//==- HexagonInstrInfo.td - Target Description for Hexagon -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Hexagon instructions in TableGen format. // //===----------------------------------------------------------------------===// include "HexagonInstrFormats.td" include "HexagonOperands.td" // Pattern fragment that combines the value type and the register class // into a single parameter. // The pat frags in the definitions below need to have a named register, // otherwise i32 will be assumed regardless of the register class. The // name of the register does not matter. def I1 : PatLeaf<(i1 PredRegs:$R)>; def I32 : PatLeaf<(i32 IntRegs:$R)>; def I64 : PatLeaf<(i64 DoubleRegs:$R)>; def F32 : PatLeaf<(f32 IntRegs:$R)>; def F64 : PatLeaf<(f64 DoubleRegs:$R)>; // Pattern fragments to extract the low and high subregisters from a // 64-bit value. def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), subreg_loreg)>; //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Compare //===----------------------------------------------------------------------===// let hasSideEffects = 0, isCompare = 1, InputType = "imm", isExtendable = 1, opExtendable = 2 in class T_CMP MajOp, bit isNot, Operand ImmOp> : ALU32Inst <(outs PredRegs:$dst), (ins IntRegs:$src1, ImmOp:$src2), "$dst = "#!if(isNot, "!","")#mnemonic#"($src1, #$src2)", [], "",ALU32_2op_tc_2early_SLOT0123 >, ImmRegRel { bits<2> dst; bits<5> src1; bits<10> src2; let CextOpcode = mnemonic; let opExtentBits = !if(!eq(mnemonic, "cmp.gtu"), 9, 10); let isExtentSigned = !if(!eq(mnemonic, "cmp.gtu"), 0, 1); let IClass = 0b0111; let Inst{27-24} = 0b0101; let Inst{23-22} = MajOp; let Inst{21} = !if(!eq(mnemonic, "cmp.gtu"), 0, src2{9}); let Inst{20-16} = src1; let Inst{13-5} = src2{8-0}; let Inst{4} = isNot; let Inst{3-2} = 0b00; let Inst{1-0} = dst; } def C2_cmpeqi : T_CMP <"cmp.eq", 0b00, 0, s10Ext>; def C2_cmpgti : T_CMP <"cmp.gt", 0b01, 0, s10Ext>; def C2_cmpgtui : T_CMP <"cmp.gtu", 0b10, 0, u9Ext>; class T_CMP_pat : Pat<(i1 (OpNode (i32 IntRegs:$src1), ImmPred:$src2)), (MI IntRegs:$src1, ImmPred:$src2)>; def : T_CMP_pat ; def : T_CMP_pat ; def : T_CMP_pat ; //===----------------------------------------------------------------------===// // ALU32/ALU + //===----------------------------------------------------------------------===// def SDTHexagonI64I32I32 : SDTypeProfile<1, 2, [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; def HexagonCOMBINE : SDNode<"HexagonISD::COMBINE", SDTHexagonI64I32I32>; let hasSideEffects = 0, hasNewValue = 1, InputType = "reg" in class T_ALU32_3op MajOp, bits<3> MinOp, bit OpsRev, bit IsComm> : ALU32_rr<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rd = "#mnemonic#"($Rs, $Rt)", [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel, PredRel { let isCommutable = IsComm; let BaseOpcode = mnemonic#_rr; let CextOpcode = mnemonic; bits<5> Rs; bits<5> Rt; bits<5> Rd; let IClass = 0b1111; let Inst{27} = 0b0; let Inst{26-24} = MajOp; let Inst{23-21} = MinOp; let Inst{20-16} = !if(OpsRev,Rt,Rs); let Inst{12-8} = !if(OpsRev,Rs,Rt); let Inst{4-0} = Rd; } let hasSideEffects = 0, hasNewValue = 1 in class T_ALU32_3op_pred MajOp, bits<3> MinOp, bit OpsRev, bit PredNot, bit PredNew> : ALU32_rr<(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt), "if ("#!if(PredNot,"!","")#"$Pu"#!if(PredNew,".new","")#") "# "$Rd = "#mnemonic#"($Rs, $Rt)", [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel, PredNewRel { let isPredicated = 1; let isPredicatedFalse = PredNot; let isPredicatedNew = PredNew; let BaseOpcode = mnemonic#_rr; let CextOpcode = mnemonic; bits<2> Pu; bits<5> Rs; bits<5> Rt; bits<5> Rd; let IClass = 0b1111; let Inst{27} = 0b1; let Inst{26-24} = MajOp; let Inst{23-21} = MinOp; let Inst{20-16} = !if(OpsRev,Rt,Rs); let Inst{13} = PredNew; let Inst{12-8} = !if(OpsRev,Rs,Rt); let Inst{7} = PredNot; let Inst{6-5} = Pu; let Inst{4-0} = Rd; } class T_ALU32_combineh MajOp, bits<3> MinOp, bit OpsRev> : T_ALU32_3op<"", MajOp, MinOp, OpsRev, 0> { let AsmString = "$Rd = combine($Rs"#Op1#", $Rt"#Op2#")"; } let isCodeGenOnly = 0 in { def A2_combine_hh : T_ALU32_combineh<".h", ".h", 0b011, 0b100, 1>; def A2_combine_hl : T_ALU32_combineh<".h", ".l", 0b011, 0b101, 1>; def A2_combine_lh : T_ALU32_combineh<".l", ".h", 0b011, 0b110, 1>; def A2_combine_ll : T_ALU32_combineh<".l", ".l", 0b011, 0b111, 1>; } class T_ALU32_3op_sfx MajOp, bits<3> MinOp, bit OpsRev, bit IsComm> : T_ALU32_3op<"", MajOp, MinOp, OpsRev, IsComm> { let AsmString = "$Rd = "#mnemonic#"($Rs, $Rt)"#suffix; } let Defs = [USR_OVF], Itinerary = ALU32_3op_tc_2_SLOT0123, isCodeGenOnly = 0 in { def A2_addsat : T_ALU32_3op_sfx<"add", ":sat", 0b110, 0b010, 0, 1>; def A2_subsat : T_ALU32_3op_sfx<"sub", ":sat", 0b110, 0b110, 1, 0>; } multiclass T_ALU32_3op_p MajOp, bits<3> MinOp, bit OpsRev> { def t : T_ALU32_3op_pred; def f : T_ALU32_3op_pred; def tnew : T_ALU32_3op_pred; def fnew : T_ALU32_3op_pred; } multiclass T_ALU32_3op_A2 MajOp, bits<3> MinOp, bit OpsRev, bit IsComm> { let isPredicable = 1 in def A2_#NAME : T_ALU32_3op ; defm A2_p#NAME : T_ALU32_3op_p; } let isCodeGenOnly = 0 in { defm add : T_ALU32_3op_A2<"add", 0b011, 0b000, 0, 1>; defm and : T_ALU32_3op_A2<"and", 0b001, 0b000, 0, 1>; defm or : T_ALU32_3op_A2<"or", 0b001, 0b001, 0, 1>; defm sub : T_ALU32_3op_A2<"sub", 0b011, 0b001, 1, 0>; defm xor : T_ALU32_3op_A2<"xor", 0b001, 0b011, 0, 1>; } // Pats for instruction selection. class BinOp32_pat : Pat<(ResT (Op (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))), (ResT (MI IntRegs:$Rs, IntRegs:$Rt))>; def: BinOp32_pat; def: BinOp32_pat; def: BinOp32_pat; def: BinOp32_pat; def: BinOp32_pat; // A few special cases producing register pairs: let OutOperandList = (outs DoubleRegs:$Rd), hasNewValue = 0, isCodeGenOnly = 0 in { def S2_packhl : T_ALU32_3op <"packhl", 0b101, 0b100, 0, 0>; let isPredicable = 1 in def A2_combinew : T_ALU32_3op <"combine", 0b101, 0b000, 0, 0>; // Conditional combinew uses "newt/f" instead of "t/fnew". def C2_ccombinewt : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 0, 0>; def C2_ccombinewf : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 1, 0>; def C2_ccombinewnewt : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 0, 1>; def C2_ccombinewnewf : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 1, 1>; } let hasSideEffects = 0, hasNewValue = 1, isCompare = 1, InputType = "reg" in class T_ALU32_3op_cmp MinOp, bit IsNeg, bit IsComm> : ALU32_rr<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Pd = "#mnemonic#"($Rs, $Rt)", [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel { let CextOpcode = mnemonic; let isCommutable = IsComm; bits<5> Rs; bits<5> Rt; bits<2> Pd; let IClass = 0b1111; let Inst{27-24} = 0b0010; let Inst{22-21} = MinOp; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{4} = IsNeg; let Inst{3-2} = 0b00; let Inst{1-0} = Pd; } let Itinerary = ALU32_3op_tc_2early_SLOT0123, isCodeGenOnly = 0 in { def C2_cmpeq : T_ALU32_3op_cmp< "cmp.eq", 0b00, 0, 1>; def C2_cmpgt : T_ALU32_3op_cmp< "cmp.gt", 0b10, 0, 0>; def C2_cmpgtu : T_ALU32_3op_cmp< "cmp.gtu", 0b11, 0, 0>; } // Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones // that reverse the order of the operands. class RevCmp : PatFrag<(ops node:$rhs, node:$lhs), F.Fragment>; // Pats for compares. They use PatFrags as operands, not SDNodes, // since seteq/setgt/etc. are defined as ParFrags. class T_cmp32_rr_pat : Pat<(VT (Op (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))), (VT (MI IntRegs:$Rs, IntRegs:$Rt))>; def: T_cmp32_rr_pat; def: T_cmp32_rr_pat; def: T_cmp32_rr_pat; def: T_cmp32_rr_pat, i1>; def: T_cmp32_rr_pat, i1>; let CextOpcode = "MUX", InputType = "reg", hasNewValue = 1, isCodeGenOnly = 0 in def C2_mux: ALU32_rr<(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt), "$Rd = mux($Pu, $Rs, $Rt)", [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel { bits<5> Rd; bits<2> Pu; bits<5> Rs; bits<5> Rt; let CextOpcode = "mux"; let InputType = "reg"; let hasSideEffects = 0; let IClass = 0b1111; let Inst{27-24} = 0b0100; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{6-5} = Pu; let Inst{4-0} = Rd; } def: Pat<(i32 (select (i1 PredRegs:$Pu), (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))), (C2_mux PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt)>; // Combines the two immediates into a double register. // Increase complexity to make it greater than any complexity of a combine // that involves a register. let isReMaterializable = 1, isMoveImm = 1, isAsCheapAsAMove = 1, isExtentSigned = 1, isExtendable = 1, opExtentBits = 8, opExtendable = 1, AddedComplexity = 75, isCodeGenOnly = 0 in def A2_combineii: ALU32Inst <(outs DoubleRegs:$Rdd), (ins s8Ext:$s8, s8Imm:$S8), "$Rdd = combine(#$s8, #$S8)", [(set (i64 DoubleRegs:$Rdd), (i64 (HexagonCOMBINE(i32 s8ExtPred:$s8), (i32 s8ImmPred:$S8))))]> { bits<5> Rdd; bits<8> s8; bits<8> S8; let IClass = 0b0111; let Inst{27-23} = 0b11000; let Inst{22-16} = S8{7-1}; let Inst{13} = S8{0}; let Inst{12-5} = s8; let Inst{4-0} = Rdd; } //===----------------------------------------------------------------------===// // Template class for predicated ADD of a reg and an Immediate value. //===----------------------------------------------------------------------===// let hasNewValue = 1 in class T_Addri_Pred : ALU32_ri <(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs, s8Ext:$s8), !if(PredNot, "if (!$Pu", "if ($Pu")#!if(PredNew,".new) $Rd = ", ") $Rd = ")#"add($Rs, #$s8)"> { bits<5> Rd; bits<2> Pu; bits<5> Rs; bits<8> s8; let isPredicatedNew = PredNew; let IClass = 0b0111; let Inst{27-24} = 0b0100; let Inst{23} = PredNot; let Inst{22-21} = Pu; let Inst{20-16} = Rs; let Inst{13} = PredNew; let Inst{12-5} = s8; let Inst{4-0} = Rd; } //===----------------------------------------------------------------------===// // A2_addi: Add a signed immediate to a register. //===----------------------------------------------------------------------===// let hasNewValue = 1 in class T_Addri pattern = [] > : ALU32_ri <(outs IntRegs:$Rd), (ins IntRegs:$Rs, immOp:$s16), "$Rd = add($Rs, #$s16)", pattern, //[(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rs), (s16ExtPred:$s16)))], "", ALU32_ADDI_tc_1_SLOT0123> { bits<5> Rd; bits<5> Rs; bits<16> s16; let IClass = 0b1011; let Inst{27-21} = s16{15-9}; let Inst{20-16} = Rs; let Inst{13-5} = s16{8-0}; let Inst{4-0} = Rd; } //===----------------------------------------------------------------------===// // Multiclass for ADD of a register and an immediate value. //===----------------------------------------------------------------------===// multiclass Addri_Pred { let isPredicatedFalse = PredNot in { def _c#NAME : T_Addri_Pred; // Predicate new def _cdn#NAME : T_Addri_Pred; } } let isExtendable = 1, InputType = "imm" in multiclass Addri_base { let CextOpcode = mnemonic, BaseOpcode = mnemonic#_ri in { let opExtendable = 2, isExtentSigned = 1, opExtentBits = 16, isPredicable = 1 in def NAME : T_Addri< s16Ext, // Rd=add(Rs,#s16) [(set (i32 IntRegs:$Rd), (add IntRegs:$Rs, s16ExtPred:$s16))]>; let opExtendable = 3, isExtentSigned = 1, opExtentBits = 8, hasSideEffects = 0, isPredicated = 1 in { defm Pt : Addri_Pred; defm NotPt : Addri_Pred; } } } let isCodeGenOnly = 0 in defm ADD_ri : Addri_base<"add", add>, ImmRegRel, PredNewRel; //===----------------------------------------------------------------------===// // Template class used for the following ALU32 instructions. // Rd=and(Rs,#s10) // Rd=or(Rs,#s10) //===----------------------------------------------------------------------===// let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10, InputType = "imm", hasNewValue = 1 in class T_ALU32ri_logical MinOp> : ALU32_ri <(outs IntRegs:$Rd), (ins IntRegs:$Rs, s10Ext:$s10), "$Rd = "#mnemonic#"($Rs, #$s10)" , [(set (i32 IntRegs:$Rd), (OpNode (i32 IntRegs:$Rs), s10ExtPred:$s10))]> { bits<5> Rd; bits<5> Rs; bits<10> s10; let CextOpcode = mnemonic; let IClass = 0b0111; let Inst{27-24} = 0b0110; let Inst{23-22} = MinOp; let Inst{21} = s10{9}; let Inst{20-16} = Rs; let Inst{13-5} = s10{8-0}; let Inst{4-0} = Rd; } let isCodeGenOnly = 0 in { def OR_ri : T_ALU32ri_logical<"or", or, 0b10>, ImmRegRel; def AND_ri : T_ALU32ri_logical<"and", and, 0b00>, ImmRegRel; } // Subtract register from immediate // Rd32=sub(#s10,Rs32) let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 10, CextOpcode = "sub", InputType = "imm", hasNewValue = 1, isCodeGenOnly = 0 in def SUB_ri: ALU32_ri <(outs IntRegs:$Rd), (ins s10Ext:$s10, IntRegs:$Rs), "$Rd = sub(#$s10, $Rs)" , [(set IntRegs:$Rd, (sub s10ExtPred:$s10, IntRegs:$Rs))] > , ImmRegRel { bits<5> Rd; bits<10> s10; bits<5> Rs; let IClass = 0b0111; let Inst{27-22} = 0b011001; let Inst{21} = s10{9}; let Inst{20-16} = Rs; let Inst{13-5} = s10{8-0}; let Inst{4-0} = Rd; } // Nop. let hasSideEffects = 0, isCodeGenOnly = 0 in def A2_nop: ALU32Inst <(outs), (ins), "nop" > { let IClass = 0b0111; let Inst{27-24} = 0b1111; } // Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs). def : Pat<(not (i32 IntRegs:$src1)), (SUB_ri -1, (i32 IntRegs:$src1))>; let hasSideEffects = 0, hasNewValue = 1 in class T_tfr16 : ALU32Inst <(outs IntRegs:$Rx), (ins IntRegs:$src1, u16Imm:$u16), "$Rx"#!if(isHi, ".h", ".l")#" = #$u16", [], "$src1 = $Rx" > { bits<5> Rx; bits<16> u16; let IClass = 0b0111; let Inst{27-26} = 0b00; let Inst{25-24} = !if(isHi, 0b10, 0b01); let Inst{23-22} = u16{15-14}; let Inst{21} = 0b1; let Inst{20-16} = Rx; let Inst{13-0} = u16{13-0}; } let isCodeGenOnly = 0 in { def A2_tfril: T_tfr16<0>; def A2_tfrih: T_tfr16<1>; } // Conditional transfer is an alias to conditional "Rd = add(Rs, #0)". let isPredicated = 1, hasNewValue = 1, opNewValue = 0 in class T_tfr_pred : ALU32Inst<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2), "if ("#!if(isPredNot, "!", "")# "$src1"#!if(isPredNew, ".new", "")# ") $dst = $src2"> { bits<5> dst; bits<2> src1; bits<5> src2; let isPredicatedFalse = isPredNot; let isPredicatedNew = isPredNew; let IClass = 0b0111; let Inst{27-24} = 0b0100; let Inst{23} = isPredNot; let Inst{13} = isPredNew; let Inst{12-5} = 0; let Inst{4-0} = dst; let Inst{22-21} = src1; let Inst{20-16} = src2; } let isPredicable = 1 in class T_tfr : ALU32Inst<(outs IntRegs:$dst), (ins IntRegs:$src), "$dst = $src"> { bits<5> dst; bits<5> src; let IClass = 0b0111; let Inst{27-21} = 0b0000011; let Inst{20-16} = src; let Inst{13} = 0b0; let Inst{4-0} = dst; } let InputType = "reg", hasNewValue = 1, hasSideEffects = 0 in multiclass tfr_base { let CextOpcode = CextOp, BaseOpcode = CextOp in { def NAME : T_tfr; // Predicate def t : T_tfr_pred<0, 0>; def f : T_tfr_pred<1, 0>; // Predicate new def tnew : T_tfr_pred<0, 1>; def fnew : T_tfr_pred<1, 1>; } } // Assembler mapped to C2_ccombinew[t|f|newt|newf]. // Please don't add bits to this instruction as it'll be converted into // 'combine' before object code emission. let isPredicated = 1 in class T_tfrp_pred : ALU32_rr <(outs DoubleRegs:$dst), (ins PredRegs:$src1, DoubleRegs:$src2), "if ("#!if(PredNot, "!", "")#"$src1" #!if(PredNew, ".new", "")#") $dst = $src2" > { let isPredicatedFalse = PredNot; let isPredicatedNew = PredNew; } // Assembler mapped to A2_combinew. // Please don't add bits to this instruction as it'll be converted into // 'combine' before object code emission. class T_tfrp : ALU32Inst <(outs DoubleRegs:$dst), (ins DoubleRegs:$src), "$dst = $src">; let hasSideEffects = 0 in multiclass TFR64_base { let BaseOpcode = BaseName in { let isPredicable = 1 in def NAME : T_tfrp; // Predicate def t : T_tfrp_pred <0, 0>; def f : T_tfrp_pred <1, 0>; // Predicate new def tnew : T_tfrp_pred <0, 1>; def fnew : T_tfrp_pred <1, 1>; } } let InputType = "imm", isExtendable = 1, isExtentSigned = 1, opExtentBits = 12, isMoveImm = 1, opExtendable = 2, BaseOpcode = "TFRI", CextOpcode = "TFR", hasSideEffects = 0, isPredicated = 1, hasNewValue = 1 in class T_TFRI_Pred : ALU32_ri<(outs IntRegs:$Rd), (ins PredRegs:$Pu, s12Ext:$s12), "if ("#!if(PredNot,"!","")#"$Pu"#!if(PredNew,".new","")#") $Rd = #$s12", [], "", ALU32_2op_tc_1_SLOT0123>, ImmRegRel, PredNewRel { let isPredicatedFalse = PredNot; let isPredicatedNew = PredNew; bits<5> Rd; bits<2> Pu; bits<12> s12; let IClass = 0b0111; let Inst{27-24} = 0b1110; let Inst{23} = PredNot; let Inst{22-21} = Pu; let Inst{20} = 0b0; let Inst{19-16,12-5} = s12; let Inst{13} = PredNew; let Inst{4-0} = Rd; } let isCodeGenOnly = 0 in { def C2_cmoveit : T_TFRI_Pred<0, 0>; def C2_cmoveif : T_TFRI_Pred<1, 0>; def C2_cmovenewit : T_TFRI_Pred<0, 1>; def C2_cmovenewif : T_TFRI_Pred<1, 1>; } let InputType = "imm", isExtendable = 1, isExtentSigned = 1, CextOpcode = "TFR", BaseOpcode = "TFRI", hasNewValue = 1, opNewValue = 0, isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16, isMoveImm = 1, isPredicated = 0, isPredicable = 1, isReMaterializable = 1, isCodeGenOnly = 0 in def A2_tfrsi : ALU32Inst<(outs IntRegs:$Rd), (ins s16Ext:$s16), "$Rd = #$s16", [(set (i32 IntRegs:$Rd), s16ExtPred:$s16)], "", ALU32_2op_tc_1_SLOT0123>, ImmRegRel, PredRel { bits<5> Rd; bits<16> s16; let IClass = 0b0111; let Inst{27-24} = 0b1000; let Inst{23-22,20-16,13-5} = s16; let Inst{4-0} = Rd; } let isCodeGenOnly = 0 in defm A2_tfr : tfr_base<"TFR">, ImmRegRel, PredNewRel; defm A2_tfrp : TFR64_base<"TFR64">, PredNewRel; // Assembler mapped let isReMaterializable = 1, isMoveImm = 1, isAsCheapAsAMove = 1 in def A2_tfrpi : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1), "$dst = #$src1", [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>; // TODO: see if this instruction can be deleted.. let isExtendable = 1, opExtendable = 1, opExtentBits = 6 in def TFRI64_V4 : ALU64_rr<(outs DoubleRegs:$dst), (ins u6Ext:$src1), "$dst = #$src1">; //===----------------------------------------------------------------------===// // ALU32/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU32/PERM + //===----------------------------------------------------------------------===// // Scalar mux register immediate. let hasSideEffects = 0, isExtentSigned = 1, CextOpcode = "MUX", InputType = "imm", hasNewValue = 1, isExtendable = 1, opExtentBits = 8 in class T_MUX1 : ALU32Inst <(outs IntRegs:$Rd), ins, AsmStr>, ImmRegRel { bits<5> Rd; bits<2> Pu; bits<8> s8; bits<5> Rs; let IClass = 0b0111; let Inst{27-24} = 0b0011; let Inst{23} = MajOp; let Inst{22-21} = Pu; let Inst{20-16} = Rs; let Inst{13} = 0b0; let Inst{12-5} = s8; let Inst{4-0} = Rd; } let opExtendable = 2, isCodeGenOnly = 0 in def C2_muxri : T_MUX1<0b1, (ins PredRegs:$Pu, s8Ext:$s8, IntRegs:$Rs), "$Rd = mux($Pu, #$s8, $Rs)">; let opExtendable = 3, isCodeGenOnly = 0 in def C2_muxir : T_MUX1<0b0, (ins PredRegs:$Pu, IntRegs:$Rs, s8Ext:$s8), "$Rd = mux($Pu, $Rs, #$s8)">; def : Pat<(i32 (select I1:$Pu, s8ExtPred:$s8, I32:$Rs)), (C2_muxri I1:$Pu, s8ExtPred:$s8, I32:$Rs)>; def : Pat<(i32 (select I1:$Pu, I32:$Rs, s8ExtPred:$s8)), (C2_muxir I1:$Pu, I32:$Rs, s8ExtPred:$s8)>; // C2_muxii: Scalar mux immediates. let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1, opExtentBits = 8, opExtendable = 2, isCodeGenOnly = 0 in def C2_muxii: ALU32Inst <(outs IntRegs:$Rd), (ins PredRegs:$Pu, s8Ext:$s8, s8Imm:$S8), "$Rd = mux($Pu, #$s8, #$S8)" , [(set (i32 IntRegs:$Rd), (i32 (select I1:$Pu, s8ExtPred:$s8, s8ImmPred:$S8)))] > { bits<5> Rd; bits<2> Pu; bits<8> s8; bits<8> S8; let IClass = 0b0111; let Inst{27-25} = 0b101; let Inst{24-23} = Pu; let Inst{22-16} = S8{7-1}; let Inst{13} = S8{0}; let Inst{12-5} = s8; let Inst{4-0} = Rd; } //===----------------------------------------------------------------------===// // template class for non-predicated alu32_2op instructions // - aslh, asrh, sxtb, sxth, zxth //===----------------------------------------------------------------------===// let hasNewValue = 1, opNewValue = 0 in class T_ALU32_2op minOp> : ALU32Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rs), "$Rd = "#mnemonic#"($Rs)", [] > { bits<5> Rd; bits<5> Rs; let IClass = 0b0111; let Inst{27-24} = 0b0000; let Inst{23-21} = minOp; let Inst{13} = 0b0; let Inst{4-0} = Rd; let Inst{20-16} = Rs; } //===----------------------------------------------------------------------===// // template class for predicated alu32_2op instructions // - aslh, asrh, sxtb, sxth, zxtb, zxth //===----------------------------------------------------------------------===// let hasSideEffects = 0, validSubTargets = HasV4SubT, hasNewValue = 1, opNewValue = 0 in class T_ALU32_2op_Pred minOp, bit isPredNot, bit isPredNew > : ALU32Inst <(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs), !if(isPredNot, "if (!$Pu", "if ($Pu") #!if(isPredNew, ".new) ",") ")#"$Rd = "#mnemonic#"($Rs)"> { bits<5> Rd; bits<2> Pu; bits<5> Rs; let IClass = 0b0111; let Inst{27-24} = 0b0000; let Inst{23-21} = minOp; let Inst{13} = 0b1; let Inst{11} = isPredNot; let Inst{10} = isPredNew; let Inst{4-0} = Rd; let Inst{9-8} = Pu; let Inst{20-16} = Rs; } multiclass ALU32_2op_Pred minOp, bit PredNot> { let isPredicatedFalse = PredNot in { def NAME : T_ALU32_2op_Pred; // Predicate new let isPredicatedNew = 1 in def NAME#new : T_ALU32_2op_Pred; } } multiclass ALU32_2op_base minOp> { let BaseOpcode = mnemonic in { let isPredicable = 1, hasSideEffects = 0 in def A2_#NAME : T_ALU32_2op; let validSubTargets = HasV4SubT, isPredicated = 1, hasSideEffects = 0 in { defm A4_p#NAME#t : ALU32_2op_Pred; defm A4_p#NAME#f : ALU32_2op_Pred; } } } let isCodeGenOnly = 0 in { defm aslh : ALU32_2op_base<"aslh", 0b000>, PredNewRel; defm asrh : ALU32_2op_base<"asrh", 0b001>, PredNewRel; defm sxtb : ALU32_2op_base<"sxtb", 0b101>, PredNewRel; defm sxth : ALU32_2op_base<"sxth", 0b111>, PredNewRel; defm zxth : ALU32_2op_base<"zxth", 0b110>, PredNewRel; } // Rd=zxtb(Rs): assembler mapped to Rd=and(Rs,#255). // Compiler would want to generate 'zxtb' instead of 'and' becuase 'zxtb' has // predicated forms while 'and' doesn't. Since integrated assembler can't // handle 'mapped' instructions, we need to encode 'zxtb' same as 'and' where // immediate operand is set to '255'. let hasNewValue = 1, opNewValue = 0 in class T_ZXTB: ALU32Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rs), "$Rd = zxtb($Rs)", [] > { // Rd = and(Rs,255) bits<5> Rd; bits<5> Rs; bits<10> s10 = 255; let IClass = 0b0111; let Inst{27-22} = 0b011000; let Inst{4-0} = Rd; let Inst{20-16} = Rs; let Inst{21} = s10{9}; let Inst{13-5} = s10{8-0}; } //Rd=zxtb(Rs): assembler mapped to "Rd=and(Rs,#255) multiclass ZXTB_base minOp> { let BaseOpcode = mnemonic in { let isPredicable = 1, hasSideEffects = 0 in def A2_#NAME : T_ZXTB; let validSubTargets = HasV4SubT, isPredicated = 1, hasSideEffects = 0 in { defm A4_p#NAME#t : ALU32_2op_Pred; defm A4_p#NAME#f : ALU32_2op_Pred; } } } let isCodeGenOnly=0 in defm zxtb : ZXTB_base<"zxtb",0b100>, PredNewRel; def: Pat<(shl I32:$src1, (i32 16)), (A2_aslh I32:$src1)>; def: Pat<(sra I32:$src1, (i32 16)), (A2_asrh I32:$src1)>; def: Pat<(sext_inreg I32:$src1, i8), (A2_sxtb I32:$src1)>; def: Pat<(sext_inreg I32:$src1, i16), (A2_sxth I32:$src1)>; // Mux. def VMUX_prr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, DoubleRegs:$src2, DoubleRegs:$src3), "$dst = vmux($src1, $src2, $src3)", []>; //===----------------------------------------------------------------------===// // ALU32/PERM - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU32/PRED + //===----------------------------------------------------------------------===// // SDNode for converting immediate C to C-1. def DEC_CONST_SIGNED : SDNodeXFormgetSExtValue(); return XformSToSM1Imm(imm); }]>; // SDNode for converting immediate C to C-1. def DEC_CONST_UNSIGNED : SDNodeXFormgetZExtValue(); return XformUToUM1Imm(imm); }]>; def CTLZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1), "$dst = cl0($src1)", [(set (i32 IntRegs:$dst), (i32 (trunc (ctlz (i64 DoubleRegs:$src1)))))]>; def CTTZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1), "$dst = ct0($src1)", [(set (i32 IntRegs:$dst), (i32 (trunc (cttz (i64 DoubleRegs:$src1)))))]>; //===----------------------------------------------------------------------===// // ALU32/PRED - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU64/ALU + //===----------------------------------------------------------------------===//// Add. //===----------------------------------------------------------------------===// // Template Class // Add/Subtract halfword // Rd=add(Rt.L,Rs.[HL])[:sat] // Rd=sub(Rt.L,Rs.[HL])[:sat] // Rd=add(Rt.[LH],Rs.[HL])[:sat][:<16] // Rd=sub(Rt.[LH],Rs.[HL])[:sat][:<16] //===----------------------------------------------------------------------===// let hasNewValue = 1, opNewValue = 0 in class T_XTYPE_ADD_SUB LHbits, bit isSat, bit hasShift, bit isSub> : ALU64Inst <(outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs), "$Rd = "#!if(isSub,"sub","add")#"($Rt." #!if(hasShift, !if(LHbits{1},"h","l"),"l") #", $Rs." #!if(hasShift, !if(LHbits{0},"h)","l)"), !if(LHbits{1},"h)","l)")) #!if(isSat,":sat","") #!if(hasShift,":<<16",""), [], "", ALU64_tc_1_SLOT23> { bits<5> Rd; bits<5> Rt; bits<5> Rs; let IClass = 0b1101; let Inst{27-23} = 0b01010; let Inst{22} = hasShift; let Inst{21} = isSub; let Inst{7} = isSat; let Inst{6-5} = LHbits; let Inst{4-0} = Rd; let Inst{12-8} = Rt; let Inst{20-16} = Rs; } //Rd=sub(Rt.L,Rs.[LH]) let isCodeGenOnly = 0 in { def A2_subh_l16_ll : T_XTYPE_ADD_SUB <0b00, 0, 0, 1>; def A2_subh_l16_hl : T_XTYPE_ADD_SUB <0b10, 0, 0, 1>; } let isCodeGenOnly = 0 in { //Rd=add(Rt.L,Rs.[LH]) def A2_addh_l16_ll : T_XTYPE_ADD_SUB <0b00, 0, 0, 0>; def A2_addh_l16_hl : T_XTYPE_ADD_SUB <0b10, 0, 0, 0>; } let Itinerary = ALU64_tc_2_SLOT23, Defs = [USR_OVF], isCodeGenOnly = 0 in { //Rd=sub(Rt.L,Rs.[LH]):sat def A2_subh_l16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 0, 1>; def A2_subh_l16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 0, 1>; //Rd=add(Rt.L,Rs.[LH]):sat def A2_addh_l16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 0, 0>; def A2_addh_l16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 0, 0>; } //Rd=sub(Rt.[LH],Rs.[LH]):<<16 let isCodeGenOnly = 0 in { def A2_subh_h16_ll : T_XTYPE_ADD_SUB <0b00, 0, 1, 1>; def A2_subh_h16_lh : T_XTYPE_ADD_SUB <0b01, 0, 1, 1>; def A2_subh_h16_hl : T_XTYPE_ADD_SUB <0b10, 0, 1, 1>; def A2_subh_h16_hh : T_XTYPE_ADD_SUB <0b11, 0, 1, 1>; } //Rd=add(Rt.[LH],Rs.[LH]):<<16 let isCodeGenOnly = 0 in { def A2_addh_h16_ll : T_XTYPE_ADD_SUB <0b00, 0, 1, 0>; def A2_addh_h16_lh : T_XTYPE_ADD_SUB <0b01, 0, 1, 0>; def A2_addh_h16_hl : T_XTYPE_ADD_SUB <0b10, 0, 1, 0>; def A2_addh_h16_hh : T_XTYPE_ADD_SUB <0b11, 0, 1, 0>; } let Itinerary = ALU64_tc_2_SLOT23, Defs = [USR_OVF], isCodeGenOnly = 0 in { //Rd=sub(Rt.[LH],Rs.[LH]):sat:<<16 def A2_subh_h16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 1, 1>; def A2_subh_h16_sat_lh : T_XTYPE_ADD_SUB <0b01, 1, 1, 1>; def A2_subh_h16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 1, 1>; def A2_subh_h16_sat_hh : T_XTYPE_ADD_SUB <0b11, 1, 1, 1>; //Rd=add(Rt.[LH],Rs.