFAPacketizer.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "hexagon-instrinfo" #define GET_INSTRINFO_CTOR_DTOR #define GET_INSTRMAP_INFO #include "HexagonGenInstrInfo.inc" #include "HexagonGenDFAPacketizer.inc" /// /// Constants for Hexagon instructions. /// const int Hexagon_MEMW_OFFSET_MAX = 4095; const int Hexagon_MEMW_OFFSET_MIN = -4096; const int Hexagon_MEMD_OFFSET_MAX = 8191; const int Hexagon_MEMD_OFFSET_MIN = -8192; const int Hexagon_MEMH_OFFSET_MAX = 2047; const int Hexagon_MEMH_OFFSET_MIN = -2048; const int Hexagon_MEMB_OFFSET_MAX = 1023; const int Hexagon_MEMB_OFFSET_MIN = -1024; const int Hexagon_ADDI_OFFSET_MAX = 32767; const int Hexagon_ADDI_OFFSET_MIN = -32768; const int Hexagon_MEMD_AUTOINC_MAX = 56; const int Hexagon_MEMD_AUTOINC_MIN = -64; const int Hexagon_MEMW_AUTOINC_MAX = 28; const int Hexagon_MEMW_AUTOINC_MIN = -32; const int Hexagon_MEMH_AUTOINC_MAX = 14; const int Hexagon_MEMH_AUTOINC_MIN = -16; const int Hexagon_MEMB_AUTOINC_MAX = 7; const int Hexagon_MEMB_AUTOINC_MIN = -8; // Pin the vtable to this file. void HexagonInstrInfo::anchor() {} HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST) : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP), RI(), Subtarget(ST) {} /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case Hexagon::L2_loadri_io: case Hexagon::L2_loadrd_io: case Hexagon::L2_loadrh_io: case Hexagon::L2_loadrb_io: case Hexagon::L2_loadrub_io: if (MI->getOperand(2).isFI() && MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) { FrameIndex = MI->getOperand(2).getIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case Hexagon::S2_storeri_io: case Hexagon::S2_storerd_io: case Hexagon::S2_storerh_io: case Hexagon::S2_storerb_io: if (MI->getOperand(2).isFI() && MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) { FrameIndex = MI->getOperand(0).getIndex(); return MI->getOperand(2).getReg(); } break; } return 0; } // Find the hardware loop instruction used to set-up the specified loop. // On Hexagon, we have two instructions used to set-up the hardware loop // (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions // to indicate the end of a loop. static MachineInstr * findLoopInstr(MachineBasicBlock *BB, int EndLoopOp, SmallPtrSet &Visited) { int LOOPi; int LOOPr; if (EndLoopOp == Hexagon::ENDLOOP0) { LOOPi = Hexagon::J2_loop0i; LOOPr = Hexagon::J2_loop0r; } else { // EndLoopOp == Hexagon::EndLOOP1 LOOPi = Hexagon::J2_loop1i; LOOPr = Hexagon::J2_loop1r; } // The loop set-up instruction will be in a predecessor block for (MachineBasicBlock::pred_iterator PB = BB->pred_begin(), PE = BB->pred_end(); PB != PE; ++PB) { // If this has been visited, already skip it. if (!Visited.insert(*PB).second) continue; if (*PB == BB) continue; for (MachineBasicBlock::reverse_instr_iterator I = (*PB)->instr_rbegin(), E = (*PB)->instr_rend(); I != E; ++I) { int Opc = I->getOpcode(); if (Opc == LOOPi || Opc == LOOPr) return &*I; // We've reached a different loop, which means the loop0 has been removed. if (Opc == EndLoopOp) return 0; } // Check the predecessors for the LOOP instruction. MachineInstr *loop = findLoopInstr(*PB, EndLoopOp, Visited); if (loop) return loop; } return 0; } unsigned HexagonInstrInfo::InsertBranch( MachineBasicBlock &MBB,MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef Cond, DebugLoc DL) const { Opcode_t BOpc = Hexagon::J2_jump; Opcode_t BccOpc = Hexagon::J2_jumpt; assert(TBB && "InsertBranch must not be told to insert a fallthrough"); // Check if ReverseBranchCondition has asked to reverse this branch // If we want to reverse the branch an odd number of times, we want // J2_jumpf. if (!Cond.empty() && Cond[0].isImm()) BccOpc = Cond[0].getImm(); if (!FBB) { if (Cond.empty()) { // Due to a bug in TailMerging/CFG Optimization, we need to add a // special case handling of a predicated jump followed by an // unconditional jump. If not, Tail Merging and CFG Optimization go // into an infinite loop. MachineBasicBlock *NewTBB, *NewFBB; SmallVector Cond; MachineInstr *Term = MBB.getFirstTerminator(); if (Term != MBB.end() && isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) { MachineBasicBlock *NextBB = std::next(MachineFunction::iterator(&MBB)); if (NewTBB == NextBB) { ReverseBranchCondition(Cond); RemoveBranch(MBB); return InsertBranch(MBB, TBB, nullptr, Cond, DL); } } BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); } else if (isEndLoopN(Cond[0].getImm())) { int EndLoopOp = Cond[0].getImm(); assert(Cond[1].isMBB()); // Since we're adding an ENDLOOP, there better be a LOOP instruction. // Check for it, and change the BB target if needed. SmallPtrSet VisitedBBs; MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs); assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP"); Loop->getOperand(0).setMBB(TBB); // Add the ENDLOOP after the finding the LOOP0. BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB); } else if (isNewValueJump(Cond[0].getImm())) { assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump"); // New value jump // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset) // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset) unsigned Flags1 = getUndefRegState(Cond[1].isUndef()); DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber();); if (Cond[2].isReg()) { unsigned Flags2 = getUndefRegState(Cond[2].isUndef()); BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1). addReg(Cond[2].getReg(), Flags2).addMBB(TBB); } else if(Cond[2].isImm()) { BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1). addImm(Cond[2].getImm()).addMBB(TBB); } else llvm_unreachable("Invalid condition for branching"); } else { assert((Cond.size() == 2) && "Malformed cond vector"); const MachineOperand &RO = Cond[1]; unsigned Flags = getUndefRegState(RO.isUndef()); BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB); } return 1; } assert((!Cond.empty()) && "Cond. cannot be empty when multiple branchings are required"); assert((!isNewValueJump(Cond[0].getImm())) && "NV-jump cannot be inserted with another branch"); // Special case for hardware loops. The condition is a basic block. if (isEndLoopN(Cond[0].getImm())) { int EndLoopOp = Cond[0].getImm(); assert(Cond[1].isMBB()); // Since we're adding an ENDLOOP, there better be a LOOP instruction. // Check for it, and change the BB target if needed. SmallPtrSet VisitedBBs; MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs); assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP"); Loop->getOperand(0).setMBB(TBB); // Add the ENDLOOP after the finding the LOOP0. BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB); } else { const MachineOperand &RO = Cond[1]; unsigned Flags = getUndefRegState(RO.isUndef()); BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB); } BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); return 2; } /// This function can analyze one/two way branching only and should (mostly) be /// called by target independent