[LH]):sat:<<16 def A2_addh_h16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 1, 0>; def A2_addh_h16_sat_lh : T_XTYPE_ADD_SUB <0b01, 1, 1, 0>; def A2_addh_h16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 1, 0>; def A2_addh_h16_sat_hh : T_XTYPE_ADD_SUB <0b11, 1, 1, 0>; } // Add halfword. def: Pat<(sext_inreg (add I32:$src1, I32:$src2), i16), (A2_addh_l16_ll I32:$src1, I32:$src2)>; def: Pat<(sra (add (shl I32:$src1, (i32 16)), I32:$src2), (i32 16)), (A2_addh_l16_hl I32:$src1, I32:$src2)>; def: Pat<(shl (add I32:$src1, I32:$src2), (i32 16)), (A2_addh_h16_ll I32:$src1, I32:$src2)>; // Subtract halfword. def: Pat<(sext_inreg (sub I32:$src1, I32:$src2), i16), (A2_subh_l16_ll I32:$src1, I32:$src2)>; def: Pat<(shl (sub I32:$src1, I32:$src2), (i32 16)), (A2_subh_h16_ll I32:$src1, I32:$src2)>; let hasSideEffects = 0, hasNewValue = 1, isCodeGenOnly = 0 in def S2_parityp: ALU64Inst<(outs IntRegs:$Rd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt), "$Rd = parity($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> { bits<5> Rd; bits<5> Rs; bits<5> Rt; let IClass = 0b1101; let Inst{27-24} = 0b0000; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{4-0} = Rd; } let hasNewValue = 1, opNewValue = 0, hasSideEffects = 0 in class T_XTYPE_MIN_MAX < bit isMax, bit isUnsigned > : ALU64Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs), "$Rd = "#!if(isMax,"max","min")#!if(isUnsigned,"u","") #"($Rt, $Rs)", [], "", ALU64_tc_2_SLOT23> { bits<5> Rd; bits<5> Rt; bits<5> Rs; let IClass = 0b1101; let Inst{27-23} = 0b01011; let Inst{22-21} = !if(isMax, 0b10, 0b01); let Inst{7} = isUnsigned; let Inst{4-0} = Rd; let Inst{12-8} = !if(isMax, Rs, Rt); let Inst{20-16} = !if(isMax, Rt, Rs); } let isCodeGenOnly = 0 in { def A2_min : T_XTYPE_MIN_MAX < 0, 0 >; def A2_minu : T_XTYPE_MIN_MAX < 0, 1 >; def A2_max : T_XTYPE_MIN_MAX < 1, 0 >; def A2_maxu : T_XTYPE_MIN_MAX < 1, 1 >; } // Here, depending on the operand being selected, we'll either generate a // min or max instruction. // Ex: // (a>b)?a:b --> max(a,b) => Here check performed is '>' and the value selected // is the larger of two. So, the corresponding HexagonInst is passed in 'Inst'. // (a>b)?b:a --> min(a,b) => Here check performed is '>' but the smaller value // is selected and the corresponding HexagonInst is passed in 'SwapInst'. multiclass T_MinMax_pats { def: Pat<(select (i1 (Op (VT RC:$src1), (VT RC:$src2))), (VT RC:$src1), (VT RC:$src2)), (Inst RC:$src1, RC:$src2)>; def: Pat<(select (i1 (Op (VT RC:$src1), (VT RC:$src2))), (VT RC:$src2), (VT RC:$src1)), (SwapInst RC:$src1, RC:$src2)>; } multiclass MinMax_pats { defm: T_MinMax_pats; def: Pat<(sext_inreg (i32 (select (i1 (Op (i32 PositiveHalfWord:$src1), (i32 PositiveHalfWord:$src2))), (i32 PositiveHalfWord:$src1), (i32 PositiveHalfWord:$src2))), i16), (Inst IntRegs:$src1, IntRegs:$src2)>; def: Pat<(sext_inreg (i32 (select (i1 (Op (i32 PositiveHalfWord:$src1), (i32 PositiveHalfWord:$src2))), (i32 PositiveHalfWord:$src2), (i32 PositiveHalfWord:$src1))), i16), (SwapInst IntRegs:$src1, IntRegs:$src2)>; } let AddedComplexity = 200 in { defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; defm: MinMax_pats; } class T_cmp64_rr MinOp, bit IsComm> : ALU64_rr<(outs PredRegs:$Pd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt), "$Pd = "#mnemonic#"($Rs, $Rt)", [], "", ALU64_tc_2early_SLOT23> { let isCompare = 1; let isCommutable = IsComm; let hasSideEffects = 0; bits<2> Pd; bits<5> Rs; bits<5> Rt; let IClass = 0b1101; let Inst{27-21} = 0b0010100; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{7-5} = MinOp; let Inst{1-0} = Pd; } let isCodeGenOnly = 0 in { def C2_cmpeqp : T_cmp64_rr<"cmp.eq", 0b000, 1>; def C2_cmpgtp : T_cmp64_rr<"cmp.gt", 0b010, 0>; def C2_cmpgtup : T_cmp64_rr<"cmp.gtu", 0b100, 0>; } class T_cmp64_rr_pat : Pat<(i1 (CmpOp (i64 DoubleRegs:$Rs), (i64 DoubleRegs:$Rt))), (i1 (MI DoubleRegs:$Rs, DoubleRegs:$Rt))>; def: T_cmp64_rr_pat; def: T_cmp64_rr_pat; def: T_cmp64_rr_pat; def: T_cmp64_rr_pat>; def: T_cmp64_rr_pat>; class T_ALU64_rr RegType, bits<3> MajOp, bits<3> MinOp, bit OpsRev, bit IsComm, string Op2Pfx> : ALU64_rr<(outs DoubleRegs:$Rd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt), "$Rd = " #mnemonic# "($Rs, " #Op2Pfx# "$Rt)" #suffix, [], "", ALU64_tc_1_SLOT23> { let hasSideEffects = 0; let isCommutable = IsComm; bits<5> Rs; bits<5> Rt; bits<5> Rd; let IClass = 0b1101; let Inst{27-24} = RegType; let Inst{23-21} = MajOp; let Inst{20-16} = !if (OpsRev,Rt,Rs); let Inst{12-8} = !if (OpsRev,Rs,Rt); let Inst{7-5} = MinOp; let Inst{4-0} = Rd; } class T_ALU64_arith MajOp, bits<3> MinOp, bit IsSat, bit OpsRev, bit IsComm> : T_ALU64_rr; let isCodeGenOnly = 0 in { def A2_addp : T_ALU64_arith<"add", 0b000, 0b111, 0, 0, 1>; def A2_subp : T_ALU64_arith<"sub", 0b001, 0b111, 0, 1, 0>; } def: Pat<(i64 (add I64:$Rs, I64:$Rt)), (A2_addp I64:$Rs, I64:$Rt)>; def: Pat<(i64 (sub I64:$Rs, I64:$Rt)), (A2_subp I64:$Rs, I64:$Rt)>; class T_ALU64_logical MinOp, bit OpsRev, bit IsComm, bit IsNeg> : T_ALU64_rr; let isCodeGenOnly = 0 in { def A2_andp : T_ALU64_logical<"and", 0b000, 0, 1, 0>; def A2_orp : T_ALU64_logical<"or", 0b010, 0, 1, 0>; def A2_xorp : T_ALU64_logical<"xor", 0b100, 0, 1, 0>; } def: Pat<(i64 (and I64:$Rs, I64:$Rt)), (A2_andp I64:$Rs, I64:$Rt)>; def: Pat<(i64 (or I64:$Rs, I64:$Rt)), (A2_orp I64:$Rs, I64:$Rt)>; def: Pat<(i64 (xor I64:$Rs, I64:$Rt)), (A2_xorp I64:$Rs, I64:$Rt)>; //===----------------------------------------------------------------------===// // ALU64/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU64/BIT + //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// // ALU64/BIT - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU64/PERM + //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// // ALU64/PERM - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // CR + //===----------------------------------------------------------------------===// // Logical reductions on predicates. // Looping instructions. // Pipelined looping instructions. // Logical operations on predicates. let hasSideEffects = 0 in class T_LOGICAL_1OP OpBits> : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps), "$Pd = " # MnOp # "($Ps)", [], "", CR_tc_2early_SLOT23> { bits<2> Pd; bits<2> Ps; let IClass = 0b0110; let Inst{27-23} = 0b10111; let Inst{22-21} = OpBits; let Inst{20} = 0b0; let Inst{17-16} = Ps; let Inst{13} = 0b0; let Inst{1-0} = Pd; } let isCodeGenOnly = 0 in { def C2_any8 : T_LOGICAL_1OP<"any8", 0b00>; def C2_all8 : T_LOGICAL_1OP<"all8", 0b01>; def C2_not : T_LOGICAL_1OP<"not", 0b10>; } def: Pat<(i1 (not (i1 PredRegs:$Ps))), (C2_not PredRegs:$Ps)>; let hasSideEffects = 0 in class T_LOGICAL_2OP OpBits, bit IsNeg, bit Rev> : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps, PredRegs:$Pt), "$Pd = " # MnOp # "($Ps, " # !if (IsNeg,"!","") # "$Pt)", [], "", CR_tc_2early_SLOT23> { bits<2> Pd; bits<2> Ps; bits<2> Pt; let IClass = 0b0110; let Inst{27-24} = 0b1011; let Inst{23-21} = OpBits; let Inst{20} = 0b0; let Inst{17-16} = !if(Rev,Pt,Ps); // Rs and Rt are reversed for some let Inst{13} = 0b0; // instructions. let Inst{9-8} = !if(Rev,Ps,Pt); let Inst{1-0} = Pd; } let isCodeGenOnly = 0 in { def C2_and : T_LOGICAL_2OP<"and", 0b000, 0, 1>; def C2_or : T_LOGICAL_2OP<"or", 0b001, 0, 1>; def C2_xor : T_LOGICAL_2OP<"xor", 0b010, 0, 0>; def C2_andn : T_LOGICAL_2OP<"and", 0b011, 1, 1>; def C2_orn : T_LOGICAL_2OP<"or", 0b111, 1, 1>; } def: Pat<(i1 (and I1:$Ps, I1:$Pt)), (C2_and I1:$Ps, I1:$Pt)>; def: Pat<(i1 (or I1:$Ps, I1:$Pt)), (C2_or I1:$Ps, I1:$Pt)>; def: Pat<(i1 (xor I1:$Ps, I1:$Pt)), (C2_xor I1:$Ps, I1:$Pt)>; def: Pat<(i1 (and I1:$Ps, (not I1:$Pt))), (C2_andn I1:$Ps, I1:$Pt)>; def: Pat<(i1 (or I1:$Ps, (not I1:$Pt))), (C2_orn I1:$Ps, I1:$Pt)>; let hasSideEffects = 0, hasNewValue = 1, isCodeGenOnly = 0 in def C2_vitpack : SInst<(outs IntRegs:$Rd), (ins PredRegs:$Ps, PredRegs:$Pt), "$Rd = vitpack($Ps, $Pt)", [], "", S_2op_tc_1_SLOT23> { bits<5> Rd; bits<2> Ps; bits<2> Pt; let IClass = 0b1000; let Inst{27-24} = 0b1001; let Inst{22-21} = 0b00; let Inst{17-16} = Ps; let Inst{9-8} = Pt; let Inst{4-0} = Rd; } let hasSideEffects = 0, isCodeGenOnly = 0 in def C2_mask : SInst<(outs DoubleRegs:$Rd), (ins PredRegs:$Pt), "$Rd = mask($Pt)", [], "", S_2op_tc_1_SLOT23> { bits<5> Rd; bits<2> Pt; let IClass = 0b1000; let Inst{27-24} = 0b0110; let Inst{9-8} = Pt; let Inst{4-0} = Rd; } def VALIGN_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2, PredRegs:$src3), "$dst = valignb($src1, $src2, $src3)", []>; def VSPLICE_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2, PredRegs:$src3), "$dst = vspliceb($src1, $src2, $src3)", []>; // User control register transfer. //===----------------------------------------------------------------------===// // CR - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // JR + //===----------------------------------------------------------------------===// def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>; def SDHexagonBR_JT: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def HexagonBR_JT: SDNode<"HexagonISD::BR_JT", SDHexagonBR_JT, [SDNPHasChain]>; class CondStr { string S = "if (" # !if(True,"","!") # CReg # !if(New,".new","") # ") "; } class JumpOpcStr { string S = Mnemonic # !if(New, !if(Taken,":t",":nt"), ""); } let isBranch = 1, isBarrier = 1, Defs = [PC], hasSideEffects = 0, isPredicable = 1, isExtendable = 1, opExtendable = 0, isExtentSigned = 1, opExtentBits = 24, opExtentAlign = 2, InputType = "imm" in class T_JMP : JInst<(outs), (ins brtarget:$dst), "jump " # ExtStr # "$dst", [], "", J_tc_2early_SLOT23> { bits<24> dst; let IClass = 0b0101; let Inst{27-25} = 0b100; let Inst{24-16} = dst{23-15}; let Inst{13-1} = dst{14-2}; } let isBranch = 1, Defs = [PC], hasSideEffects = 0, isPredicated = 1, isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 17, opExtentAlign = 2, InputType = "imm" in class T_JMP_c : JInst<(outs), (ins PredRegs:$src, brtarget:$dst), CondStr<"$src", !if(PredNot,0,1), isPredNew>.S # JumpOpcStr<"jump", isPredNew, isTak>.S # " " # ExtStr # "$dst", [], "", J_tc_2early_SLOT23>, ImmRegRel { let isTaken = isTak; let isPredicatedFalse = PredNot; let isPredicatedNew = isPredNew; bits<2> src; bits<17> dst; let IClass = 0b0101; let Inst{27-24} = 0b1100; let Inst{21} = PredNot; let Inst{12} = !if(isPredNew, isTak, zero); let Inst{11} = isPredNew; let Inst{9-8} = src; let Inst{23-22} = dst{16-15}; let Inst{20-16} = dst{14-10}; let Inst{13} = dst{9}; let Inst{7-1} = dst{8-2}; } multiclass JMP_Pred { def NAME : T_JMP_c; // Predicate new def NAME#newpt : T_JMP_c; // taken def NAME#new : T_JMP_c; // not taken } multiclass JMP_base { let BaseOpcode = BaseOp in { def NAME : T_JMP; defm t : JMP_Pred<0, ExtStr>; defm f : JMP_Pred<1, ExtStr>; } } // Jumps to address stored in a register, JUMPR_MISC // if ([[!]P[.new]]) jumpr[:t/nt] Rs let isBranch = 1, isIndirectBranch = 1, isBarrier = 1, Defs = [PC], isPredicable = 1, hasSideEffects = 0, InputType = "reg" in class T_JMPr : JRInst<(outs), (ins IntRegs:$dst), "jumpr $dst", [], "", J_tc_2early_SLOT2> { bits<5> dst; let IClass = 0b0101; let Inst{27-21} = 0b0010100; let Inst{20-16} = dst; } let isBranch = 1, isIndirectBranch = 1, Defs = [PC], isPredicated = 1, hasSideEffects = 0, InputType = "reg" in class T_JMPr_c : JRInst <(outs), (ins PredRegs:$src, IntRegs:$dst), CondStr<"$src", !if(PredNot,0,1), isPredNew>.S # JumpOpcStr<"jumpr", isPredNew, isTak>.S # " $dst", [], "", J_tc_2early_SLOT2> { let isTaken = isTak; let isPredicatedFalse = PredNot; let isPredicatedNew = isPredNew; bits<2> src; bits<5> dst; let IClass = 0b0101; let Inst{27-22} = 0b001101; let Inst{21} = PredNot; let Inst{20-16} = dst; let Inst{12} = !if(isPredNew, isTak, zero); let Inst{11} = isPredNew; let Inst{9-8} = src; } multiclass JMPR_Pred { def NAME: T_JMPr_c; // Predicate new def NAME#newpt : T_JMPr_c; // taken def NAME#new : T_JMPr_c; // not taken } multiclass JMPR_base { let BaseOpcode = BaseOp in { def NAME : T_JMPr; defm t : JMPR_Pred<0>; defm f : JMPR_Pred<1>; } } let isCall = 1, hasSideEffects = 1 in class JUMPR_MISC_CALLR : JRInst<(outs), InputDag, !if(isPred, !if(isPredNot, "if (!$Pu) callr $Rs", "if ($Pu) callr $Rs"), "callr $Rs"), [], "", J_tc_2early_SLOT2> { bits<5> Rs; bits<2> Pu; let isPredicated = isPred; let isPredicatedFalse = isPredNot; let IClass = 0b0101; let Inst{27-25} = 0b000; let Inst{24-23} = !if (isPred, 0b10, 0b01); let Inst{22} = 0; let Inst{21} = isPredNot; let Inst{9-8} = !if (isPred, Pu, 0b00); let Inst{20-16} = Rs; } let Defs = VolatileV3.Regs, isCodeGenOnly = 0 in { def J2_callrt : JUMPR_MISC_CALLR<1, 0, (ins PredRegs:$Pu, IntRegs:$Rs)>; def J2_callrf : JUMPR_MISC_CALLR<1, 1, (ins PredRegs:$Pu, IntRegs:$Rs)>; } let isTerminator = 1, hasSideEffects = 0, isCodeGenOnly = 0 in { defm J2_jump : JMP_base<"JMP", "">, PredNewRel; // Deal with explicit assembly // - never extened a jump #, always extend a jump ## let isAsmParserOnly = 1 in { defm J2_jump_ext : JMP_base<"JMP", "##">; defm J2_jump_noext : JMP_base<"JMP", "#">; } defm J2_jumpr : JMPR_base<"JMPr">, PredNewRel; let isReturn = 1, isCodeGenOnly = 1 in defm JMPret : JMPR_base<"JMPret">, PredNewRel; } def: Pat<(br bb:$dst), (J2_jump brtarget:$dst)>; def: Pat<(retflag), (JMPret (i32 R31))>; def: Pat<(brcond (i1 PredRegs:$src1), bb:$offset), (J2_jumpt PredRegs:$src1, bb:$offset)>; // A return through builtin_eh_return. let isReturn = 1, isTerminator = 1, isBarrier = 1, hasSideEffects = 0, isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in def EH_RETURN_JMPR : T_JMPr; def: Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>; def: Pat<(HexagonBR_JT (i32 IntRegs:$dst)), (J2_jumpr IntRegs:$dst)>; def: Pat<(brind (i32 IntRegs:$dst)), (J2_jumpr IntRegs:$dst)>; //===----------------------------------------------------------------------===// // JR - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // LD + //===----------------------------------------------------------------------===// let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, AddedComplexity = 20 in class T_load_io MajOp, Operand ImmOp> : LDInst<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset), "$dst = "#mnemonic#"($src1 + #$offset)", []>, AddrModeRel { bits<4> name; bits<5> dst; bits<5> src1; bits<14> offset; bits<11> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "s11_3Ext"), offset{13-3}, !if (!eq(ImmOpStr, "s11_2Ext"), offset{12-2}, !if (!eq(ImmOpStr, "s11_1Ext"), offset{11-1}, /* s11_0Ext */ offset{10-0}))); let opExtentBits = !if (!eq(ImmOpStr, "s11_3Ext"), 14, !if (!eq(ImmOpStr, "s11_2Ext"), 13, !if (!eq(ImmOpStr, "s11_1Ext"), 12, /* s11_0Ext */ 11))); let hasNewValue = !if (!eq(ImmOpStr, "s11_3Ext"), 0, 1); let IClass = 0b1001; let Inst{27} = 0b0; let Inst{26-25} = offsetBits{10-9}; let Inst{24-21} = MajOp; let Inst{20-16} = src1; let Inst{13-5} = offsetBits{8-0}; let Inst{4-0} = dst; } let opExtendable = 3, isExtentSigned = 0, isPredicated = 1 in class T_pload_io MajOp, Operand ImmOp, bit isNot, bit isPredNew> : LDInst<(outs RC:$dst), (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset), "if ("#!if(isNot, "!$src1", "$src1") #!if(isPredNew, ".new", "") #") $dst = "#mnemonic#"($src2 + #$offset)", [],"", V2LDST_tc_ld_SLOT01> , AddrModeRel { bits<5> dst; bits<2> src1; bits<5> src2; bits<9> offset; bits<6> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "u6_3Ext"), offset{8-3}, !if (!eq(ImmOpStr, "u6_2Ext"), offset{7-2}, !if (!eq(ImmOpStr, "u6_1Ext"), offset{6-1}, /* u6_0Ext */ offset{5-0}))); let opExtentBits = !if (!eq(ImmOpStr, "u6_3Ext"), 9, !if (!eq(ImmOpStr, "u6_2Ext"), 8, !if (!eq(ImmOpStr, "u6_1Ext"), 7, /* u6_0Ext */ 6))); let hasNewValue = !if (!eq(ImmOpStr, "u6_3Ext"), 0, 1); let isPredicatedNew = isPredNew; let isPredicatedFalse = isNot; let IClass = 0b0100; let Inst{27} = 0b0; let Inst{27} = 0b0; let Inst{26} = isNot; let Inst{25} = isPredNew; let Inst{24-21} = MajOp; let Inst{20-16} = src2; let Inst{13} = 0b0; let Inst{12-11} = src1; let Inst{10-5} = offsetBits; let Inst{4-0} = dst; } let isExtendable = 1, hasSideEffects = 0, addrMode = BaseImmOffset in multiclass LD_IdxdMajOp> { let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in { let isPredicable = 1 in def L2_#NAME#_io : T_load_io ; // Predicated def L2_p#NAME#t_io : T_pload_io ; def L2_p#NAME#f_io : T_pload_io ; // Predicated new def L2_p#NAME#tnew_io : T_pload_io ; def L2_p#NAME#fnew_io : T_pload_io ; } } let accessSize = ByteAccess, isCodeGenOnly = 0 in { defm loadrb: LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext, 0b1000>; defm loadrub: LD_Idxd <"memub", "LDriub", IntRegs, s11_0Ext, u6_0Ext, 0b1001>; } let accessSize = HalfWordAccess, opExtentAlign = 1, isCodeGenOnly = 0 in { defm loadrh: LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext, 0b1010>; defm loadruh: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext, 0b1011>; } let accessSize = WordAccess, opExtentAlign = 2, isCodeGenOnly = 0 in defm loadri: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext, 0b1100>; let accessSize = DoubleWordAccess, opExtentAlign = 3, isCodeGenOnly = 0 in defm loadrd: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext, 0b1110>; def : Pat < (i32 (sextloadi8 ADDRriS11_0:$addr)), (L2_loadrb_io AddrFI:$addr, 0) >; def : Pat < (i32 (zextloadi8 ADDRriS11_0:$addr)), (L2_loadrub_io AddrFI:$addr, 0) >; def : Pat < (i32 (sextloadi16 ADDRriS11_1:$addr)), (L2_loadrh_io AddrFI:$addr, 0) >; def : Pat < (i32 (zextloadi16 ADDRriS11_1:$addr)), (L2_loadruh_io AddrFI:$addr, 0) >; def : Pat < (i32 (load ADDRriS11_2:$addr)), (L2_loadri_io AddrFI:$addr, 0) >; def : Pat < (i64 (load ADDRriS11_3:$addr)), (L2_loadrd_io AddrFI:$addr, 0) >; let AddedComplexity = 20 in { def : Pat < (i32 (sextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))), (L2_loadrb_io IntRegs:$src1, s11_0ExtPred:$offset) >; def : Pat < (i32 (zextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))), (L2_loadrub_io IntRegs:$src1, s11_0ExtPred:$offset) >; def : Pat < (i32 (sextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))), (L2_loadrh_io IntRegs:$src1, s11_1ExtPred:$offset) >; def : Pat < (i32 (zextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))), (L2_loadruh_io IntRegs:$src1, s11_1ExtPred:$offset) >; def : Pat < (i32 (load (add IntRegs:$src1, s11_2ExtPred:$offset))), (L2_loadri_io IntRegs:$src1, s11_2ExtPred:$offset) >; def : Pat < (i64 (load (add IntRegs:$src1, s11_3ExtPred:$offset))), (L2_loadrd_io IntRegs:$src1, s11_3ExtPred:$offset) >; } //===----------------------------------------------------------------------===// // Post increment load //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Template class for non-predicated post increment loads with immediate offset. //===----------------------------------------------------------------------===// let hasSideEffects = 0, addrMode = PostInc in class T_load_pi MajOp > : LDInstPI <(outs RC:$dst, IntRegs:$dst2), (ins IntRegs:$src1, ImmOp:$offset), "$dst = "#mnemonic#"($src1++#$offset)" , [], "$src1 = $dst2" > , PredNewRel { bits<5> dst; bits<5> src1; bits<7> offset; bits<4> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, /* s4_0Imm */ offset{3-0}))); let hasNewValue = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1); let IClass = 0b1001; let Inst{27-25} = 0b101; let Inst{24-21} = MajOp; let Inst{20-16} = src1; let Inst{13-12} = 0b00; let Inst{8-5} = offsetBits; let Inst{4-0} = dst; } //===----------------------------------------------------------------------===// // Template class for predicated post increment loads with immediate offset. //===----------------------------------------------------------------------===// let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc in class T_pload_pi MajOp, bit isPredNot, bit isPredNew > : LDInst <(outs RC:$dst, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset), !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#"$dst = "#mnemonic#"($src2++#$offset)", [] , "$src2 = $dst2" > , PredNewRel { bits<5> dst; bits<2> src1; bits<5> src2; bits<7> offset; bits<4> offsetBits; let isPredicatedNew = isPredNew; let isPredicatedFalse = isPredNot; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, /* s4_0Imm */ offset{3-0}))); let hasNewValue = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1); let IClass = 0b1001; let Inst{27-25} = 0b101; let Inst{24-21} = MajOp; let Inst{20-16} = src2; let Inst{13} = 0b1; let Inst{12} = isPredNew; let Inst{11} = isPredNot; let Inst{10-9} = src1; let Inst{8-5} = offsetBits; let Inst{4-0} = dst; } //===----------------------------------------------------------------------===// // Multiclass for post increment loads with immediate offset. //===----------------------------------------------------------------------===// multiclass LD_PostInc MajOp> { let BaseOpcode = "POST_"#BaseOp in { let isPredicable = 1 in def L2_#NAME#_pi : T_load_pi < mnemonic, RC, ImmOp, MajOp>; // Predicated def L2_p#NAME#t_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 0, 0>; def L2_p#NAME#f_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 1, 0>; // Predicated new def L2_p#NAME#tnew_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 0, 1>; def L2_p#NAME#fnew_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 1, 1>; } } // post increment byte loads with immediate offset let accessSize = ByteAccess, isCodeGenOnly = 0 in { defm loadrb : LD_PostInc <"memb", "LDrib", IntRegs, s4_0Imm, 0b1000>; defm loadrub : LD_PostInc <"memub", "LDriub", IntRegs, s4_0Imm, 0b1001>; } // post increment halfword loads with immediate offset let accessSize = HalfWordAccess, opExtentAlign = 1, isCodeGenOnly = 0 in { defm loadrh : LD_PostInc <"memh", "LDrih", IntRegs, s4_1Imm, 0b1010>; defm loadruh : LD_PostInc <"memuh", "LDriuh", IntRegs, s4_1Imm, 0b1011>; } // post increment word loads with immediate offset let accessSize = WordAccess, opExtentAlign = 2, isCodeGenOnly = 0 in defm loadri : LD_PostInc <"memw", "LDriw", IntRegs, s4_2Imm, 0b1100>; // post increment doubleword loads with immediate offset let accessSize = DoubleWordAccess, opExtentAlign = 3, isCodeGenOnly = 0 in defm loadrd : LD_PostInc <"memd", "LDrid", DoubleRegs, s4_3Imm, 0b1110>; def : Pat< (i32 (extloadi1 ADDRriS11_0:$addr)), (i32 (L2_loadrb_io AddrFI:$addr, 0)) >; // Load byte any-extend. def : Pat < (i32 (extloadi8 ADDRriS11_0:$addr)), (i32 (L2_loadrb_io AddrFI:$addr, 0)) >; // Indexed load byte any-extend. let AddedComplexity = 20 in def : Pat < (i32 (extloadi8 (add IntRegs:$src1, s11_0ImmPred:$offset))), (i32 (L2_loadrb_io IntRegs:$src1, s11_0ImmPred:$offset)) >; def : Pat < (i32 (extloadi16 ADDRriS11_1:$addr)), (i32 (L2_loadrh_io AddrFI:$addr, 0))>; let AddedComplexity = 20 in def : Pat < (i32 (extloadi16 (add IntRegs:$src1, s11_1ImmPred:$offset))), (i32 (L2_loadrh_io IntRegs:$src1, s11_1ImmPred:$offset)) >; let AddedComplexity = 10 in def : Pat < (i32 (zextloadi1 ADDRriS11_0:$addr)), (i32 (L2_loadrub_io AddrFI:$addr, 0))>; let AddedComplexity = 20 in def : Pat < (i32 (zextloadi1 (add IntRegs:$src1, s11_0ImmPred:$offset))), (i32 (L2_loadrub_io IntRegs:$src1, s11_0ImmPred:$offset))>; //===----------------------------------------------------------------------===// // Template class for post increment loads with register offset. //===----------------------------------------------------------------------===// let hasSideEffects = 0, addrMode = PostInc in class T_load_pr MajOp, MemAccessSize AccessSz> : LDInstPI <(outs RC:$dst, IntRegs:$_dst_), (ins IntRegs:$src1, ModRegs:$src2), "$dst = "#mnemonic#"($src1++$src2)" , [], "$src1 = $_dst_" > { bits<5> dst; bits<5> src1; bits<1> src2; let accessSize = AccessSz; let IClass = 0b1001; let Inst{27-25} = 0b110; let Inst{24-21} = MajOp; let Inst{20-16} = src1; let Inst{13} = src2; let Inst{12} = 0b0; let Inst{7} = 0b0; let Inst{4-0} = dst; } let hasNewValue = 1, isCodeGenOnly = 0 in { def L2_loadrb_pr : T_load_pr <"memb", IntRegs, 0b1000, ByteAccess>; def L2_loadrub_pr : T_load_pr <"memub", IntRegs, 0b1001, ByteAccess>; def L2_loadrh_pr : T_load_pr <"memh", IntRegs, 0b1010, HalfWordAccess>; def L2_loadruh_pr : T_load_pr <"memuh", IntRegs, 0b1011, HalfWordAccess>; def L2_loadri_pr : T_load_pr <"memw", IntRegs, 0b1100, WordAccess>; } let isCodeGenOnly = 0 in def L2_loadrd_pr : T_load_pr <"memd", DoubleRegs, 0b1110, DoubleWordAccess>; // Load predicate. let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13, isPseudo = 1, Defs = [R10,R11,D5], hasSideEffects = 0 in def LDriw_pred : LDInst2<(outs PredRegs:$dst), (ins MEMri:$addr), "Error; should not emit", []>; let Defs = [R29, R30, R31], Uses = [R30], hasSideEffects = 0, isCodeGenOnly = 0 in def L2_deallocframe : LDInst<(outs), (ins), "deallocframe", []> { let IClass = 0b1001; let Inst{27-16} = 0b000000011110; let Inst{13} = 0b0; let Inst{4-0} = 0b11110; } // Load / Post increment circular addressing mode. let Uses = [CS], hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in class T_load_pcr MajOp> : LDInst <(outs RC:$dst, IntRegs:$_dst_), (ins IntRegs:$Rz, ModRegs:$Mu), "$dst = "#mnemonic#"($Rz ++ I:circ($Mu))", [], "$Rz = $_dst_" > { bits<5> dst; bits<5> Rz; bit Mu; let IClass = 0b1001; let Inst{27-25} = 0b100; let Inst{24-21} = MajOp; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12} = 0b0; let Inst{9} = 0b1; let Inst{7} = 0b0; let Inst{4-0} = dst; } let accessSize = ByteAccess, isCodeGenOnly = 0 in { def L2_loadrb_pcr : T_load_pcr <"memb", IntRegs, 0b1000>; def L2_loadrub_pcr : T_load_pcr <"memub", IntRegs, 0b1001>; } let accessSize = HalfWordAccess, isCodeGenOnly = 0 in { def L2_loadrh_pcr : T_load_pcr <"memh", IntRegs, 0b1010>; def L2_loadruh_pcr : T_load_pcr <"memuh", IntRegs, 0b1011>; } let accessSize = WordAccess, isCodeGenOnly = 0 in { def L2_loadri_pcr : T_load_pcr <"memw", IntRegs, 0b1100>; } let accessSize = DoubleWordAccess, isCodeGenOnly = 0 in def L2_loadrd_pcr : T_load_pcr <"memd", DoubleRegs, 0b1110>; //===----------------------------------------------------------------------===// // Circular loads with immediate offset. //===----------------------------------------------------------------------===// let Uses = [CS], mayLoad = 1, hasSideEffects = 0, hasNewValue = 1 in class T_load_pci MajOp> : LDInstPI<(outs RC:$dst, IntRegs:$_dst_), (ins IntRegs:$Rz, ImmOp:$offset, ModRegs:$Mu), "$dst = "#mnemonic#"($Rz ++ #$offset:circ($Mu))", [], "$Rz = $_dst_"> { bits<5> dst; bits<5> Rz; bits<1> Mu; bits<7> offset; bits<4> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, /* s4_0Imm */ offset{3-0}))); let IClass = 0b1001; let Inst{27-25} = 0b100; let Inst{24-21} = MajOp; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12} = 0b0; let Inst{9} = 0b0; let Inst{8-5} = offsetBits; let Inst{4-0} = dst; } // Byte variants of circ load let accessSize = ByteAccess, isCodeGenOnly = 0 in { def L2_loadrb_pci : T_load_pci <"memb", IntRegs, s4_0Imm, 0b1000>; def L2_loadrub_pci : T_load_pci <"memub", IntRegs, s4_0Imm, 0b1001>; } // Half word variants of circ load let accessSize = HalfWordAccess, isCodeGenOnly = 0 in { def L2_loadrh_pci : T_load_pci <"memh", IntRegs, s4_1Imm, 0b1010>; def L2_loadruh_pci : T_load_pci <"memuh", IntRegs, s4_1Imm, 0b1011>; } // Word variants of circ load let accessSize = WordAccess, isCodeGenOnly = 0 in def L2_loadri_pci : T_load_pci <"memw", IntRegs, s4_2Imm, 0b1100>; let accessSize = DoubleWordAccess, hasNewValue = 0, isCodeGenOnly = 0 in def L2_loadrd_pci : T_load_pci <"memd", DoubleRegs, s4_3Imm, 0b1110>; // L[24]_load[wd]_locked: Load word/double with lock. let isSoloAX = 1 in class T_load_locked : LD0Inst <(outs RC:$dst), (ins IntRegs:$src), "$dst = "#mnemonic#"($src)"> { bits<5> dst; bits<5> src; let IClass = 0b1001; let Inst{27-21} = 0b0010000; let Inst{20-16} = src; let Inst{13-12} = !if (!eq(mnemonic, "memd_locked"), 0b01, 0b00); let Inst{4-0} = dst; } let hasNewValue = 1, accessSize = WordAccess, opNewValue = 0, isCodeGenOnly = 0 in def L2_loadw_locked : T_load_locked <"memw_locked", IntRegs>; let accessSize = DoubleWordAccess, isCodeGenOnly = 0 in def L4_loadd_locked : T_load_locked <"memd_locked", DoubleRegs>; //===----------------------------------------------------------------------===// // Bit-reversed loads with auto-increment register //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_load_pbr majOp> : LDInst <(outs RC:$dst, IntRegs:$_dst_), (ins IntRegs:$Rz, ModRegs:$Mu), "$dst = "#mnemonic#"($Rz ++ $Mu:brev)" , [] , "$Rz = $_dst_" > { let accessSize = addrSize; bits<5> dst; bits<5> Rz; bits<1> Mu; let IClass = 0b1001; let Inst{27-25} = 0b111; let Inst{24-21} = majOp; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12} = 0b0; let Inst{7} = 0b0; let Inst{4-0} = dst; } let hasNewValue =1, opNewValue = 0, isCodeGenOnly = 0 in { def L2_loadrb_pbr : T_load_pbr <"memb", IntRegs, ByteAccess, 0b1000>; def L2_loadrub_pbr : T_load_pbr <"memub", IntRegs, ByteAccess, 0b1001>; def L2_loadrh_pbr : T_load_pbr <"memh", IntRegs, HalfWordAccess, 0b1010>; def L2_loadruh_pbr : T_load_pbr <"memuh", IntRegs, HalfWordAccess, 0b1011>; def L2_loadri_pbr : T_load_pbr <"memw", IntRegs, WordAccess, 0b1100>; } let isCodeGenOnly = 0 in def L2_loadrd_pbr : T_load_pbr <"memd", DoubleRegs, DoubleWordAccess, 0b1110>; //===----------------------------------------------------------------------===// // LD - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/ALU + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/COMPLEX + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/COMPLEX - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/MPYH + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Template Class // MPYS / Multipy signed/unsigned halfwords //Rd=mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:rnd][:sat] //===----------------------------------------------------------------------===// let hasNewValue = 1, opNewValue = 0 in class T_M2_mpy < bits<2> LHbits, bit isSat, bit isRnd, bit hasShift, bit isUnsigned> : MInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rd = "#!if(isUnsigned,"mpyu","mpy")#"($Rs."