side. /// First entry is always the opcode of the branching instruction, except when /// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a /// BB with only unconditional jump. Subsequent entries depend upon the opcode, /// e.g. Jump_c p will have /// Cond[0] = Jump_c /// Cond[1] = p /// HW-loop ENDLOOP: /// Cond[0] = ENDLOOP /// Cond[1] = MBB /// New value jump: /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode /// Cond[1] = R /// Cond[2] = Imm /// @note Related function is \fn findInstrPredicate which fills in /// Cond. vector when a predicated instruction is passed to it. /// We follow same protocol in that case too. /// bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { TBB = nullptr; FBB = nullptr; Cond.clear(); // If the block has no terminators, it just falls into the block after it. MachineBasicBlock::instr_iterator I = MBB.instr_end(); if (I == MBB.instr_begin()) return false; // A basic block may looks like this: // // [ insn // EH_LABEL // insn // insn // insn // EH_LABEL // insn ] // // It has two succs but does not have a terminator // Don't know how to handle it. do { --I; if (I->isEHLabel()) // Don't analyze EH branches. return true; } while (I != MBB.instr_begin()); I = MBB.instr_end(); --I; while (I->isDebugValue()) { if (I == MBB.instr_begin()) return false; --I; } bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump && I->getOperand(0).isMBB(); // Delete the J2_jump if it's equivalent to a fall-through. if (AllowModify && JumpToBlock && MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { DEBUG(dbgs()<< "\nErasing the jump to successor block\n";); I->eraseFromParent(); I = MBB.instr_end(); if (I == MBB.instr_begin()) return false; --I; } if (!isUnpredicatedTerminator(I)) return false; // Get the last instruction in the block. MachineInstr *LastInst = I; MachineInstr *SecondLastInst = nullptr; // Find one more terminator if present. do { if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) { if (!SecondLastInst) SecondLastInst = I; else // This is a third branch. return true; } if (I == MBB.instr_begin()) break; --I; } while(I); int LastOpcode = LastInst->getOpcode(); int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0; // If the branch target is not a basic block, it could be a tail call. // (It is, if the target is a function.) if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB()) return true; if (SecLastOpcode == Hexagon::J2_jump && !SecondLastInst->getOperand(0).isMBB()) return true; bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode); bool LastOpcodeHasNVJump = isNewValueJump(LastInst); // If there is only one terminator instruction, process it. if (LastInst && !SecondLastInst) { if (LastOpcode == Hexagon::J2_jump) { TBB = LastInst->getOperand(0).getMBB(); return false; } if (isEndLoopN(LastOpcode)) { TBB = LastInst->getOperand(0).getMBB(); Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); Cond.push_back(LastInst->getOperand(0)); return false; } if (LastOpcodeHasJMP_c) { TBB = LastInst->getOperand(1).getMBB(); Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); Cond.push_back(LastInst->getOperand(0)); return false; } // Only supporting rr/ri versions of new-value jumps. if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) { TBB = LastInst->getOperand(2).getMBB(); Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); Cond.push_back(LastInst->getOperand(0)); Cond.push_back(LastInst->getOperand(1)); return false; } DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber() << " with one jump\n";); // Otherwise, don't know what this is. return true; } bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode); bool SecLastOpcodeHasNVJump = isNewValueJump(SecondLastInst); if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) { TBB = SecondLastInst->getOperand(1).getMBB(); Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); Cond.push_back(SecondLastInst->getOperand(0)); FBB = LastInst->getOperand(0).getMBB(); return false; } // Only supporting rr/ri versions of new-value jumps. if (SecLastOpcodeHasNVJump && (SecondLastInst->getNumExplicitOperands() == 3) && (LastOpcode == Hexagon::J2_jump)) { TBB = SecondLastInst->getOperand(2).getMBB(); Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); Cond.push_back(SecondLastInst->getOperand(0)); Cond.push_back(SecondLastInst->getOperand(1)); FBB = LastInst->getOperand(0).getMBB(); return false; } // If the block ends with two Hexagon:JMPs, handle it. The second one is not // executed, so remove it. if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) { TBB = SecondLastInst->getOperand(0).getMBB(); I = LastInst; if (AllowModify) I->eraseFromParent(); return false; } // If the block ends with an ENDLOOP, and J2_jump, handle it. if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) { TBB = SecondLastInst->getOperand(0).getMBB(); Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); Cond.push_back(SecondLastInst->getOperand(0)); FBB = LastInst->getOperand(0).getMBB(); return false; } DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber() << " with two jumps";); // Otherwise, can't handle this. return true; } unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { DEBUG(dbgs() << "\nRemoving branches out of BB#" << MBB.getNumber()); MachineBasicBlock::iterator I = MBB.end(); unsigned Count = 0; while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; // Only removing branches from end of MBB. if (!I->isBranch()) return Count; if (Count && (I->getOpcode() == Hexagon::J2_jump)) llvm_unreachable("Malformed basic block: unconditional branch not last"); MBB.erase(&MBB.back()); I = MBB.end(); ++Count; } return Count; } /// \brief For a comparison instruction, return the source registers in /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it /// compares against in CmpValue. Return true if the comparison instruction /// can be analyzed. bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const { unsigned Opc = MI->getOpcode(); // Set mask and the first source register. switch (Opc) { case Hexagon::C2_cmpeq: case Hexagon::C2_cmpeqp: case Hexagon::C2_cmpgt: case Hexagon::C2_cmpgtp: case Hexagon::C2_cmpgtu: case Hexagon::C2_cmpgtup: case Hexagon::C4_cmpneq: case Hexagon::C4_cmplte: case Hexagon::C4_cmplteu: case Hexagon::C2_cmpeqi: case Hexagon::C2_cmpgti: case Hexagon::C2_cmpgtui: case Hexagon::C4_cmpneqi: case Hexagon::C4_cmplteui: case Hexagon::C4_cmpltei: SrcReg = MI->getOperand(1).getReg(); Mask = ~0; break; case Hexagon::A4_cmpbeq: case Hexagon::A4_cmpbgt: case Hexagon::A4_cmpbgtu: case Hexagon::A4_cmpbeqi: case Hexagon::A4_cmpbgti: case Hexagon::A4_cmpbgtui: SrcReg = MI->getOperand(1).getReg(); Mask = 0xFF; break; case Hexagon::A4_cmpheq: case Hexagon::A4_cmphgt: case Hexagon::A4_cmphgtu: case Hexagon::A4_cmpheqi: case Hexagon::A4_cmphgti: case Hexagon::A4_cmphgtui: SrcReg = MI->getOperand(1).getReg(); Mask = 0xFFFF; break; } // Set the value/second source register. switch (Opc) { case Hexagon::C2_cmpeq: case Hexagon::C2_cmpeqp: case Hexagon::C2_cmpgt: case Hexagon::C2_cmpgtp: case Hexagon::C2_cmpgtu: case Hexagon::C2_cmpgtup: case Hexagon::A4_cmpbeq: case Hexagon::A4_cmpbgt: case Hexagon::A4_cmpbgtu: case Hexagon::A4_cmpheq: case Hexagon::A4_cmphgt: case Hexagon::A4_cmphgtu: case Hexagon::C4_cmpneq: case Hexagon::C4_cmplte: case Hexagon::C4_cmplteu: SrcReg2 = MI->getOperand(2).getReg(); return true; case Hexagon::C2_cmpeqi: case Hexagon::C2_cmpgtui: case Hexagon::C2_cmpgti: case Hexagon::C4_cmpneqi: case Hexagon::C4_cmplteui: case Hexagon::C4_cmpltei: case Hexagon::A4_cmpbeqi: case Hexagon::A4_cmpbgti: case Hexagon::A4_cmpbgtui: case Hexagon::A4_cmpheqi: case Hexagon::A4_cmphgti: case Hexagon::A4_cmphgtui: SrcReg2 = 0; Value = MI->getOperand(2).getImm(); return true; } return false; } void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) { BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg); return; } if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) { BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg); return; } if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) { // Map Pd = Ps to Pd = or(Ps, Ps). BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg).addReg(SrcReg).addReg(SrcReg); return; } if (Hexagon::DoubleRegsRegClass.contains(DestReg) && Hexagon::IntRegsRegClass.contains(SrcReg)) { // We can have an overlap between single and double reg: r1:0 = r0. if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) { // r1:0 = r0 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg, Hexagon::subreg_hireg))).addImm(0); } else { // r1:0 = r1 or no overlap. BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg, Hexagon::subreg_loreg))).addReg(SrcReg); BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg, Hexagon::subreg_hireg))).addImm(0); } return; } if (Hexagon::CtrRegsRegClass.contains(DestReg) && Hexagon::IntRegsRegClass.contains(SrcReg)) { BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg); return; } if (Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::IntRegsRegClass.contains(DestReg)) { BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg). addReg(SrcReg, getKillRegState(KillSrc)); return; } if (Hexagon::IntRegsRegClass.contains(SrcReg) && Hexagon::PredRegsRegClass.contains(DestReg)) { BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg). addReg(SrcReg, getKillRegState(KillSrc)); return; } llvm_unreachable("Unimplemented"); } void HexagonInstrInfo:: storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL = MBB.findDebugLoc(I); MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); unsigned Align = MFI.getObjectAlignment(FI); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), MachineMemOperand::MOStore, MFI.getObjectSize(FI), Align); if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io)) .addFrameIndex(FI).addImm(0) .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io)) .addFrameIndex(FI).addImm(0) .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { BuildMI(MBB, I, DL, get(Hexagon::STriw_pred)) .addFrameIndex(FI).addImm(0) .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); } else { llvm_unreachable("Unimplemented"); } } void HexagonInstrInfo::storeRegToAddr( MachineFunction &MF, unsigned SrcReg, bool isKill, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const { llvm_unreachable("Unimplemented"); } void HexagonInstrInfo:: loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL = MBB.findDebugLoc(I); MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); unsigned Align = MFI.getObjectAlignment(FI); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), MachineMemOperand::MOLoad, MFI.getObjectSize(FI), Align); if (RC == &Hexagon::IntRegsRegClass) { BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg) .addFrameIndex(FI).addImm(0).addMemOperand(MMO); } else if (RC == &Hexagon::DoubleRegsRegClass) { BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg) .addFrameIndex(FI).addImm(0).addMemOperand(MMO); } else if (RC == &Hexagon::PredRegsRegClass) { BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg) .addFrameIndex(FI).addImm(0).addMemOperand(MMO); } else { llvm_unreachable("Can't store this register to stack slot"); } } void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, SmallVectorImpl &Addr, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const { llvm_unreachable("Unimplemented"); } bool HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { const HexagonRegisterInfo &TRI = getRegisterInfo(); MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); MachineBasicBlock &MBB = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); unsigned Opc = MI->getOpcode(); switch (Opc) { case Hexagon::ALIGNA: BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI->getOperand(0).getReg()) .addReg(TRI.getFrameRegister()) .addImm(-MI->getOperand(1).getImm()); MBB.erase(MI); return true; case Hexagon::TFR_PdTrue: { unsigned Reg = MI->getOperand(0).getReg(); BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); MBB.erase(MI); return true; } case Hexagon::TFR_PdFalse: { unsigned Reg = MI->getOperand(0).getReg(); BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); MBB.erase(MI); return true; } case Hexagon::VMULW: { // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies. unsigned DstReg = MI->getOperand(0).getReg(); unsigned Src1Reg = MI->getOperand(1).getReg(); unsigned Src2Reg = MI->getOperand(2).getReg(); unsigned Src1SubHi = TRI.getSubReg(Src1Reg, Hexagon::subreg_hireg); unsigned Src1SubLo = TRI.getSubReg(Src1Reg, Hexagon::subreg_loreg); unsigned Src2SubHi = TRI.getSubReg(Src2Reg, Hexagon::subreg_hireg); unsigned Src2SubLo = TRI.getSubReg(Src2Reg, Hexagon::subreg_loreg); BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi), TRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi) .addReg(Src2SubHi); BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi), TRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo) .addReg(Src2SubLo); MBB.erase(MI); MRI.clearKillFlags(Src1SubHi); MRI.clearKillFlags(Src1SubLo); MRI.clearKillFlags(Src2SubHi); MRI.clearKillFlags(Src2SubLo); return true; } case Hexagon::VMULW_ACC: { // Expand 64-bit vector multiply with addition into 2 scalar multiplies. unsigned DstReg = MI->getOperand(0).getReg(); unsigned Src1Reg = MI->getOperand(1).getReg(); unsigned Src2Reg = MI->getOperand(2).getReg(); unsigned Src3Reg = MI->getOperand(3).getReg(); unsigned Src1SubHi = TRI.getSubReg(Src1Reg, Hexagon::subreg_hireg); unsigned Src1SubLo = TRI.getSubReg(Src1Reg, Hexagon::subreg_loreg); unsigned Src2SubHi = TRI.getSubReg(Src2Reg, Hexagon::subreg_hireg); unsigned Src2SubLo = TRI.getSubReg(Src2Reg, Hexagon::subreg_loreg); unsigned Src3SubHi = TRI.getSubReg(Src3Reg, Hexagon::subreg_hireg); unsigned Src3SubLo = TRI.getSubReg(Src3Reg, Hexagon::subreg_loreg); BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci), TRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi) .addReg(Src2SubHi).addReg(Src3SubHi); BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci), TRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo) .addReg(Src2SubLo).addReg(Src3SubLo); MBB.erase(MI); MRI.clearKillFlags(Src1SubHi); MRI.clearKillFlags(Src1SubLo); MRI.clearKillFlags(Src2SubHi); MRI.clearKillFlags(Src2SubLo); MRI.clearKillFlags(Src3SubHi); MRI.clearKillFlags(Src3SubLo); return true; } case Hexagon::TCRETURNi: MI->setDesc(get(Hexagon::J2_jump)); return true; case Hexagon::TCRETURNr: MI->setDesc(get(Hexagon::J2_jumpr)); return true; } return false; } MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr *MI, ArrayRef Ops, MachineBasicBlock::iterator InsertPt, int FI) const { // Hexagon_TODO: Implement. return nullptr; } unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const { MachineRegisterInfo &RegInfo = MF->getRegInfo(); const TargetRegisterClass *TRC; if (VT == MVT::i1) { TRC = &Hexagon::PredRegsRegClass; } else if (VT == MVT::i32 || VT == MVT::f32) { TRC = &Hexagon::IntRegsRegClass; } else if (VT == MVT::i64 || VT == MVT::f64) { TRC = &Hexagon::DoubleRegsRegClass; } else { llvm_unreachable("Cannot handle this register class"); } unsigned NewReg = RegInfo.createVirtualRegister(TRC); return NewReg; } bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const { const MCInstrDesc &MID = MI->getDesc(); const uint64_t F = MID.TSFlags; if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask) return true; // TODO: This is largely obsolete now. Will need to be removed // in consecutive patches. switch(MI->getOpcode()) { // TFR_FI Remains a special case. case Hexagon::TFR_FI: return true; default: return false; } return false; } // This returns true in two cases: // - The OP code itself indicates that this is an extended instruction. // - One of MOs has been marked with HMOTF_ConstExtended flag. bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const { // First check if this is permanently extended op code. const uint64_t F = MI->getDesc().TSFlags; if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask) return true; // Use MO operand flags to determine if one of MI's operands // has HMOTF_ConstExtended flag set. for (MachineInstr::const_mop_iterator I = MI->operands_begin(), E = MI->operands_end(); I != E; ++I) { if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended) return true; } return false; } bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const { return MI->getDesc().isBranch(); } bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const { if (isNewValueJump(MI)) return true; if (isNewValueStore(MI)) return true; return false; } bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const { const uint64_t F = MI->getDesc().TSFlags; return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask); } bool HexagonInstrInfo::isNewValue(Opcode_t Opcode) const { const uint64_t F = get(Opcode).TSFlags; return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask); } bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const { return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4; } bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const { bool isPred = MI->getDesc().isPredicable(); if (!isPred) return false; const int Opc = MI->getOpcode(); switch(Opc) { case Hexagon::A2_tfrsi: return (isOperandExtended(MI, 1) && isConstExtended(MI)) || isInt<12>(MI->getOperand(1).getImm()); case Hexagon::S2_storerd_io: return isShiftedUInt<6,3>(MI->getOperand(1).getImm()); case Hexagon::S2_storeri_io: case Hexagon::S2_storerinew_io: return isShiftedUInt<6,2>(MI->getOperand(1).getImm()); case Hexagon::S2_storerh_io: case Hexagon::S2_storerhnew_io: return isShiftedUInt<6,1>(MI->getOperand(1).getImm()); case Hexagon::S2_storerb_io: case Hexagon::S2_storerbnew_io: return isUInt<6>(MI->getOperand(1).getImm()); case Hexagon::L2_loadrd_io: return isShiftedUInt<6,3>(MI->getOperand(2).getImm()); case Hexagon::L2_loadri_io: return isShiftedUInt<6,2>(MI->getOperand(2).getImm()); case Hexagon::L2_loadrh_io: case Hexagon::L2_loadruh_io: return isShiftedUInt<6,1>(MI->getOperand(2).getImm()); case Hexagon::L2_loadrb_io: case Hexagon::L2_loadrub_io: return isUInt<6>(MI->getOperand(2).getImm()); case Hexagon::L2_loadrd_pi: return isShiftedInt<4,3>(MI->getOperand(3).getImm()); case Hexagon::L2_loadri_pi: return isShiftedInt<4,2>(MI->getOperand(3).getImm()); case Hexagon::L2_loadrh_pi: case Hexagon::L2_loadruh_pi: return isShiftedInt<4,1>(MI->getOperand(3).getImm()); case Hexagon::L2_loadrb_pi: case Hexagon::L2_loadrub_pi: return isInt<4>(MI->getOperand(3).getImm()); case Hexagon::S4_storeirb_io: case Hexagon::S4_storeirh_io: case Hexagon::S4_storeiri_io: return (isUInt<6>(MI->getOperand(1).getImm()) && isInt<6>(MI->getOperand(2).getImm())); case Hexagon::A2_addi: return isInt<8>(MI->getOperand(2).getImm()); case Hexagon::A2_aslh: case Hexagon::A2_asrh: case Hexagon::A2_sxtb: case Hexagon::A2_sxth: case Hexagon::A2_zxtb: case Hexagon::A2_zxth: return true; } return true; } // This function performs the following inversiones: // // cPt ---> cNotPt // cNotPt ---> cPt // unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const { int InvPredOpcode; InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc) : Hexagon::getTruePredOpcode(Opc); if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate. return InvPredOpcode; switch(Opc) { default: llvm_unreachable("Unexpected predicated instruction"); case Hexagon::C2_ccombinewt: return Hexagon::C2_ccombinewf; case Hexagon::C2_ccombinewf: return Hexagon::C2_ccombinewt; // Dealloc_return. case Hexagon::L4_return_t: return Hexagon::L4_return_f; case Hexagon::L4_return_f: return Hexagon::L4_return_t; } } // New Value Store instructions. bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask); } bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const { const uint64_t F = get(Opcode).TSFlags; return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask); } int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const { enum Hexagon::PredSense inPredSense; inPredSense = invertPredicate ? Hexagon::PredSense_false : Hexagon::PredSense_true; int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense); if (CondOpcode >= 0) // Valid Conditional opcode/instruction return CondOpcode; // This switch case will be removed once all the instructions have been // modified to use relation maps. switch(Opc) { case Hexagon::TFRI_f: return !invertPredicate ? Hexagon::TFRI_cPt_f : Hexagon::TFRI_cNotPt_f; case Hexagon::A2_combinew: return !invertPredicate ? Hexagon::C2_ccombinewt : Hexagon::C2_ccombinewf; // DEALLOC_RETURN. case Hexagon::L4_return: return !invertPredicate ? Hexagon::L4_return_t: Hexagon::L4_return_f; } llvm_unreachable("Unexpected predicable instruction"); } bool HexagonInstrInfo:: PredicateInstruction(MachineInstr *MI, ArrayRef Cond) const { if (Cond.empty() || isEndLoopN(Cond[0].getImm())) { DEBUG(dbgs() << "\nCannot