#!if(LHbits{1},"h","l") #", $Rt."#!if(LHbits{0},"h)","l)") #!if(hasShift,":<<1","") #!if(isRnd,":rnd","") #!if(isSat,":sat",""), [], "", M_tc_3x_SLOT23 > { bits<5> Rd; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-24} = 0b1100; let Inst{23} = hasShift; let Inst{22} = isUnsigned; let Inst{21} = isRnd; let Inst{7} = isSat; let Inst{6-5} = LHbits; let Inst{4-0} = Rd; let Inst{20-16} = Rs; let Inst{12-8} = Rt; } //Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1] let isCodeGenOnly = 0 in { def M2_mpy_ll_s1: T_M2_mpy<0b00, 0, 0, 1, 0>; def M2_mpy_ll_s0: T_M2_mpy<0b00, 0, 0, 0, 0>; def M2_mpy_lh_s1: T_M2_mpy<0b01, 0, 0, 1, 0>; def M2_mpy_lh_s0: T_M2_mpy<0b01, 0, 0, 0, 0>; def M2_mpy_hl_s1: T_M2_mpy<0b10, 0, 0, 1, 0>; def M2_mpy_hl_s0: T_M2_mpy<0b10, 0, 0, 0, 0>; def M2_mpy_hh_s1: T_M2_mpy<0b11, 0, 0, 1, 0>; def M2_mpy_hh_s0: T_M2_mpy<0b11, 0, 0, 0, 0>; } //Rd=mpyu(Rs.[H|L],Rt.[H|L])[:<<1] let isCodeGenOnly = 0 in { def M2_mpyu_ll_s1: T_M2_mpy<0b00, 0, 0, 1, 1>; def M2_mpyu_ll_s0: T_M2_mpy<0b00, 0, 0, 0, 1>; def M2_mpyu_lh_s1: T_M2_mpy<0b01, 0, 0, 1, 1>; def M2_mpyu_lh_s0: T_M2_mpy<0b01, 0, 0, 0, 1>; def M2_mpyu_hl_s1: T_M2_mpy<0b10, 0, 0, 1, 1>; def M2_mpyu_hl_s0: T_M2_mpy<0b10, 0, 0, 0, 1>; def M2_mpyu_hh_s1: T_M2_mpy<0b11, 0, 0, 1, 1>; def M2_mpyu_hh_s0: T_M2_mpy<0b11, 0, 0, 0, 1>; } //Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1]:rnd let isCodeGenOnly = 0 in { def M2_mpy_rnd_ll_s1: T_M2_mpy <0b00, 0, 1, 1, 0>; def M2_mpy_rnd_ll_s0: T_M2_mpy <0b00, 0, 1, 0, 0>; def M2_mpy_rnd_lh_s1: T_M2_mpy <0b01, 0, 1, 1, 0>; def M2_mpy_rnd_lh_s0: T_M2_mpy <0b01, 0, 1, 0, 0>; def M2_mpy_rnd_hl_s1: T_M2_mpy <0b10, 0, 1, 1, 0>; def M2_mpy_rnd_hl_s0: T_M2_mpy <0b10, 0, 1, 0, 0>; def M2_mpy_rnd_hh_s1: T_M2_mpy <0b11, 0, 1, 1, 0>; def M2_mpy_rnd_hh_s0: T_M2_mpy <0b11, 0, 1, 0, 0>; } //Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1][:sat] //Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1][:rnd][:sat] let Defs = [USR_OVF], isCodeGenOnly = 0 in { def M2_mpy_sat_ll_s1: T_M2_mpy <0b00, 1, 0, 1, 0>; def M2_mpy_sat_ll_s0: T_M2_mpy <0b00, 1, 0, 0, 0>; def M2_mpy_sat_lh_s1: T_M2_mpy <0b01, 1, 0, 1, 0>; def M2_mpy_sat_lh_s0: T_M2_mpy <0b01, 1, 0, 0, 0>; def M2_mpy_sat_hl_s1: T_M2_mpy <0b10, 1, 0, 1, 0>; def M2_mpy_sat_hl_s0: T_M2_mpy <0b10, 1, 0, 0, 0>; def M2_mpy_sat_hh_s1: T_M2_mpy <0b11, 1, 0, 1, 0>; def M2_mpy_sat_hh_s0: T_M2_mpy <0b11, 1, 0, 0, 0>; def M2_mpy_sat_rnd_ll_s1: T_M2_mpy <0b00, 1, 1, 1, 0>; def M2_mpy_sat_rnd_ll_s0: T_M2_mpy <0b00, 1, 1, 0, 0>; def M2_mpy_sat_rnd_lh_s1: T_M2_mpy <0b01, 1, 1, 1, 0>; def M2_mpy_sat_rnd_lh_s0: T_M2_mpy <0b01, 1, 1, 0, 0>; def M2_mpy_sat_rnd_hl_s1: T_M2_mpy <0b10, 1, 1, 1, 0>; def M2_mpy_sat_rnd_hl_s0: T_M2_mpy <0b10, 1, 1, 0, 0>; def M2_mpy_sat_rnd_hh_s1: T_M2_mpy <0b11, 1, 1, 1, 0>; def M2_mpy_sat_rnd_hh_s0: T_M2_mpy <0b11, 1, 1, 0, 0>; } //===----------------------------------------------------------------------===// // Template Class // MPYS / Multipy signed/unsigned halfwords and add/subtract the // result from the accumulator. //Rx [-+]= mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:sat] //===----------------------------------------------------------------------===// let hasNewValue = 1, opNewValue = 0 in class T_M2_mpy_acc < bits<2> LHbits, bit isSat, bit isNac, bit hasShift, bit isUnsigned > : MInst_acc<(outs IntRegs:$Rx), (ins IntRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt), "$Rx "#!if(isNac,"-= ","+= ")#!if(isUnsigned,"mpyu","mpy") #"($Rs."#!if(LHbits{1},"h","l") #", $Rt."#!if(LHbits{0},"h)","l)") #!if(hasShift,":<<1","") #!if(isSat,":sat",""), [], "$dst2 = $Rx", M_tc_3x_SLOT23 > { bits<5> Rx; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-24} = 0b1110; let Inst{23} = hasShift; let Inst{22} = isUnsigned; let Inst{21} = isNac; let Inst{7} = isSat; let Inst{6-5} = LHbits; let Inst{4-0} = Rx; let Inst{20-16} = Rs; let Inst{12-8} = Rt; } //Rx += mpy(Rs.[H|L],Rt.[H|L])[:<<1] let isCodeGenOnly = 0 in { def M2_mpy_acc_ll_s1: T_M2_mpy_acc <0b00, 0, 0, 1, 0>; def M2_mpy_acc_ll_s0: T_M2_mpy_acc <0b00, 0, 0, 0, 0>; def M2_mpy_acc_lh_s1: T_M2_mpy_acc <0b01, 0, 0, 1, 0>; def M2_mpy_acc_lh_s0: T_M2_mpy_acc <0b01, 0, 0, 0, 0>; def M2_mpy_acc_hl_s1: T_M2_mpy_acc <0b10, 0, 0, 1, 0>; def M2_mpy_acc_hl_s0: T_M2_mpy_acc <0b10, 0, 0, 0, 0>; def M2_mpy_acc_hh_s1: T_M2_mpy_acc <0b11, 0, 0, 1, 0>; def M2_mpy_acc_hh_s0: T_M2_mpy_acc <0b11, 0, 0, 0, 0>; } //Rx += mpyu(Rs.[H|L],Rt.[H|L])[:<<1] let isCodeGenOnly = 0 in { def M2_mpyu_acc_ll_s1: T_M2_mpy_acc <0b00, 0, 0, 1, 1>; def M2_mpyu_acc_ll_s0: T_M2_mpy_acc <0b00, 0, 0, 0, 1>; def M2_mpyu_acc_lh_s1: T_M2_mpy_acc <0b01, 0, 0, 1, 1>; def M2_mpyu_acc_lh_s0: T_M2_mpy_acc <0b01, 0, 0, 0, 1>; def M2_mpyu_acc_hl_s1: T_M2_mpy_acc <0b10, 0, 0, 1, 1>; def M2_mpyu_acc_hl_s0: T_M2_mpy_acc <0b10, 0, 0, 0, 1>; def M2_mpyu_acc_hh_s1: T_M2_mpy_acc <0b11, 0, 0, 1, 1>; def M2_mpyu_acc_hh_s0: T_M2_mpy_acc <0b11, 0, 0, 0, 1>; } //Rx -= mpy(Rs.[H|L],Rt.[H|L])[:<<1] let isCodeGenOnly = 0 in { def M2_mpy_nac_ll_s1: T_M2_mpy_acc <0b00, 0, 1, 1, 0>; def M2_mpy_nac_ll_s0: T_M2_mpy_acc <0b00, 0, 1, 0, 0>; def M2_mpy_nac_lh_s1: T_M2_mpy_acc <0b01, 0, 1, 1, 0>; def M2_mpy_nac_lh_s0: T_M2_mpy_acc <0b01, 0, 1, 0, 0>; def M2_mpy_nac_hl_s1: T_M2_mpy_acc <0b10, 0, 1, 1, 0>; def M2_mpy_nac_hl_s0: T_M2_mpy_acc <0b10, 0, 1, 0, 0>; def M2_mpy_nac_hh_s1: T_M2_mpy_acc <0b11, 0, 1, 1, 0>; def M2_mpy_nac_hh_s0: T_M2_mpy_acc <0b11, 0, 1, 0, 0>; } //Rx -= mpyu(Rs.[H|L],Rt.[H|L])[:<<1] let isCodeGenOnly = 0 in { def M2_mpyu_nac_ll_s1: T_M2_mpy_acc <0b00, 0, 1, 1, 1>; def M2_mpyu_nac_ll_s0: T_M2_mpy_acc <0b00, 0, 1, 0, 1>; def M2_mpyu_nac_lh_s1: T_M2_mpy_acc <0b01, 0, 1, 1, 1>; def M2_mpyu_nac_lh_s0: T_M2_mpy_acc <0b01, 0, 1, 0, 1>; def M2_mpyu_nac_hl_s1: T_M2_mpy_acc <0b10, 0, 1, 1, 1>; def M2_mpyu_nac_hl_s0: T_M2_mpy_acc <0b10, 0, 1, 0, 1>; def M2_mpyu_nac_hh_s1: T_M2_mpy_acc <0b11, 0, 1, 1, 1>; def M2_mpyu_nac_hh_s0: T_M2_mpy_acc <0b11, 0, 1, 0, 1>; } //Rx += mpy(Rs.[H|L],Rt.[H|L])[:<<1]:sat let isCodeGenOnly = 0 in { def M2_mpy_acc_sat_ll_s1: T_M2_mpy_acc <0b00, 1, 0, 1, 0>; def M2_mpy_acc_sat_ll_s0: T_M2_mpy_acc <0b00, 1, 0, 0, 0>; def M2_mpy_acc_sat_lh_s1: T_M2_mpy_acc <0b01, 1, 0, 1, 0>; def M2_mpy_acc_sat_lh_s0: T_M2_mpy_acc <0b01, 1, 0, 0, 0>; def M2_mpy_acc_sat_hl_s1: T_M2_mpy_acc <0b10, 1, 0, 1, 0>; def M2_mpy_acc_sat_hl_s0: T_M2_mpy_acc <0b10, 1, 0, 0, 0>; def M2_mpy_acc_sat_hh_s1: T_M2_mpy_acc <0b11, 1, 0, 1, 0>; def M2_mpy_acc_sat_hh_s0: T_M2_mpy_acc <0b11, 1, 0, 0, 0>; } //Rx -= mpy(Rs.[H|L],Rt.[H|L])[:<<1]:sat let isCodeGenOnly = 0 in { def M2_mpy_nac_sat_ll_s1: T_M2_mpy_acc <0b00, 1, 1, 1, 0>; def M2_mpy_nac_sat_ll_s0: T_M2_mpy_acc <0b00, 1, 1, 0, 0>; def M2_mpy_nac_sat_lh_s1: T_M2_mpy_acc <0b01, 1, 1, 1, 0>; def M2_mpy_nac_sat_lh_s0: T_M2_mpy_acc <0b01, 1, 1, 0, 0>; def M2_mpy_nac_sat_hl_s1: T_M2_mpy_acc <0b10, 1, 1, 1, 0>; def M2_mpy_nac_sat_hl_s0: T_M2_mpy_acc <0b10, 1, 1, 0, 0>; def M2_mpy_nac_sat_hh_s1: T_M2_mpy_acc <0b11, 1, 1, 1, 0>; def M2_mpy_nac_sat_hh_s0: T_M2_mpy_acc <0b11, 1, 1, 0, 0>; } //===----------------------------------------------------------------------===// // Template Class // MPYS / Multipy signed/unsigned halfwords and add/subtract the // result from the 64-bit destination register. //Rxx [-+]= mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:sat] //===----------------------------------------------------------------------===// class T_M2_mpyd_acc < bits<2> LHbits, bit isNac, bit hasShift, bit isUnsigned> : MInst_acc<(outs DoubleRegs:$Rxx), (ins DoubleRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt), "$Rxx "#!if(isNac,"-= ","+= ")#!if(isUnsigned,"mpyu","mpy") #"($Rs."#!if(LHbits{1},"h","l") #", $Rt."#!if(LHbits{0},"h)","l)") #!if(hasShift,":<<1",""), [], "$dst2 = $Rxx", M_tc_3x_SLOT23 > { bits<5> Rxx; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-24} = 0b0110; let Inst{23} = hasShift; let Inst{22} = isUnsigned; let Inst{21} = isNac; let Inst{7} = 0; let Inst{6-5} = LHbits; let Inst{4-0} = Rxx; let Inst{20-16} = Rs; let Inst{12-8} = Rt; } let isCodeGenOnly = 0 in { def M2_mpyd_acc_hh_s0: T_M2_mpyd_acc <0b11, 0, 0, 0>; def M2_mpyd_acc_hl_s0: T_M2_mpyd_acc <0b10, 0, 0, 0>; def M2_mpyd_acc_lh_s0: T_M2_mpyd_acc <0b01, 0, 0, 0>; def M2_mpyd_acc_ll_s0: T_M2_mpyd_acc <0b00, 0, 0, 0>; def M2_mpyd_acc_hh_s1: T_M2_mpyd_acc <0b11, 0, 1, 0>; def M2_mpyd_acc_hl_s1: T_M2_mpyd_acc <0b10, 0, 1, 0>; def M2_mpyd_acc_lh_s1: T_M2_mpyd_acc <0b01, 0, 1, 0>; def M2_mpyd_acc_ll_s1: T_M2_mpyd_acc <0b00, 0, 1, 0>; def M2_mpyd_nac_hh_s0: T_M2_mpyd_acc <0b11, 1, 0, 0>; def M2_mpyd_nac_hl_s0: T_M2_mpyd_acc <0b10, 1, 0, 0>; def M2_mpyd_nac_lh_s0: T_M2_mpyd_acc <0b01, 1, 0, 0>; def M2_mpyd_nac_ll_s0: T_M2_mpyd_acc <0b00, 1, 0, 0>; def M2_mpyd_nac_hh_s1: T_M2_mpyd_acc <0b11, 1, 1, 0>; def M2_mpyd_nac_hl_s1: T_M2_mpyd_acc <0b10, 1, 1, 0>; def M2_mpyd_nac_lh_s1: T_M2_mpyd_acc <0b01, 1, 1, 0>; def M2_mpyd_nac_ll_s1: T_M2_mpyd_acc <0b00, 1, 1, 0>; def M2_mpyud_acc_hh_s0: T_M2_mpyd_acc <0b11, 0, 0, 1>; def M2_mpyud_acc_hl_s0: T_M2_mpyd_acc <0b10, 0, 0, 1>; def M2_mpyud_acc_lh_s0: T_M2_mpyd_acc <0b01, 0, 0, 1>; def M2_mpyud_acc_ll_s0: T_M2_mpyd_acc <0b00, 0, 0, 1>; def M2_mpyud_acc_hh_s1: T_M2_mpyd_acc <0b11, 0, 1, 1>; def M2_mpyud_acc_hl_s1: T_M2_mpyd_acc <0b10, 0, 1, 1>; def M2_mpyud_acc_lh_s1: T_M2_mpyd_acc <0b01, 0, 1, 1>; def M2_mpyud_acc_ll_s1: T_M2_mpyd_acc <0b00, 0, 1, 1>; def M2_mpyud_nac_hh_s0: T_M2_mpyd_acc <0b11, 1, 0, 1>; def M2_mpyud_nac_hl_s0: T_M2_mpyd_acc <0b10, 1, 0, 1>; def M2_mpyud_nac_lh_s0: T_M2_mpyd_acc <0b01, 1, 0, 1>; def M2_mpyud_nac_ll_s0: T_M2_mpyd_acc <0b00, 1, 0, 1>; def M2_mpyud_nac_hh_s1: T_M2_mpyd_acc <0b11, 1, 1, 1>; def M2_mpyud_nac_hl_s1: T_M2_mpyd_acc <0b10, 1, 1, 1>; def M2_mpyud_nac_lh_s1: T_M2_mpyd_acc <0b01, 1, 1, 1>; def M2_mpyud_nac_ll_s1: T_M2_mpyd_acc <0b00, 1, 1, 1>; } let hasNewValue = 1, opNewValue = 0 in class T_MType_mpy RegTyBits, RegisterClass RC, bits<3> MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0, string op2Suffix = "", bit isRaw = 0, bit isHi = 0 > : MInst <(outs IntRegs:$dst), (ins RC:$src1, RC:$src2), "$dst = "#mnemonic #"($src1, $src2"#op2Suffix#")" #!if(MajOp{2}, ":<<1", "") #!if(isRnd, ":rnd", "") #!if(isSat, ":sat", "") #!if(isRaw, !if(isHi, ":raw:hi", ":raw:lo"), ""), [] > { bits<5> dst; bits<5> src1; bits<5> src2; let IClass = 0b1110; let Inst{27-24} = RegTyBits; let Inst{23-21} = MajOp; let Inst{20-16} = src1; let Inst{13} = 0b0; let Inst{12-8} = src2; let Inst{7-5} = MinOp; let Inst{4-0} = dst; } class T_MType_dd MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0 > : T_MType_mpy ; class T_MType_rr1 MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0 > : T_MType_mpy; class T_MType_rr2 MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0, string op2str = "" > : T_MType_mpy; let CextOpcode = "mpyi", InputType = "reg", isCodeGenOnly = 0 in def M2_mpyi : T_MType_rr1 <"mpyi", 0b000, 0b000>, ImmRegRel; let isCodeGenOnly = 0 in { def M2_mpy_up : T_MType_rr1 <"mpy", 0b000, 0b001>; def M2_mpyu_up : T_MType_rr1 <"mpyu", 0b010, 0b001>; } let isCodeGenOnly = 0 in def M2_dpmpyss_rnd_s0 : T_MType_rr1 <"mpy", 0b001, 0b001, 0, 1>; let isCodeGenOnly = 0 in { def M2_hmmpyh_rs1 : T_MType_rr2 <"mpy", 0b101, 0b100, 1, 1, ".h">; def M2_hmmpyl_rs1 : T_MType_rr2 <"mpy", 0b111, 0b100, 1, 1, ".l">; } // V4 Instructions let isCodeGenOnly = 0 in { def M2_mpysu_up : T_MType_rr1 <"mpysu", 0b011, 0b001, 0>; def M2_mpy_up_s1_sat : T_MType_rr1 <"mpy", 0b111, 0b000, 1>; def M2_hmmpyh_s1 : T_MType_rr2 <"mpy", 0b101, 0b000, 1, 0, ".h">; def M2_hmmpyl_s1 : T_MType_rr2 <"mpy", 0b101, 0b001, 1, 0, ".l">; } def: Pat<(i32 (mul I32:$src1, I32:$src2)), (M2_mpyi I32:$src1, I32:$src2)>; def: Pat<(i32 (mulhs I32:$src1, I32:$src2)), (M2_mpy_up I32:$src1, I32:$src2)>; def: Pat<(i32 (mulhu I32:$src1, I32:$src2)), (M2_mpyu_up I32:$src1, I32:$src2)>; let hasNewValue = 1, opNewValue = 0 in class T_MType_mpy_ri pattern> : MInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, ImmOp:$u8), "$Rd ="#!if(isNeg, "- ", "+ ")#"mpyi($Rs, #$u8)" , pattern, "", M_tc_3x_SLOT23> { bits<5> Rd; bits<5> Rs; bits<8> u8; let IClass = 0b1110; let Inst{27-24} = 0b0000; let Inst{23} = isNeg; let Inst{13} = 0b0; let Inst{4-0} = Rd; let Inst{20-16} = Rs; let Inst{12-5} = u8; } let isExtendable = 1, opExtentBits = 8, opExtendable = 2, isCodeGenOnly = 0 in def M2_mpysip : T_MType_mpy_ri <0, u8Ext, [(set (i32 IntRegs:$Rd), (mul IntRegs:$Rs, u8ExtPred:$u8))]>; let isCodeGenOnly = 0 in def M2_mpysin : T_MType_mpy_ri <1, u8Imm, [(set (i32 IntRegs:$Rd), (ineg (mul IntRegs:$Rs, u8ImmPred:$u8)))]>; // Assember mapped to M2_mpyi let isAsmParserOnly = 1 in def M2_mpyui : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpyui($src1, $src2)">; // Rd=mpyi(Rs,#m9) // s9 is NOT the same as m9 - but it works.. so far. // Assembler maps to either Rd=+mpyi(Rs,#u8) or Rd=-mpyi(Rs,#u8) // depending on the value of m9. See Arch Spec. let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 9, CextOpcode = "mpyi", InputType = "imm", hasNewValue = 1 in def M2_mpysmi : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2), "$dst = mpyi($src1, #$src2)", [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), s9ExtPred:$src2))]>, ImmRegRel; let hasNewValue = 1, isExtendable = 1, opExtentBits = 8, opExtendable = 3, InputType = "imm" in class T_MType_acc_ri MajOp, Operand ImmOp, list pattern = []> : MInst < (outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, ImmOp:$src3), "$dst "#mnemonic#"($src2, #$src3)", pattern, "$src1 = $dst", M_tc_2_SLOT23> { bits<5> dst; bits<5> src2; bits<8> src3; let IClass = 0b1110; let Inst{27-26} = 0b00; let Inst{25-23} = MajOp; let Inst{20-16} = src2; let Inst{13} = 0b0; let Inst{12-5} = src3; let Inst{4-0} = dst; } let InputType = "reg", hasNewValue = 1 in class T_MType_acc_rr MajOp, bits<3> MinOp, bit isSwap = 0, list pattern = [], bit hasNot = 0, bit isSat = 0, bit isShift = 0> : MInst < (outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst "#mnemonic#"($src2, "#!if(hasNot, "~$src3)","$src3)") #!if(isShift, ":<<1", "") #!if(isSat, ":sat", ""), pattern, "$src1 = $dst", M_tc_2_SLOT23 > { bits<5> dst; bits<5> src2; bits<5> src3; let IClass = 0b1110; let Inst{27-24} = 0b1111; let Inst{23-21} = MajOp; let Inst{20-16} = !if(isSwap, src3, src2); let Inst{13} = 0b0; let Inst{12-8} = !if(isSwap, src2, src3); let Inst{7-5} = MinOp; let Inst{4-0} = dst; } let CextOpcode = "MPYI_acc", Itinerary = M_tc_3x_SLOT23, isCodeGenOnly = 0 in { def M2_macsip : T_MType_acc_ri <"+= mpyi", 0b010, u8Ext, [(set (i32 IntRegs:$dst), (add (mul IntRegs:$src2, u8ExtPred:$src3), IntRegs:$src1))]>, ImmRegRel; def M2_maci : T_MType_acc_rr <"+= mpyi", 0b000, 0b000, 0, [(set (i32 IntRegs:$dst), (add (mul IntRegs:$src2, IntRegs:$src3), IntRegs:$src1))]>, ImmRegRel; } let CextOpcode = "ADD_acc", isCodeGenOnly = 0 in { let isExtentSigned = 1 in def M2_accii : T_MType_acc_ri <"+= add", 0b100, s8Ext, [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2), s8_16ExtPred:$src3), (i32 IntRegs:$src1)))]>, ImmRegRel; def M2_acci : T_MType_acc_rr <"+= add", 0b000, 0b001, 0, [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2), (i32 IntRegs:$src3)), (i32 IntRegs:$src1)))]>, ImmRegRel; } let CextOpcode = "SUB_acc", isCodeGenOnly = 0 in { let isExtentSigned = 1 in def M2_naccii : T_MType_acc_ri <"-= add", 0b101, s8Ext>, ImmRegRel; def M2_nacci : T_MType_acc_rr <"-= add", 0b100, 0b001, 0>, ImmRegRel; } let Itinerary = M_tc_3x_SLOT23, isCodeGenOnly = 0 in def M2_macsin : T_MType_acc_ri <"-= mpyi", 0b011, u8Ext>; let isCodeGenOnly = 0 in { def M2_xor_xacc : T_MType_acc_rr < "^= xor", 0b100, 0b011, 0>; def M2_subacc : T_MType_acc_rr <"+= sub", 0b000, 0b011, 1>; } class T_MType_acc_pat1 : Pat <(secOp IntRegs:$src1, (firstOp IntRegs:$src2, ImmPred:$src3)), (MI IntRegs:$src1, IntRegs:$src2, ImmPred:$src3)>; class T_MType_acc_pat2 : Pat <(i32 (secOp IntRegs:$src1, (firstOp IntRegs:$src2, IntRegs:$src3))), (MI IntRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; def : T_MType_acc_pat2 ; def : T_MType_acc_pat1 ; def : T_MType_acc_pat1 ; def : T_MType_acc_pat2 ; //===----------------------------------------------------------------------===// // Template Class -- Multiply signed/unsigned halfwords with and without // saturation and rounding //===----------------------------------------------------------------------===// class T_M2_mpyd < bits<2> LHbits, bit isRnd, bit hasShift, bit isUnsigned > : MInst < (outs DoubleRegs:$Rdd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rdd = "#!if(isUnsigned,"mpyu","mpy")#"($Rs."#!if(LHbits{1},"h","l") #", $Rt."#!if(LHbits{0},"h)","l)") #!if(hasShift,":<<1","") #!if(isRnd,":rnd",""), [] > { bits<5> Rdd; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-24} = 0b0100; let Inst{23} = hasShift; let Inst{22} = isUnsigned; let Inst{21} = isRnd; let Inst{6-5} = LHbits; let Inst{4-0} = Rdd; let Inst{20-16} = Rs; let Inst{12-8} = Rt; } let isCodeGenOnly = 0 in { def M2_mpyd_hh_s0: T_M2_mpyd<0b11, 0, 0, 0>; def M2_mpyd_hl_s0: T_M2_mpyd<0b10, 0, 0, 0>; def M2_mpyd_lh_s0: T_M2_mpyd<0b01, 0, 0, 0>; def M2_mpyd_ll_s0: T_M2_mpyd<0b00, 0, 0, 0>; def M2_mpyd_hh_s1: T_M2_mpyd<0b11, 0, 1, 0>; def M2_mpyd_hl_s1: T_M2_mpyd<0b10, 0, 1, 0>; def M2_mpyd_lh_s1: T_M2_mpyd<0b01, 0, 1, 0>; def M2_mpyd_ll_s1: T_M2_mpyd<0b00, 0, 1, 0>; def M2_mpyd_rnd_hh_s0: T_M2_mpyd<0b11, 1, 0, 0>; def M2_mpyd_rnd_hl_s0: T_M2_mpyd<0b10, 1, 0, 0>; def M2_mpyd_rnd_lh_s0: T_M2_mpyd<0b01, 1, 0, 0>; def M2_mpyd_rnd_ll_s0: T_M2_mpyd<0b00, 1, 0, 0>; def M2_mpyd_rnd_hh_s1: T_M2_mpyd<0b11, 1, 1, 0>; def M2_mpyd_rnd_hl_s1: T_M2_mpyd<0b10, 1, 1, 0>; def M2_mpyd_rnd_lh_s1: T_M2_mpyd<0b01, 1, 1, 0>; def M2_mpyd_rnd_ll_s1: T_M2_mpyd<0b00, 1, 1, 0>; //Rdd=mpyu(Rs.[HL],Rt.[HL])[:<<1] def M2_mpyud_hh_s0: T_M2_mpyd<0b11, 0, 0, 1>; def M2_mpyud_hl_s0: T_M2_mpyd<0b10, 0, 0, 1>; def M2_mpyud_lh_s0: T_M2_mpyd<0b01, 0, 0, 1>; def M2_mpyud_ll_s0: T_M2_mpyd<0b00, 0, 0, 1>; def M2_mpyud_hh_s1: T_M2_mpyd<0b11, 0, 1, 1>; def M2_mpyud_hl_s1: T_M2_mpyd<0b10, 0, 1, 1>; def M2_mpyud_lh_s1: T_M2_mpyd<0b01, 0, 1, 1>; def M2_mpyud_ll_s1: T_M2_mpyd<0b00, 0, 1, 1>; } //===----------------------------------------------------------------------===// // Template Class for xtype mpy: // Vector multiply // Complex multiply // multiply 32X32 and use full result //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_XTYPE_mpy64 MajOp, bits<3> MinOp, bit isSat, bit hasShift, bit isConj> : MInst <(outs DoubleRegs:$Rdd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rdd = "#mnemonic#"($Rs, $Rt"#!if(isConj,"*)",")") #!if(hasShift,":<<1","") #!if(isSat,":sat",""), [] > { bits<5> Rdd; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-24} = 0b0101; let Inst{23-21} = MajOp; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{7-5} = MinOp; let Inst{4-0} = Rdd; } //===----------------------------------------------------------------------===// // Template Class for xtype mpy with accumulation into 64-bit: // Vector multiply // Complex multiply // multiply 32X32 and use full result //===----------------------------------------------------------------------===// class T_XTYPE_mpy64_acc MajOp, bits<3> MinOp, bit isSat, bit hasShift, bit isConj> : MInst <(outs DoubleRegs:$Rxx), (ins DoubleRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt), "$Rxx "#op2#"= "#op1#"($Rs, $Rt"#!if(isConj,"*)",")") #!if(hasShift,":<<1","") #!if(isSat,":sat",""), [] , "$dst2 = $Rxx" > { bits<5> Rxx; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-24} = 0b0111; let Inst{23-21} = MajOp; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{7-5} = MinOp; let Inst{4-0} = Rxx; } // MPY - Multiply and use full result // Rdd = mpy[u](Rs,Rt) let isCodeGenOnly = 0 in { def M2_dpmpyss_s0 : T_XTYPE_mpy64 < "mpy", 0b000, 0b000, 0, 0, 0>; def M2_dpmpyuu_s0 : T_XTYPE_mpy64 < "mpyu", 0b010, 0b000, 0, 0, 0>; // Rxx[+-]= mpy[u](Rs,Rt) def M2_dpmpyss_acc_s0 : T_XTYPE_mpy64_acc < "mpy", "+", 0b000, 0b000, 0, 0, 0>; def M2_dpmpyss_nac_s0 : T_XTYPE_mpy64_acc < "mpy", "-", 0b001, 0b000, 0, 0, 0>; def M2_dpmpyuu_acc_s0 : T_XTYPE_mpy64_acc < "mpyu", "+", 0b010, 0b000, 0, 0, 0>; def M2_dpmpyuu_nac_s0 : T_XTYPE_mpy64_acc < "mpyu", "-", 0b011, 0b000, 0, 0, 0>; } def: Pat<(i64 (mul (i64 (anyext (i32 IntRegs:$src1))), (i64 (anyext (i32 IntRegs:$src2))))), (M2_dpmpyuu_s0 IntRegs:$src1, IntRegs:$src2)>; def: Pat<(i64 (mul (i64 (sext (i32 IntRegs:$src1))), (i64 (sext (i32 IntRegs:$src2))))), (M2_dpmpyss_s0 IntRegs:$src1, IntRegs:$src2)>; def: Pat<(i64 (mul (is_sext_i32:$src1), (is_sext_i32:$src2))), (M2_dpmpyss_s0 (LoReg DoubleRegs:$src1), (LoReg DoubleRegs:$src2))>; // Multiply and accumulate, use full result. // Rxx[+-]=mpy(Rs,Rt) def: Pat<(i64 (add (i64 DoubleRegs:$src1), (mul (i64 (sext (i32 IntRegs:$src2))), (i64 (sext (i32 IntRegs:$src3)))))), (M2_dpmpyss_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; def: Pat<(i64 (sub (i64 DoubleRegs:$src1), (mul (i64 (sext (i32 IntRegs:$src2))), (i64 (sext (i32 IntRegs:$src3)))))), (M2_dpmpyss_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; def: Pat<(i64 (add (i64 DoubleRegs:$src1), (mul (i64 (anyext (i32 IntRegs:$src2))), (i64 (anyext (i32 IntRegs:$src3)))))), (M2_dpmpyuu_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; def: Pat<(i64 (add (i64 DoubleRegs:$src1), (mul (i64 (zext (i32 IntRegs:$src2))), (i64 (zext (i32 IntRegs:$src3)))))), (M2_dpmpyuu_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; def: Pat<(i64 (sub (i64 DoubleRegs:$src1), (mul (i64 (anyext (i32 IntRegs:$src2))), (i64 (anyext (i32 IntRegs:$src3)))))), (M2_dpmpyuu_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; def: Pat<(i64 (sub (i64 DoubleRegs:$src1), (mul (i64 (zext (i32 IntRegs:$src2))), (i64 (zext (i32 IntRegs:$src3)))))), (M2_dpmpyuu_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>; //===----------------------------------------------------------------------===// // MTYPE/MPYH - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/MPYS + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/MPYS - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VB + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VB - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VH + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VH - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ST + //===----------------------------------------------------------------------===// /// // Store doubleword. //===----------------------------------------------------------------------===// // Template class for non-predicated post increment stores with immediate offset //===----------------------------------------------------------------------===// let isPredicable = 1, hasSideEffects = 0, addrMode = PostInc in class T_store_pi MajOp, bit isHalf > : STInst <(outs IntRegs:$_dst_), (ins IntRegs:$src1, ImmOp:$offset, RC:$src2), mnemonic#"($src1++#$offset) = $src2"#!if(isHalf, ".h", ""), [], "$src1 = $_dst_" >, AddrModeRel { bits<5> src1; bits<5> src2; bits<7> offset; bits<4> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, /* s4_0Imm */ offset{3-0}))); let isNVStorable = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1); let IClass = 0b1010; let Inst{27-25} = 0b101; let Inst{24-21} = MajOp; let Inst{20-16} = src1; let Inst{13} = 0b0; let Inst{12-8} = src2; let Inst{7} = 0b0; let Inst{6-3} = offsetBits; let Inst{1} = 0b0; } //===----------------------------------------------------------------------===// // Template class for predicated post increment stores with immediate offset //===----------------------------------------------------------------------===// let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc in class T_pstore_pi MajOp, bit isHalf, bit isPredNot, bit isPredNew > : STInst <(outs IntRegs:$_dst_), (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3), !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#mnemonic#"($src2++#$offset) = $src3"#!if(isHalf, ".h", ""), [], "$src2 = $_dst_" >, AddrModeRel { bits<2> src1; bits<5> src2; bits<7> offset; bits<5> src3; bits<4> offsetBits; string ImmOpStr = !cast(ImmOp); let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3}, !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2}, !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1}, /* s4_0Imm */ offset{3-0}))); let isNVStorable = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1); let isPredicatedNew = isPredNew; let isPredicatedFalse = isPredNot; let IClass = 0b1010; let Inst{27-25} = 0b101; let Inst{24-21} = MajOp; let Inst{20-16} = src2; let Inst{13} = 0b1; let Inst{12-8} = src3; let Inst{7} = isPredNew; let Inst{6-3} = offsetBits; let Inst{2} = isPredNot; let Inst{1-0} = src1; } multiclass ST_PostInc MajOp, bit isHalf = 0 > { let BaseOpcode = "POST_"#BaseOp in { def S2_#NAME#_pi : T_store_pi ; // Predicated def S2_p#NAME#t_pi : T_pstore_pi ; def S2_p#NAME#f_pi : T_pstore_pi ; // Predicated new def S2_p#NAME#tnew_pi : T_pstore_pi ; def S2_p#NAME#fnew_pi : T_pstore_pi ; } } let accessSize = ByteAccess, isCodeGenOnly = 0 in defm storerb: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm, 0b1000>; let accessSize = HalfWordAccess, isCodeGenOnly = 0 in defm storerh: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm, 0b1010>; let accessSize = WordAccess, isCodeGenOnly = 0 in defm storeri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm, 0b1100>; let accessSize = DoubleWordAccess, isCodeGenOnly = 0 in defm storerd: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm, 0b1110>; let accessSize = HalfWordAccess, isNVStorable = 0, isCodeGenOnly = 0 in defm storerf: ST_PostInc <"memh", "STrih_H", IntRegs, s4_1Imm, 0b1011, 1>; def : Pat<(post_truncsti8 (i32 IntRegs:$src1), IntRegs:$src2, s4_3ImmPred:$offset), (S2_storerb_pi IntRegs:$src2, s4_0ImmPred:$offset, IntRegs:$src1)>; def : Pat<(post_truncsti16 (i32 IntRegs:$src1), IntRegs:$src2, s4_3ImmPred:$offset), (S2_storerh_pi IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>; def : Pat<(post_store (i32 IntRegs:$src1), IntRegs:$src2, s4_2ImmPred:$offset), (S2_storeri_pi IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>; def : Pat<(post_store (i64 DoubleRegs:$src1), IntRegs:$src2, s4_3ImmPred:$offset), (S2_storerd_pi IntRegs:$src2, s4_3ImmPred:$offset, DoubleRegs:$src1)>; //===----------------------------------------------------------------------===// // Template class for post increment stores with register