predicate:"; MI->dump();); return false; } int Opc = MI->getOpcode(); assert (isPredicable(MI) && "Expected predicable instruction"); bool invertJump = predOpcodeHasNot(Cond); // We have to predicate MI "in place", i.e. after this function returns, // MI will need to be transformed into a predicated form. To avoid com- // plicated manipulations with the operands (handling tied operands, // etc.), build a new temporary instruction, then overwrite MI with it. MachineBasicBlock &B = *MI->getParent(); DebugLoc DL = MI->getDebugLoc(); unsigned PredOpc = getCondOpcode(Opc, invertJump); MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc)); unsigned NOp = 0, NumOps = MI->getNumOperands(); while (NOp < NumOps) { MachineOperand &Op = MI->getOperand(NOp); if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) break; T.addOperand(Op); NOp++; } unsigned PredReg, PredRegPos, PredRegFlags; bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags); (void)GotPredReg; assert(GotPredReg); T.addReg(PredReg, PredRegFlags); while (NOp < NumOps) T.addOperand(MI->getOperand(NOp++)); MI->setDesc(get(PredOpc)); while (unsigned n = MI->getNumOperands()) MI->RemoveOperand(n-1); for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i) MI->addOperand(T->getOperand(i)); MachineBasicBlock::instr_iterator TI = &*T; B.erase(TI); MachineRegisterInfo &MRI = B.getParent()->getRegInfo(); MRI.clearKillFlags(PredReg); return true; } bool HexagonInstrInfo:: isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, const BranchProbability &Probability) const { return true; } bool HexagonInstrInfo:: isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB, unsigned NumFCycles, unsigned ExtraFCycles, const BranchProbability &Probability) const { return true; } // Returns true if an instruction is predicated irrespective of the predicate // sense. For example, all of the following will return true. // if (p0) R1 = add(R2, R3) // if (!p0) R1 = add(R2, R3) // if (p0.new) R1 = add(R2, R3) // if (!p0.new) R1 = add(R2, R3) bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); } bool HexagonInstrInfo::isPredicated(unsigned Opcode) const { const uint64_t F = get(Opcode).TSFlags; return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); } bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; assert(isPredicated(MI)); return (!((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask)); } bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const { const uint64_t F = get(Opcode).TSFlags; // Make sure that the instruction is predicated. assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); return (!((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask)); } bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; assert(isPredicated(MI)); return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); } bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const { const uint64_t F = get(Opcode).TSFlags; assert(isPredicated(Opcode)); return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); } // Returns true, if a ST insn can be promoted to a new-value store. bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; return ((F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask); } bool HexagonInstrInfo::DefinesPredicate(MachineInstr *MI, std::vector &Pred) const { for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) { MachineOperand MO = MI->getOperand(oper); if (MO.isReg() && MO.isDef()) { const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg()); if (RC == &Hexagon::PredRegsRegClass) { Pred.push_back(MO); return true; } } } return false; } bool HexagonInstrInfo:: SubsumesPredicate(ArrayRef Pred1, ArrayRef Pred2) const { // TODO: Fix this return false; } // // We indicate that we want to reverse the branch by // inserting the reversed branching opcode. // bool HexagonInstrInfo::ReverseBranchCondition( SmallVectorImpl &Cond) const { if (Cond.empty()) return true; assert(Cond[0].isImm() && "First entry in the cond vector not imm-val"); Opcode_t opcode = Cond[0].getImm(); //unsigned temp; assert(get(opcode).isBranch() && "Should be a branching condition."); if (isEndLoopN(opcode)) return true; Opcode_t NewOpcode = getInvertedPredicatedOpcode(opcode); Cond[0].setImm(NewOpcode); return false; } bool HexagonInstrInfo:: isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs, const BranchProbability &Probability) const { return (NumInstrs <= 4); } bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const { switch (MI->getOpcode()) { default: return false; case Hexagon::L4_return: case Hexagon::L4_return_t: case Hexagon::L4_return_f: case Hexagon::L4_return_tnew_pnt: case Hexagon::L4_return_fnew_pnt: case Hexagon::L4_return_tnew_pt: case Hexagon::L4_return_fnew_pt: return true; } } bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset, bool Extend) const { // This function is to check whether the "Offset" is in the correct range of // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is // inserted to calculate the final address. Due to this reason, the function // assumes that the "Offset" has correct alignment. // We used to assert if the offset was not properly aligned, however, // there are cases where a misaligned pointer recast can cause this // problem, and we need to allow for it. The front end warns of such // misaligns with respect to load size. switch (Opcode) { case Hexagon::J2_loop0i: case Hexagon::J2_loop1i: return isUInt<10>(Offset); } if (Extend) return true; switch (Opcode) { case Hexagon::L2_loadri_io: case Hexagon::S2_storeri_io: return (Offset >= Hexagon_MEMW_OFFSET_MIN) && (Offset <= Hexagon_MEMW_OFFSET_MAX); case Hexagon::L2_loadrd_io: case Hexagon::S2_storerd_io: return (Offset >= Hexagon_MEMD_OFFSET_MIN) && (Offset <= Hexagon_MEMD_OFFSET_MAX); case Hexagon::L2_loadrh_io: case Hexagon::L2_loadruh_io: case Hexagon::S2_storerh_io: return (Offset >= Hexagon_MEMH_OFFSET_MIN) && (Offset <= Hexagon_MEMH_OFFSET_MAX); case Hexagon::L2_loadrb_io: case Hexagon::S2_storerb_io: case Hexagon::L2_loadrub_io: return (Offset >= Hexagon_MEMB_OFFSET_MIN) && (Offset <= Hexagon_MEMB_OFFSET_MAX); case Hexagon::A2_addi: return (Offset >= Hexagon_ADDI_OFFSET_MIN) && (Offset <= Hexagon_ADDI_OFFSET_MAX); case Hexagon::L4_iadd_memopw_io: case Hexagon::L4_isub_memopw_io: case Hexagon::L4_add_memopw_io: case Hexagon::L4_sub_memopw_io: case Hexagon::L4_and_memopw_io: case Hexagon::L4_or_memopw_io: return (0 <= Offset && Offset <= 255); case Hexagon::L4_iadd_memoph_io: case Hexagon::L4_isub_memoph_io: case Hexagon::L4_add_memoph_io: case Hexagon::L4_sub_memoph_io: case Hexagon::L4_and_memoph_io: case Hexagon::L4_or_memoph_io: return (0 <= Offset && Offset <= 127); case Hexagon::L4_iadd_memopb_io: case Hexagon::L4_isub_memopb_io: case Hexagon::L4_add_memopb_io: case Hexagon::L4_sub_memopb_io: case Hexagon::L4_and_memopb_io: case Hexagon::L4_or_memopb_io: return (0 <= Offset && Offset <= 63); // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of // any size. Later pass knows how to handle it. case Hexagon::STriw_pred: case Hexagon::LDriw_pred: return true; case Hexagon::TFR_FI: case Hexagon::TFR_FIA: case Hexagon::INLINEASM: return true; } llvm_unreachable("No offset range is defined for this opcode. " "Please define it in the above switch statement!"); } // // Check if the Offset is a valid auto-inc imm by Load/Store Type. // bool HexagonInstrInfo:: isValidAutoIncImm(const EVT VT, const int Offset) const { if (VT == MVT::i64) { return (Offset >= Hexagon_MEMD_AUTOINC_MIN && Offset <= Hexagon_MEMD_AUTOINC_MAX && (Offset & 0x7) == 0); } if (VT == MVT::i32) { return (Offset >= Hexagon_MEMW_AUTOINC_MIN && Offset <= Hexagon_MEMW_AUTOINC_MAX && (Offset & 0x3) == 0); } if (VT == MVT::i16) { return (Offset >= Hexagon_MEMH_AUTOINC_MIN && Offset <= Hexagon_MEMH_AUTOINC_MAX && (Offset & 0x1) == 0); } if (VT == MVT::i8) { return (Offset >= Hexagon_MEMB_AUTOINC_MIN && Offset <= Hexagon_MEMB_AUTOINC_MAX); } llvm_unreachable("Not an auto-inc opc!"); } bool HexagonInstrInfo:: isMemOp(const MachineInstr *MI) const { // return MI->getDesc().mayLoad() && MI->getDesc().mayStore(); switch (MI->getOpcode()) { default: return false; case Hexagon::L4_iadd_memopw_io: case Hexagon::L4_isub_memopw_io: case Hexagon::L4_add_memopw_io: case Hexagon::L4_sub_memopw_io: case Hexagon::L4_and_memopw_io: case Hexagon::L4_or_memopw_io: case Hexagon::L4_iadd_memoph_io: case Hexagon::L4_isub_memoph_io: case Hexagon::L4_add_memoph_io: case Hexagon::L4_sub_memoph_io: case Hexagon::L4_and_memoph_io: case Hexagon::L4_or_memoph_io: case Hexagon::L4_iadd_memopb_io: case Hexagon::L4_isub_memopb_io: case Hexagon::L4_add_memopb_io: case Hexagon::L4_sub_memopb_io: case Hexagon::L4_and_memopb_io: case Hexagon::L4_or_memopb_io: case Hexagon::L4_ior_memopb_io: case Hexagon::L4_ior_memoph_io: case Hexagon::L4_ior_memopw_io: case Hexagon::L4_iand_memopb_io: case Hexagon::L4_iand_memoph_io: case Hexagon::L4_iand_memopw_io: return true; } return false; } bool HexagonInstrInfo:: isSpillPredRegOp(const MachineInstr *MI) const { switch (MI->getOpcode()) { default: return false; case Hexagon::STriw_pred : case Hexagon::LDriw_pred : return true; } } bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const { switch (MI->getOpcode()) { default: return false; case Hexagon::C2_cmpeq: case Hexagon::C2_cmpeqi: case Hexagon::C2_cmpgt: case Hexagon::C2_cmpgti: case Hexagon::C2_cmpgtu: case Hexagon::C2_cmpgtui: return true; } } bool HexagonInstrInfo:: isConditionalTransfer (const MachineInstr *MI) const { switch (MI->getOpcode()) { default: return false; case Hexagon::A2_tfrt: case Hexagon::A2_tfrf: case Hexagon::C2_cmoveit: case Hexagon::C2_cmoveif: case Hexagon::A2_tfrtnew: case Hexagon::A2_tfrfnew: case Hexagon::C2_cmovenewit: case Hexagon::C2_cmovenewif: return true; } } bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const { switch (MI->getOpcode()) { default: return false; case Hexagon::A2_paddf: case Hexagon::A2_paddfnew: case Hexagon::A2_paddt: case Hexagon::A2_paddtnew: case Hexagon::A2_pandf: case Hexagon::A2_pandfnew: case Hexagon::A2_pandt: case Hexagon::A2_pandtnew: case Hexagon::A4_paslhf: case Hexagon::A4_paslhfnew: case Hexagon::A4_paslht: case Hexagon::A4_paslhtnew: case Hexagon::A4_pasrhf: case Hexagon::A4_pasrhfnew: case Hexagon::A4_pasrht: case Hexagon::A4_pasrhtnew: case Hexagon::A2_porf: case Hexagon::A2_porfnew: case Hexagon::A2_port: case Hexagon::A2_portnew: case Hexagon::A2_psubf: case Hexagon::A2_psubfnew: case Hexagon::A2_psubt: case Hexagon::A2_psubtnew: case Hexagon::A2_pxorf: case Hexagon::A2_pxorfnew: case Hexagon::A2_pxort: case Hexagon::A2_pxortnew: case Hexagon::A4_psxthf: case Hexagon::A4_psxthfnew: case Hexagon::A4_psxtht: case Hexagon::A4_psxthtnew: case Hexagon::A4_psxtbf: case Hexagon::A4_psxtbfnew: case Hexagon::A4_psxtbt: case Hexagon::A4_psxtbtnew: case Hexagon::A4_pzxtbf: case Hexagon::A4_pzxtbfnew: case Hexagon::A4_pzxtbt: case Hexagon::A4_pzxtbtnew: case Hexagon::A4_pzxthf: case Hexagon::A4_pzxthfnew: case Hexagon::A4_pzxtht: case Hexagon::A4_pzxthtnew: case Hexagon::A2_paddit: case Hexagon::A2_paddif: case Hexagon::C2_ccombinewt: case Hexagon::C2_ccombinewf: return true; } } bool HexagonInstrInfo:: isConditionalLoad (const MachineInstr* MI) const { switch (MI->getOpcode()) { default: return false; case Hexagon::L2_ploadrdt_io : case Hexagon::L2_ploadrdf_io: case Hexagon::L2_ploadrit_io: case Hexagon::L2_ploadrif_io: case Hexagon::L2_ploadrht_io: case Hexagon::L2_ploadrhf_io: case Hexagon::L2_ploadrbt_io: case Hexagon::L2_ploadrbf_io: case Hexagon::L2_ploadruht_io: case Hexagon::L2_ploadruhf_io: case Hexagon::L2_ploadrubt_io: case Hexagon::L2_ploadrubf_io: case Hexagon::L2_ploadrdt_pi: case Hexagon::L2_ploadrdf_pi: case Hexagon::L2_ploadrit_pi: case Hexagon::L2_ploadrif_pi: case Hexagon::L2_ploadrht_pi: case Hexagon::L2_ploadrhf_pi: case Hexagon::L2_ploadrbt_pi: case Hexagon::L2_ploadrbf_pi: case Hexagon::L2_ploadruht_pi: case Hexagon::L2_ploadruhf_pi: case Hexagon::L2_ploadrubt_pi: case Hexagon::L2_ploadrubf_pi: case Hexagon::L4_ploadrdt_rr: case Hexagon::L4_ploadrdf_rr: case Hexagon::L4_ploadrbt_rr: case Hexagon::L4_ploadrbf_rr: case Hexagon::L4_ploadrubt_rr: case Hexagon::L4_ploadrubf_rr: case Hexagon::L4_ploadrht_rr: case Hexagon::L4_ploadrhf_rr: case Hexagon::L4_ploadruht_rr: case Hexagon::L4_ploadruhf_rr: case Hexagon::L4_ploadrit_rr: case Hexagon::L4_ploadrif_rr: return true; } } // Returns true if an instruction is a conditional store. // // Note: It doesn't include conditional new-value stores as they can't be // converted to .new predicate. // // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ] // ^ ^ // / \ (not OK. it will cause new-value store to be // / X conditional on p0.new while R2 producer is // / \ on p0) // / \. // p.new store p.old NV store // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new] // ^ ^ // \ / // \ / // \ / // p.old store // [if (p0)memw(R0+#0)=R2] // // The above diagram shows the steps involoved in the conversion of a predicated // store instruction to its .new predicated new-value form. // // The following set of instructions further explains the scenario where // conditional new-value store becomes invalid when promoted to .new predicate // form. // // { 1) if (p0) r0 = add(r1, r2) // 2) p0 = cmp.eq(r3, #0) } // // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with // the first two instructions because in instr 1, r0 is conditional on old value // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which // is not valid for new-value stores. bool HexagonInstrInfo:: isConditionalStore (const MachineInstr* MI) const { switch (MI->getOpcode()) { default: return false; case Hexagon::S4_storeirbt_io: case Hexagon::S4_storeirbf_io: case Hexagon::S4_pstorerbt_rr: case Hexagon::S4_pstorerbf_rr: case Hexagon::S2_pstorerbt_io: case Hexagon::S2_pstorerbf_io: case Hexagon::S2_pstorerbt_pi: case Hexagon::S2_pstorerbf_pi: case Hexagon::S2_pstorerdt_io: case Hexagon::S2_pstorerdf_io: case Hexagon::S4_pstorerdt_rr: case Hexagon::S4_pstorerdf_rr: case Hexagon::S2_pstorerdt_pi: case Hexagon::S2_pstorerdf_pi: case Hexagon::S2_pstorerht_io: case Hexagon::S2_pstorerhf_io: case Hexagon::S4_storeirht_io: case Hexagon::S4_storeirhf_io: case Hexagon::S4_pstorerht_rr: case Hexagon::S4_pstorerhf_rr: case Hexagon::S2_pstorerht_pi: case Hexagon::S2_pstorerhf_pi: case Hexagon::S2_pstorerit_io: case Hexagon::S2_pstorerif_io: case Hexagon::S4_storeirit_io: case Hexagon::S4_storeirif_io: case Hexagon::S4_pstorerit_rr: case Hexagon::S4_pstorerif_rr: case Hexagon::S2_pstorerit_pi: case Hexagon::S2_pstorerif_pi: // V4 global address store before promoting to dot new. case Hexagon::S4_pstorerdt_abs: case Hexagon::S4_pstorerdf_abs: case Hexagon::S4_pstorerbt_abs: case Hexagon::S4_pstorerbf_abs: case Hexagon::S4_pstorerht_abs: case Hexagon::S4_pstorerhf_abs: case Hexagon::S4_pstorerit_abs: case Hexagon::S4_pstorerif_abs: return true; // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded // from the "Conditional Store" list. Because a predicated new value store // would NOT be promoted to a double dot new store. See diagram below: // This function returns yes for those stores that are predicated but not // yet promoted to predicate dot new instructions. // // +---------------------+ // /-----| if (p0) memw(..)=r0 |---------\~ // || +---------------------+ || // promote || /\ /\ || promote // || /||\ /||\ || // \||/ demote || \||/ // \/ || || \/ // +-------------------------+ || +-------------------------+ // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new | // +-------------------------+ || +-------------------------+ // || || || // || demote \||/ // promote || \/ NOT possible // || || /\~ // \||/ || /||\~ // \/ || || // +-----------------------------+ // | if (p0.new) memw(..)=r0.new | // +-----------------------------+ // Double Dot New Store // } } bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const { if (isNewValue(MI) && isBranch(MI)) return true; return false; } bool HexagonInstrInfo::isNewValueJump(Opcode_t Opcode) const { return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode); } bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const { return (getAddrMode(MI) == HexagonII::PostInc); } // Returns true, if any one of the operands is a dot new // insn, whether it is predicated dot new or register dot new. bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const { return (isNewValueInst(MI) || (isPredicated(MI) && isPredicatedNew(MI))); } // Returns the most basic instruction for the .new predicated instructions and // new-value stores. // For example, all of the following instructions will be converted back to the // same instruction: // 1) if (p0.new) memw(R0+#0) = R1.new ---> // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1 // 3) if (p0.new) memw(R0+#0) = R1 ---> // int HexagonInstrInfo::GetDotOldOp(const int opc) const { int NewOp = opc; if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form NewOp = Hexagon::getPredOldOpcode(NewOp); assert(NewOp >= 0 && "Couldn't change predicate new instruction to its old form."); } if (isNewValueStore(NewOp)) { // Convert into non-new-value format NewOp = Hexagon::getNonNVStore(NewOp); assert(NewOp >= 0 && "Couldn't change new-value store to its old form."); } return NewOp; } // Return the new value instruction for a given store. int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const { int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode()); if (NVOpcode >= 0) // Valid new-value store instruction. return NVOpcode; switch (MI->getOpcode()) { default: llvm_unreachable("Unknown .new type"); case Hexagon::S4_storerb_ur: return Hexagon::S4_storerbnew_ur; case Hexagon::S4_storerh_ur: return Hexagon::S4_storerhnew_ur; case Hexagon::S4_storeri_ur: return Hexagon::S4_storerinew_ur; case Hexagon::S2_storerb_pci: return Hexagon::S2_storerb_pci; case Hexagon::S2_storeri_pci: return Hexagon::S2_storeri_pci; case Hexagon::S2_storerh_pci: return Hexagon::S2_storerh_pci; case Hexagon::S2_storerd_pci: return Hexagon::S2_storerd_pci; case Hexagon::S2_storerf_pci: return Hexagon::S2_storerf_pci; } return 0; } // Return .new predicate version for an instruction. int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI, const MachineBranchProbabilityInfo *MBPI) const { int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode()); if (NewOpcode >= 0) // Valid predicate new instruction return NewOpcode; switch (MI->getOpcode()) { default: llvm_unreachable("Unknown .new type"); // Condtional Jumps case Hexagon::J2_jumpt: case Hexagon::J2_jumpf: return getDotNewPredJumpOp(MI, MBPI); case Hexagon::J2_jumprt: return Hexagon::J2_jumptnewpt; case Hexagon::J2_jumprf: return Hexagon::J2_jumprfnewpt; case Hexagon::JMPrett: return Hexagon::J2_jumprtnewpt; case Hexagon::JMPretf: return Hexagon::J2_jumprfnewpt; // Conditional combine case Hexagon::C2_ccombinewt: return Hexagon::C2_ccombinewnewt; case Hexagon::C2_ccombinewf: return Hexagon::C2_ccombinewnewf; } } unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const { const uint64_t F = MI->getDesc().TSFlags; return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask); } /// immediateExtend - Changes the instruction in place to one using an immediate /// extender. void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const { assert((isExtendable(MI)||isConstExtended(MI)) && "Instruction must be extendable"); // Find which operand is extendable. short ExtOpNum = getCExtOpNum(MI); MachineOperand &MO = MI->getOperand(ExtOpNum); // This needs to be something we understand. assert((MO.isMBB() || MO.isImm()) && "Branch with unknown extendable field type"); // Mark given operand as extended. MO.addTargetFlag(HexagonII::HMOTF_ConstExtended); } DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState( const TargetSubtargetInfo &STI) const { const InstrItineraryData *II = STI.getInstrItineraryData(); return static_cast(STI).createDFAPacketizer(II); } bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const { // Debug info is never a scheduling boundary. It's necessary to be explicit // due to the special treatment of IT instructions below, otherwise a // dbg_value followed by an IT will result in the IT instruction being // considered a scheduling hazard, which is wrong. It should be the actual // instruction preceding the dbg_value instruction(s), just like it is // when debug info is not present. if (MI->isDebugValue()) return false; // Terminators and labels can't be scheduled around. if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm()) return true; return false; } bool HexagonInstrInfo::isConstExtended(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; if (isExtended) // Instruction must be extended. return true; unsigned isExtendable = (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask; if (!isExtendable) return false; short ExtOpNum = getCExtOpNum(MI); const MachineOperand &MO = MI->getOperand(ExtOpNum); // Use MO operand flags to determine if MO // has the HMOTF_ConstExtended flag set. if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended) return true; // If this is a Machine BB address we are talking about, and it is // not marked as extended, say so. if (MO.isMBB()) return false; // We could be using an instruction with an extendable immediate and shoehorn // a global address into it. If it is a global address it will be constant // extended. We do this for COMBINE. // We currently only handle isGlobal() because it is the only kind of // object we are going to end up with here for now. // In the future we probably should add isSymbol(), etc. if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() || MO.isJTI() || MO.isCPI()) return true; // If the extendable operand is not 'Immediate' type, the instruction should // have 'isExtended' flag set. assert(MO.isImm() && "Extendable operand must be Immediate type"); int MinValue = getMinValue(MI); int MaxValue = getMaxValue(MI); int ImmValue = MO.getImm(); return (ImmValue < MinValue || ImmValue > MaxValue); } // Return the number of bytes required to encode the instruction. // Hexagon instructions are fixed length, 4 bytes, unless they // use a constant extender, which requires another 4 bytes. // For debug instructions and prolog labels, return 0. unsigned HexagonInstrInfo::getSize(const MachineInstr *MI) const { if (MI->isDebugValue() || MI->isPosition()) return 0; unsigned Size = MI->getDesc().getSize(); if (!Size) // Assume the default insn size in case it cannot be determined // for whatever reason. Size = HEXAGON_INSTR_SIZE; if (isConstExtended(MI) || isExtended(MI)) Size += HEXAGON_INSTR_SIZE; return Size; } // Returns the opcode to use when converting MI, which is a conditional jump, // into a conditional instruction which uses the .new value of the predicate. // We also use branch probabilities to add a hint to the jump. int HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI, const MachineBranchProbabilityInfo *MBPI) const { // We assume that block can have at most two successors. bool taken = false; MachineBasicBlock *Src = MI->getParent(); MachineOperand *BrTarget = &MI->getOperand(1); MachineBasicBlock *Dst = BrTarget->getMBB(); const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst); if (Prediction >= BranchProbability(1,2)) taken = true; switch (MI->getOpcode()) { case Hexagon::J2_jumpt: return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew; case Hexagon::J2_jumpf: return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew; default: llvm_unreachable("Unexpected jump instruction."); } } // Returns true if a particular operand is extendable for an instruction. bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI, unsigned short OperandNum) const { const uint64_t F = MI->getDesc().TSFlags; return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) == OperandNum; } // Returns Operand Index for the constant extended instruction. unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask); } // Returns the min value that doesn't need to be extended. int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; unsigned isSigned = (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask; unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask; if (isSigned) // if value is signed return -1U << (bits - 1); else return 0; } // Returns the max value that doesn't need to be extended. int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const { const uint64_t F = MI->getDesc().TSFlags; unsigned isSigned = (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask; unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask; if (isSigned) // if value is signed return ~(-1U << (bits - 1)); else return ~(-1U << bits); } // Returns true if an instruction can be converted into a non-extended // equivalent instruction. bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const { short NonExtOpcode; // Check if the instruction has a register form that uses register in place // of the extended operand, if so return that as the non-extended form. if (Hexagon::getRegForm(MI->getOpcode()) >= 0) return true; if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) { // Check addressing mode and retrieve non-ext equivalent instruction. switch (getAddrMode(MI)) { case HexagonII::Absolute : // Load/store with absolute addressing mode can be converted into // base+offset mode. NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode()); break; case HexagonII::BaseImmOffset : // Load/store with base+offset addressing mode can be converted into // base+register offset addressing mode. However left shift operand should // be set to 0. NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode()); break; default: return false; } if (NonExtOpcode < 0) return false; return true; } return false; } // Returns opcode of the non-extended equivalent instruction. short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const { // Check if the instruction has a register form that uses register in place // of the extended operand, if so return that as the non-extended form. short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode()); if (NonExtOpcode >= 0) return NonExtOpcode; if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) { // Check addressing mode and retrieve non-ext equivalent instruction. switch (getAddrMode(MI)) { case HexagonII::Absolute : return Hexagon::getBasedWithImmOffset(MI->getOpcode()); case HexagonII::BaseImmOffset : return Hexagon::getBaseWithRegOffset(MI->getOpcode()); default: return -1; } } return -1; } bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const { return (Opcode == Hexagon::J2_jumpt) || (Opcode == Hexagon::J2_jumpf) || (Opcode == Hexagon::J2_jumptnewpt) || (Opcode == Hexagon::J2_jumpfnewpt) || (Opcode == Hexagon::J2_jumpt) || (Opcode == Hexagon::J2_jumpf); } bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef Cond) const { if (Cond.empty() || !isPredicated(Cond[0].getImm())) return false; return !isPredicatedTrue(Cond[0].getImm()); } bool HexagonInstrInfo::isEndLoopN(Opcode_t Opcode) const { return (Opcode == Hexagon::ENDLOOP0 || Opcode == Hexagon::ENDLOOP1); } bool HexagonInstrInfo::getPredReg(ArrayRef Cond, unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const { if (Cond.empty()) return false; assert(Cond.size() == 2); if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) { DEBUG(dbgs() << "No predregs for new-value jumps/endloop"); return false; } PredReg = Cond[1].getReg(); PredRegPos = 1; // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef PredRegFlags = 0; if (Cond[1].isImplicit()) PredRegFlags = RegState::Implicit; if (Cond[1].isUndef()) PredRegFlags |= RegState::Undef; return true; }