offset. //===----------------------------------------------------------------------===// let isNVStorable = 1 in class T_store_pr MajOp, MemAccessSize AccessSz, bit isHalf = 0> : STInst <(outs IntRegs:$_dst_), (ins IntRegs:$src1, ModRegs:$src2, RC:$src3), mnemonic#"($src1++$src2) = $src3"#!if(isHalf, ".h", ""), [], "$src1 = $_dst_" > { bits<5> src1; bits<1> src2; bits<5> src3; let accessSize = AccessSz; let IClass = 0b1010; let Inst{27-24} = 0b1101; let Inst{23-21} = MajOp; let Inst{20-16} = src1; let Inst{13} = src2; let Inst{12-8} = src3; let Inst{7} = 0b0; } let isCodeGenOnly = 0 in { def S2_storerb_pr : T_store_pr<"memb", IntRegs, 0b000, ByteAccess>; def S2_storerh_pr : T_store_pr<"memh", IntRegs, 0b010, HalfWordAccess>; def S2_storeri_pr : T_store_pr<"memw", IntRegs, 0b100, WordAccess>; def S2_storerd_pr : T_store_pr<"memd", DoubleRegs, 0b110, DoubleWordAccess>; def S2_storerf_pr : T_store_pr<"memh", IntRegs, 0b011, HalfWordAccess, 1>; } let opExtendable = 1, isExtentSigned = 1, isPredicable = 1 in class T_store_io MajOp, bit isH = 0> : STInst <(outs), (ins IntRegs:$src1, ImmOp:$src2, RC:$src3), mnemonic#"($src1+#$src2) = $src3"#!if(isH,".h","")>, AddrModeRel, ImmRegRel { bits<5> src1; bits<14> src2; // Actual address offset bits<5> src3; bits<11> offsetBits; // Represents offset encoding string ImmOpStr = !cast(ImmOp); let opExtentBits = !if (!eq(ImmOpStr, "s11_3Ext"), 14, !if (!eq(ImmOpStr, "s11_2Ext"), 13, !if (!eq(ImmOpStr, "s11_1Ext"), 12, /* s11_0Ext */ 11))); let offsetBits = !if (!eq(ImmOpStr, "s11_3Ext"), src2{13-3}, !if (!eq(ImmOpStr, "s11_2Ext"), src2{12-2}, !if (!eq(ImmOpStr, "s11_1Ext"), src2{11-1}, /* s11_0Ext */ src2{10-0}))); let IClass = 0b1010; let Inst{27} = 0b0; let Inst{26-25} = offsetBits{10-9}; let Inst{24} = 0b1; let Inst{23-21} = MajOp; let Inst{20-16} = src1; let Inst{13} = offsetBits{8}; let Inst{12-8} = src3; let Inst{7-0} = offsetBits{7-0}; } let opExtendable = 2, isPredicated = 1 in class T_pstore_io MajOp, bit PredNot, bit isPredNew, bit isH = 0> : STInst <(outs), (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$src3, RC:$src4), !if(PredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#mnemonic#"($src2+#$src3) = $src4"#!if(isH,".h",""), [],"",V2LDST_tc_st_SLOT01 >, AddrModeRel, ImmRegRel { bits<2> src1; bits<5> src2; bits<9> src3; // Actual address offset bits<5> src4; bits<6> offsetBits; // Represents offset encoding let isPredicatedNew = isPredNew; let isPredicatedFalse = PredNot; string ImmOpStr = !cast(ImmOp); let opExtentBits = !if (!eq(ImmOpStr, "u6_3Ext"), 9, !if (!eq(ImmOpStr, "u6_2Ext"), 8, !if (!eq(ImmOpStr, "u6_1Ext"), 7, /* u6_0Ext */ 6))); let offsetBits = !if (!eq(ImmOpStr, "u6_3Ext"), src3{8-3}, !if (!eq(ImmOpStr, "u6_2Ext"), src3{7-2}, !if (!eq(ImmOpStr, "u6_1Ext"), src3{6-1}, /* u6_0Ext */ src3{5-0}))); let IClass = 0b0100; let Inst{27} = 0b0; let Inst{26} = PredNot; let Inst{25} = isPredNew; let Inst{24} = 0b0; let Inst{23-21} = MajOp; let Inst{20-16} = src2; let Inst{13} = offsetBits{5}; let Inst{12-8} = src4; let Inst{7-3} = offsetBits{4-0}; let Inst{1-0} = src1; } let isExtendable = 1, isNVStorable = 1, hasSideEffects = 0 in multiclass ST_Idxd MajOp, bit isH = 0> { let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in { def S2_#NAME#_io : T_store_io ; // Predicated def S2_p#NAME#t_io : T_pstore_io; def S2_p#NAME#f_io : T_pstore_io; // Predicated new def S4_p#NAME#tnew_io : T_pstore_io ; def S4_p#NAME#fnew_io : T_pstore_io ; } } let addrMode = BaseImmOffset, InputType = "imm", isCodeGenOnly = 0 in { let accessSize = ByteAccess in defm storerb: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext, u6_0Ext, 0b000>; let accessSize = HalfWordAccess, opExtentAlign = 1 in defm storerh: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext, u6_1Ext, 0b010>; let accessSize = WordAccess, opExtentAlign = 2 in defm storeri: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext, u6_2Ext, 0b100>; let accessSize = DoubleWordAccess, isNVStorable = 0, opExtentAlign = 3 in defm storerd: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext, u6_3Ext, 0b110>; let accessSize = HalfWordAccess, opExtentAlign = 1 in defm storerf: ST_Idxd < "memh", "STrif", IntRegs, s11_1Ext, u6_1Ext, 0b011, 1>; } def : Pat<(truncstorei8 (i32 IntRegs:$src1), ADDRriS11_0:$addr), (S2_storerb_io AddrFI:$addr, 0, (i32 IntRegs:$src1))>; def : Pat<(truncstorei16 (i32 IntRegs:$src1), ADDRriS11_1:$addr), (S2_storerh_io AddrFI:$addr, 0, (i32 IntRegs:$src1))>; def : Pat<(store (i32 IntRegs:$src1), ADDRriS11_2:$addr), (S2_storeri_io AddrFI:$addr, 0, (i32 IntRegs:$src1))>; def : Pat<(store (i64 DoubleRegs:$src1), ADDRriS11_3:$addr), (S2_storerd_io AddrFI:$addr, 0, (i64 DoubleRegs:$src1))>; let AddedComplexity = 10 in { def : Pat<(truncstorei8 (i32 IntRegs:$src1), (add IntRegs:$src2, s11_0ExtPred:$offset)), (S2_storerb_io IntRegs:$src2, s11_0ImmPred:$offset, (i32 IntRegs:$src1))>; def : Pat<(truncstorei16 (i32 IntRegs:$src1), (add IntRegs:$src2, s11_1ExtPred:$offset)), (S2_storerh_io IntRegs:$src2, s11_1ImmPred:$offset, (i32 IntRegs:$src1))>; def : Pat<(store (i32 IntRegs:$src1), (add IntRegs:$src2, s11_2ExtPred:$offset)), (S2_storeri_io IntRegs:$src2, s11_2ImmPred:$offset, (i32 IntRegs:$src1))>; def : Pat<(store (i64 DoubleRegs:$src1), (add IntRegs:$src2, s11_3ExtPred:$offset)), (S2_storerd_io IntRegs:$src2, s11_3ImmPred:$offset, (i64 DoubleRegs:$src1))>; } // memh(Rx++#s4:1)=Rt.H // Store predicate. let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13, isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in def STriw_pred : STInst<(outs), (ins IntRegs:$addr, s11_2Ext:$off, PredRegs:$src1), ".error \"should not emit\"", []>; // S2_allocframe: Allocate stack frame. let Defs = [R29, R30], Uses = [R29, R31, R30], hasSideEffects = 0, accessSize = DoubleWordAccess, isCodeGenOnly = 0 in def S2_allocframe: ST0Inst < (outs), (ins u11_3Imm:$u11_3), "allocframe(#$u11_3)" > { bits<14> u11_3; let IClass = 0b1010; let Inst{27-16} = 0b000010011101; let Inst{13-11} = 0b000; let Inst{10-0} = u11_3{13-3}; } // S2_storer[bhwdf]_pci: Store byte/half/word/double. // S2_storer[bhwdf]_pci -> S2_storerbnew_pci let Uses = [CS], isNVStorable = 1 in class T_store_pci MajOp, MemAccessSize AlignSize, string RegSrc = "Rt"> : STInst <(outs IntRegs:$_dst_), (ins IntRegs:$Rz, Imm:$offset, ModRegs:$Mu, RC:$Rt), #mnemonic#"($Rz ++ #$offset:circ($Mu)) = $"#RegSrc#"", [] , "$Rz = $_dst_" > { bits<5> Rz; bits<7> offset; bits<1> Mu; bits<5> Rt; let accessSize = AlignSize; let IClass = 0b1010; let Inst{27-25} = 0b100; let Inst{24-21} = MajOp; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12-8} = Rt; let Inst{7} = 0b0; let Inst{6-3} = !if (!eq(!cast(AlignSize), "DoubleWordAccess"), offset{6-3}, !if (!eq(!cast(AlignSize), "WordAccess"), offset{5-2}, !if (!eq(!cast(AlignSize), "HalfWordAccess"), offset{4-1}, /* ByteAccess */ offset{3-0}))); let Inst{1} = 0b0; } let isCodeGenOnly = 0 in { def S2_storerb_pci : T_store_pci<"memb", IntRegs, s4_0Imm, 0b1000, ByteAccess>; def S2_storerh_pci : T_store_pci<"memh", IntRegs, s4_1Imm, 0b1010, HalfWordAccess>; def S2_storerf_pci : T_store_pci<"memh", IntRegs, s4_1Imm, 0b1011, HalfWordAccess, "Rt.h">; def S2_storeri_pci : T_store_pci<"memw", IntRegs, s4_2Imm, 0b1100, WordAccess>; def S2_storerd_pci : T_store_pci<"memd", DoubleRegs, s4_3Imm, 0b1110, DoubleWordAccess>; } //===----------------------------------------------------------------------===// // Circular stores with auto-increment register //===----------------------------------------------------------------------===// let Uses = [CS], isNVStorable = 1, isCodeGenOnly = 0 in class T_store_pcr MajOp, MemAccessSize AlignSize, string RegSrc = "Rt"> : STInst <(outs IntRegs:$_dst_), (ins IntRegs:$Rz, ModRegs:$Mu, RC:$Rt), #mnemonic#"($Rz ++ I:circ($Mu)) = $"#RegSrc#"", [], "$Rz = $_dst_" > { bits<5> Rz; bits<1> Mu; bits<5> Rt; let accessSize = AlignSize; let IClass = 0b1010; let Inst{27-25} = 0b100; let Inst{24-21} = MajOp; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12-8} = Rt; let Inst{7} = 0b0; let Inst{1} = 0b1; } let isCodeGenOnly = 0 in { def S2_storerb_pcr : T_store_pcr<"memb", IntRegs, 0b1000, ByteAccess>; def S2_storerh_pcr : T_store_pcr<"memh", IntRegs, 0b1010, HalfWordAccess>; def S2_storeri_pcr : T_store_pcr<"memw", IntRegs, 0b1100, WordAccess>; def S2_storerd_pcr : T_store_pcr<"memd", DoubleRegs, 0b1110, DoubleWordAccess>; def S2_storerf_pcr : T_store_pcr<"memh", IntRegs, 0b1011, HalfWordAccess, "Rt.h">; } //===----------------------------------------------------------------------===// // Bit-reversed stores with auto-increment register //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_store_pbr majOp, bit isHalf = 0> : STInst <(outs IntRegs:$_dst_), (ins IntRegs:$Rz, ModRegs:$Mu, RC:$src), #mnemonic#"($Rz ++ $Mu:brev) = $src"#!if (!eq(isHalf, 1), ".h", ""), [], "$Rz = $_dst_" > { let accessSize = addrSize; bits<5> Rz; bits<1> Mu; bits<5> src; let IClass = 0b1010; let Inst{27-24} = 0b1111; let Inst{23-21} = majOp; let Inst{7} = 0b0; let Inst{20-16} = Rz; let Inst{13} = Mu; let Inst{12-8} = src; } let isNVStorable = 1, isCodeGenOnly = 0 in { let BaseOpcode = "S2_storerb_pbr" in def S2_storerb_pbr : T_store_pbr<"memb", IntRegs, ByteAccess, 0b000>, NewValueRel; let BaseOpcode = "S2_storerh_pbr" in def S2_storerh_pbr : T_store_pbr<"memh", IntRegs, HalfWordAccess, 0b010>, NewValueRel; let BaseOpcode = "S2_storeri_pbr" in def S2_storeri_pbr : T_store_pbr<"memw", IntRegs, WordAccess, 0b100>, NewValueRel; } let isCodeGenOnly = 0 in { def S2_storerf_pbr : T_store_pbr<"memh", IntRegs, HalfWordAccess, 0b011, 1>; def S2_storerd_pbr : T_store_pbr<"memd", DoubleRegs, DoubleWordAccess, 0b110>; } //===----------------------------------------------------------------------===// // ST - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/ALU + //===----------------------------------------------------------------------===// // Logical NOT. def NOT_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1), "$dst = not($src1)", [(set (i64 DoubleRegs:$dst), (not (i64 DoubleRegs:$src1)))]>; //===----------------------------------------------------------------------===// // STYPE/ALU - //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_S2op_1 RegTyBits, RegisterClass RCOut, RegisterClass RCIn, bits<2> MajOp, bits<3> MinOp, bit isSat> : SInst <(outs RCOut:$dst), (ins RCIn:$src), "$dst = "#mnemonic#"($src)"#!if(isSat, ":sat", ""), [], "", S_2op_tc_1_SLOT23 > { bits<5> dst; bits<5> src; let IClass = 0b1000; let Inst{27-24} = RegTyBits; let Inst{23-22} = MajOp; let Inst{21} = 0b0; let Inst{20-16} = src; let Inst{7-5} = MinOp; let Inst{4-0} = dst; } class T_S2op_1_di MajOp, bits<3> MinOp> : T_S2op_1 ; let hasNewValue = 1 in class T_S2op_1_id MajOp, bits<3> MinOp, bit isSat = 0> : T_S2op_1 ; let hasNewValue = 1 in class T_S2op_1_ii MajOp, bits<3> MinOp, bit isSat = 0> : T_S2op_1 ; // Sign extend word to doubleword let isCodeGenOnly = 0 in def A2_sxtw : T_S2op_1_di <"sxtw", 0b01, 0b000>; def: Pat <(i64 (sext I32:$src)), (A2_sxtw I32:$src)>; // Swizzle the bytes of a word let isCodeGenOnly = 0 in def A2_swiz : T_S2op_1_ii <"swiz", 0b10, 0b111>; // Saturate let Defs = [USR_OVF], isCodeGenOnly = 0 in { def A2_sat : T_S2op_1_id <"sat", 0b11, 0b000>; def A2_satb : T_S2op_1_ii <"satb", 0b11, 0b111>; def A2_satub : T_S2op_1_ii <"satub", 0b11, 0b110>; def A2_sath : T_S2op_1_ii <"sath", 0b11, 0b100>; def A2_satuh : T_S2op_1_ii <"satuh", 0b11, 0b101>; } let Itinerary = S_2op_tc_2_SLOT23, isCodeGenOnly = 0 in { // Absolute value word def A2_abs : T_S2op_1_ii <"abs", 0b10, 0b100>; let Defs = [USR_OVF] in def A2_abssat : T_S2op_1_ii <"abs", 0b10, 0b101, 1>; // Negate with saturation let Defs = [USR_OVF] in def A2_negsat : T_S2op_1_ii <"neg", 0b10, 0b110, 1>; } def: Pat<(i32 (select (i1 (setlt (i32 IntRegs:$src), 0)), (i32 (sub 0, (i32 IntRegs:$src))), (i32 IntRegs:$src))), (A2_abs IntRegs:$src)>; let AddedComplexity = 50 in def: Pat<(i32 (xor (add (sra (i32 IntRegs:$src), (i32 31)), (i32 IntRegs:$src)), (sra (i32 IntRegs:$src), (i32 31)))), (A2_abs IntRegs:$src)>; class T_S2op_2 RegTyBits, RegisterClass RCOut, RegisterClass RCIn, bits<3> MajOp, bits<3> MinOp, bit isSat, bit isRnd, list pattern = []> : SInst <(outs RCOut:$dst), (ins RCIn:$src, u5Imm:$u5), "$dst = "#mnemonic#"($src, #$u5)"#!if(isSat, ":sat", "") #!if(isRnd, ":rnd", ""), pattern, "", S_2op_tc_2_SLOT23> { bits<5> dst; bits<5> src; bits<5> u5; let IClass = 0b1000; let Inst{27-24} = RegTyBits; let Inst{23-21} = MajOp; let Inst{20-16} = src; let Inst{13} = 0b0; let Inst{12-8} = u5; let Inst{7-5} = MinOp; let Inst{4-0} = dst; } class T_S2op_2_di MajOp, bits<3> MinOp> : T_S2op_2 ; let hasNewValue = 1 in class T_S2op_2_id MajOp, bits<3> MinOp> : T_S2op_2 ; let hasNewValue = 1 in class T_S2op_2_ii MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0, list pattern = []> : T_S2op_2 ; class T_S2op_shift MajOp, bits<3> MinOp, SDNode OpNd> : T_S2op_2_ii ; // Arithmetic/logical shift right/left by immediate let Itinerary = S_2op_tc_1_SLOT23, isCodeGenOnly = 0 in { def S2_asr_i_r : T_S2op_shift <"asr", 0b000, 0b000, sra>; def S2_lsr_i_r : T_S2op_shift <"lsr", 0b000, 0b001, srl>; def S2_asl_i_r : T_S2op_shift <"asl", 0b000, 0b010, shl>; } // Shift left by immediate with saturation let Defs = [USR_OVF], isCodeGenOnly = 0 in def S2_asl_i_r_sat : T_S2op_2_ii <"asl", 0b010, 0b010, 1>; // Shift right with round let isCodeGenOnly = 0 in def S2_asr_i_r_rnd : T_S2op_2_ii <"asr", 0b010, 0b000, 0, 1>; def: Pat<(i32 (sra (i32 (add (i32 (sra I32:$src1, u5ImmPred:$src2)), (i32 1))), (i32 1))), (S2_asr_i_r_rnd IntRegs:$src1, u5ImmPred:$src2)>; class T_S2op_3MajOp, bits<3>minOp, bits<1> sat = 0> : SInst<(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss), "$Rdd = "#opc#"($Rss)"#!if(!eq(sat, 1),":sat","")> { bits<5> Rss; bits<5> Rdd; let IClass = 0b1000; let Inst{27-24} = 0; let Inst{23-22} = MajOp; let Inst{20-16} = Rss; let Inst{7-5} = minOp; let Inst{4-0} = Rdd; } let isCodeGenOnly = 0 in { def A2_absp : T_S2op_3 <"abs", 0b10, 0b110>; def A2_negp : T_S2op_3 <"neg", 0b10, 0b101>; def A2_notp : T_S2op_3 <"not", 0b10, 0b100>; } // Innterleave/deinterleave let isCodeGenOnly = 0 in { def S2_interleave : T_S2op_3 <"interleave", 0b11, 0b101>; def S2_deinterleave : T_S2op_3 <"deinterleave", 0b11, 0b100>; } //===----------------------------------------------------------------------===// // STYPE/BIT + //===----------------------------------------------------------------------===// // Bit count let hasSideEffects = 0, hasNewValue = 1 in class T_COUNT_LEADING MajOp, bits<3> MinOp, bit Is32, dag Out, dag Inp> : SInst { bits<5> Rs; bits<5> Rd; let IClass = 0b1000; let Inst{27} = 0b1; let Inst{26} = Is32; let Inst{25-24} = 0b00; let Inst{23-21} = MajOp; let Inst{20-16} = Rs; let Inst{7-5} = MinOp; let Inst{4-0} = Rd; } class T_COUNT_LEADING_32 MajOp, bits<3> MinOp> : T_COUNT_LEADING; class T_COUNT_LEADING_64 MajOp, bits<3> MinOp> : T_COUNT_LEADING; let isCodeGenOnly = 0 in { def S2_cl0 : T_COUNT_LEADING_32<"cl0", 0b000, 0b101>; def S2_cl1 : T_COUNT_LEADING_32<"cl1", 0b000, 0b110>; def S2_ct0 : T_COUNT_LEADING_32<"ct0", 0b010, 0b100>; def S2_ct1 : T_COUNT_LEADING_32<"ct1", 0b010, 0b101>; def S2_cl0p : T_COUNT_LEADING_64<"cl0", 0b010, 0b010>; def S2_cl1p : T_COUNT_LEADING_64<"cl1", 0b010, 0b100>; def S2_clb : T_COUNT_LEADING_32<"clb", 0b000, 0b100>; def S2_clbp : T_COUNT_LEADING_64<"clb", 0b010, 0b000>; def S2_clbnorm : T_COUNT_LEADING_32<"normamt", 0b000, 0b111>; } def: Pat<(i32 (ctlz I32:$Rs)), (S2_cl0 I32:$Rs)>; def: Pat<(i32 (ctlz (not I32:$Rs))), (S2_cl1 I32:$Rs)>; def: Pat<(i32 (cttz I32:$Rs)), (S2_ct0 I32:$Rs)>; def: Pat<(i32 (cttz (not I32:$Rs))), (S2_ct1 I32:$Rs)>; def: Pat<(i32 (trunc (ctlz I64:$Rss))), (S2_cl0p I64:$Rss)>; def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>; // Bit set/clear/toggle let hasSideEffects = 0, hasNewValue = 1 in class T_SCT_BIT_IMM MinOp> : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, u5Imm:$u5), "$Rd = "#MnOp#"($Rs, #$u5)", [], "", S_2op_tc_1_SLOT23> { bits<5> Rd; bits<5> Rs; bits<5> u5; let IClass = 0b1000; let Inst{27-21} = 0b1100110; let Inst{20-16} = Rs; let Inst{13} = 0b0; let Inst{12-8} = u5; let Inst{7-5} = MinOp; let Inst{4-0} = Rd; } let hasSideEffects = 0, hasNewValue = 1 in class T_SCT_BIT_REG MinOp> : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rd = "#MnOp#"($Rs, $Rt)", [], "", S_3op_tc_1_SLOT23> { bits<5> Rd; bits<5> Rs; bits<5> Rt; let IClass = 0b1100; let Inst{27-22} = 0b011010; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{7-6} = MinOp; let Inst{4-0} = Rd; } let isCodeGenOnly = 0 in { def S2_clrbit_i : T_SCT_BIT_IMM<"clrbit", 0b001>; def S2_setbit_i : T_SCT_BIT_IMM<"setbit", 0b000>; def S2_togglebit_i : T_SCT_BIT_IMM<"togglebit", 0b010>; def S2_clrbit_r : T_SCT_BIT_REG<"clrbit", 0b01>; def S2_setbit_r : T_SCT_BIT_REG<"setbit", 0b00>; def S2_togglebit_r : T_SCT_BIT_REG<"togglebit", 0b10>; } def: Pat<(i32 (and (i32 IntRegs:$Rs), (not (shl 1, u5ImmPred:$u5)))), (S2_clrbit_i IntRegs:$Rs, u5ImmPred:$u5)>; def: Pat<(i32 (or (i32 IntRegs:$Rs), (shl 1, u5ImmPred:$u5))), (S2_setbit_i IntRegs:$Rs, u5ImmPred:$u5)>; def: Pat<(i32 (xor (i32 IntRegs:$Rs), (shl 1, u5ImmPred:$u5))), (S2_togglebit_i IntRegs:$Rs, u5ImmPred:$u5)>; def: Pat<(i32 (and (i32 IntRegs:$Rs), (not (shl 1, (i32 IntRegs:$Rt))))), (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>; def: Pat<(i32 (or (i32 IntRegs:$Rs), (shl 1, (i32 IntRegs:$Rt)))), (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>; def: Pat<(i32 (xor (i32 IntRegs:$Rs), (shl 1, (i32 IntRegs:$Rt)))), (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>; // Bit test let hasSideEffects = 0 in class T_TEST_BIT_IMM MajOp> : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, u5Imm:$u5), "$Pd = "#MnOp#"($Rs, #$u5)", [], "", S_2op_tc_2early_SLOT23> { bits<2> Pd; bits<5> Rs; bits<5> u5; let IClass = 0b1000; let Inst{27-24} = 0b0101; let Inst{23-21} = MajOp; let Inst{20-16} = Rs; let Inst{13} = 0; let Inst{12-8} = u5; let Inst{1-0} = Pd; } let hasSideEffects = 0 in class T_TEST_BIT_REG : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Pd = "#MnOp#"($Rs, $Rt)", [], "", S_3op_tc_2early_SLOT23> { bits<2> Pd; bits<5> Rs; bits<5> Rt; let IClass = 0b1100; let Inst{27-22} = 0b011100; let Inst{21} = IsNeg; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{1-0} = Pd; } let isCodeGenOnly = 0 in { def S2_tstbit_i : T_TEST_BIT_IMM<"tstbit", 0b000>; def S2_tstbit_r : T_TEST_BIT_REG<"tstbit", 0>; } let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm. def: Pat<(i1 (setne (and (shl 1, u5ImmPred:$u5), (i32 IntRegs:$Rs)), 0)), (S2_tstbit_i IntRegs:$Rs, u5ImmPred:$u5)>; def: Pat<(i1 (setne (and (shl 1, (i32 IntRegs:$Rt)), (i32 IntRegs:$Rs)), 0)), (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>; def: Pat<(i1 (trunc (i32 IntRegs:$Rs))), (S2_tstbit_i IntRegs:$Rs, 0)>; def: Pat<(i1 (trunc (i64 DoubleRegs:$Rs))), (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>; } let hasSideEffects = 0 in class T_TEST_BITS_IMM MajOp, bit IsNeg> : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, u6Imm:$u6), "$Pd = "#MnOp#"($Rs, #$u6)", [], "", S_2op_tc_2early_SLOT23> { bits<2> Pd; bits<5> Rs; bits<6> u6; let IClass = 0b1000; let Inst{27-24} = 0b0101; let Inst{23-22} = MajOp; let Inst{21} = IsNeg; let Inst{20-16} = Rs; let Inst{13-8} = u6; let Inst{1-0} = Pd; } let hasSideEffects = 0 in class T_TEST_BITS_REG MajOp, bit IsNeg> : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Pd = "#MnOp#"($Rs, $Rt)", [], "", S_3op_tc_2early_SLOT23> { bits<2> Pd; bits<5> Rs; bits<5> Rt; let IClass = 0b1100; let Inst{27-24} = 0b0111; let Inst{23-22} = MajOp; let Inst{21} = IsNeg; let Inst{20-16} = Rs; let Inst{12-8} = Rt; let Inst{1-0} = Pd; } let isCodeGenOnly = 0 in { def C2_bitsclri : T_TEST_BITS_IMM<"bitsclr", 0b10, 0>; def C2_bitsclr : T_TEST_BITS_REG<"bitsclr", 0b10, 0>; def C2_bitsset : T_TEST_BITS_REG<"bitsset", 0b01, 0>; } let AddedComplexity = 20 in { // Complexity greater than compare reg-imm. def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), u6ImmPred:$u6), 0)), (C2_bitsclri IntRegs:$Rs, u6ImmPred:$u6)>; def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), 0)), (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>; } let AddedComplexity = 10 in // Complexity greater than compare reg-reg. def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), IntRegs:$Rt)), (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>; //===----------------------------------------------------------------------===// // STYPE/BIT - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/COMPLEX + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/COMPLEX - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // XTYPE/PERM + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // XTYPE/PERM - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/PRED + //===----------------------------------------------------------------------===// // Predicate transfer. let hasSideEffects = 0, hasNewValue = 1, isCodeGenOnly = 0 in def C2_tfrpr : SInst<(outs IntRegs:$Rd), (ins PredRegs:$Ps), "$Rd = $Ps", [], "", S_2op_tc_1_SLOT23> { bits<5> Rd; bits<2> Ps; let IClass = 0b1000; let Inst{27-24} = 0b1001; let Inst{22} = 0b1; let Inst{17-16} = Ps; let Inst{4-0} = Rd; } // Transfer general register to predicate. let hasSideEffects = 0, isCodeGenOnly = 0 in def C2_tfrrp: SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs), "$Pd = $Rs", [], "", S_2op_tc_2early_SLOT23> { bits<2> Pd; bits<5> Rs; let IClass = 0b1000; let Inst{27-21} = 0b0101010; let Inst{20-16} = Rs; let Inst{1-0} = Pd; } //===----------------------------------------------------------------------===// // STYPE/PRED - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/SHIFT + //===----------------------------------------------------------------------===// class S_2OpInstImmMajOp, bits<3>MinOp, Operand Imm, list pattern = [], bit isRnd = 0> : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, Imm:$src2), "$dst = "#Mnemonic#"($src1, #$src2)"#!if(isRnd, ":rnd", ""), pattern> { bits<5> src1; bits<5> dst; let IClass = 0b1000; let Inst{27-24} = 0; let Inst{23-21} = MajOp; let Inst{20-16} = src1; let Inst{7-5} = MinOp; let Inst{4-0} = dst; } class S_2OpInstImmI6MinOp> : S_2OpInstImm { bits<6> src2; let Inst{13-8} = src2; } // Shift by immediate. let isCodeGenOnly = 0 in { def S2_asr_i_p : S_2OpInstImmI6<"asr", sra, 0b000>; def S2_asl_i_p : S_2OpInstImmI6<"asl", shl, 0b010>; def S2_lsr_i_p : S_2OpInstImmI6<"lsr", srl, 0b001>; } // Shift left by small amount and add. let AddedComplexity = 100, hasNewValue = 1, hasSideEffects = 0, isCodeGenOnly = 0 in def S2_addasl_rrri: SInst <(outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs, u3Imm:$u3), "$Rd = addasl($Rt, $Rs, #$u3)" , [(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rt), (shl (i32 IntRegs:$Rs), u3ImmPred:$u3)))], "", S_3op_tc_2_SLOT23> { bits<5> Rd; bits<5> Rt; bits<5> Rs; bits<3> u3; let IClass = 0b1100; let Inst{27-21} = 0b0100000; let Inst{20-16} = Rs; let Inst{13} = 0b0; let Inst{12-8} = Rt; let Inst{7-5} = u3; let Inst{4-0} = Rd; } //===----------------------------------------------------------------------===// // STYPE/SHIFT - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VH + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VH - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VW + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VW - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SYSTEM/SUPER + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SYSTEM/USER + //===----------------------------------------------------------------------===// def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>; let hasSideEffects = 1, isSoloAX = 1, isCodeGenOnly = 0 in def BARRIER : SYSInst<(outs), (ins), "barrier", [(HexagonBARRIER)],"",ST_tc_st_SLOT0> { let Inst{31-28} = 0b1010; let Inst{27-21} = 0b1000000; } //===----------------------------------------------------------------------===// // SYSTEM/SUPER - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // CRUSER - Type. //===----------------------------------------------------------------------===// // HW loop let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2, opExtendable = 0, hasSideEffects = 0 in class LOOP_iBase : CRInst<(outs), (ins brOp:$offset, u10Imm:$src2), #mnemonic#"($offset, #$src2)", [], "" , CR_tc_3x_SLOT3> { bits<9> offset; bits<10> src2; let IClass = 0b0110; let Inst{27-22} = 0b100100; let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1); let Inst{20-16} = src2{9-5}; let Inst{12-8} = offset{8-4}; let Inst{7-5} = src2{4-2}; let Inst{4-3} = offset{3-2}; let Inst{1-0} = src2{1-0}; } let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2, opExtendable = 0, hasSideEffects = 0 in class LOOP_rBase : CRInst<(outs), (ins brOp:$offset, IntRegs:$src2), #mnemonic#"($offset, $src2)", [], "" ,CR_tc_3x_SLOT3> { bits<9> offset; bits<5> src2; let IClass = 0b0110; let Inst{27-22} = 0b000000; let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1); let Inst{20-16} = src2; let Inst{12-8} = offset{8-4}; let Inst{4-3} = offset{3-2}; } multiclass LOOP_ri { def i : LOOP_iBase; def r : LOOP_rBase; } let Defs = [SA0, LC0, USR], isCodeGenOnly = 0 in defm J2_loop0 : LOOP_ri<"loop0">; // Interestingly only loop0's appear to set usr.lpcfg let Defs = [SA1, LC1], isCodeGenOnly = 0 in defm J2_loop1 : LOOP_ri<"loop1">; let isBranch = 1, isTerminator = 1, hasSideEffects = 0, Defs = [PC, LC0], Uses = [SA0, LC0] in { def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset), ":endloop0", []>; } let isBranch = 1, isTerminator = 1, hasSideEffects = 0, Defs = [PC, LC1], Uses = [SA1, LC1] in { def ENDLOOP1 : Endloop<(outs), (ins brtarget:$offset), ":endloop1", []>; } // Pipelined loop instructions, sp[123]loop0 let Defs = [LC0, SA0, P3, USR], hasSideEffects = 0, isExtentSigned = 1, isExtendable = 1, opExtentBits = 9, opExtentAlign = 2, opExtendable = 0, isPredicateLate = 1 in class SPLOOP_iBase op> : CRInst <(outs), (ins brtarget:$r7_2, u10Imm:$U10), "p3 = sp"#SP#"loop0($r7_2, #$U10)" > { bits<9> r7_2; bits<10> U10; let IClass = 0b0110; let Inst{22-21} = op; let Inst{27-23} = 0b10011; let Inst{20-16} = U10{9-5}; let Inst{12-8} = r7_2{8-4}; let Inst{7-5} = U10{4-2}; let Inst{4-3} = r7_2{3-2}; let Inst{1-0} = U10{1-0}; } let Defs = [LC0, SA0, P3, USR], hasSideEffects = 0, isExtentSigned = 1, isExtendable = 1, opExtentBits = 9, opExtentAlign = 2, opExtendable = 0, isPredicateLate = 1 in class SPLOOP_rBase op> : CRInst <(outs), (ins brtarget:$r7_2, IntRegs:$Rs), "p3 = sp"#SP#"loop0($r7_2, $Rs)" > { bits<9> r7_2; bits<5> Rs; let IClass = 0b0110; let Inst{22-21} = op; let Inst{27-23} = 0b00001; let Inst{20-16} = Rs; let Inst{12-8} = r7_2{8-4}; let Inst{4-3} = r7_2{3-2}; } multiclass SPLOOP_ri op> { def i : SPLOOP_iBase; def r : SPLOOP_rBase; } let isCodeGenOnly = 0 in { defm J2_ploop1s : SPLOOP_ri<"1", 0b01>; defm J2_ploop2s : SPLOOP_ri<"2", 0b10>; defm J2_ploop3s : SPLOOP_ri<"3", 0b11>; } // Transfer to/from Control/GPR Guest/GPR let hasSideEffects = 0 in class TFR_CR_RS_base : CRInst <(outs CTRC:$dst), (ins RC:$src), "$dst = $src", [], "", CR_tc_3x_SLOT3> { bits<5> dst; bits<5> src; let IClass = 0b0110; let Inst{27-25} = 0b001; let Inst{24} = isDouble; let Inst{23-21} = 0b001; let Inst{20-16} = src; let Inst{4-0} = dst; } let isCodeGenOnly = 0 in def A2_tfrrcr : TFR_CR_RS_base; def : InstAlias<"m0 = $Rs", (A2_tfrrcr C6, IntRegs:$Rs)>; def : InstAlias<"m1 = $Rs", (A2_tfrrcr C7, IntRegs:$Rs)>; let hasSideEffects = 0 in class TFR_RD_CR_base : CRInst <(outs RC:$dst), (ins CTRC:$src), "$dst = $src", [], "", CR_tc_3x_SLOT3> { bits<5> dst; bits<5> src; let IClass = 0b0110; let Inst{27-26} = 0b10; let Inst{25} = isSingle; let Inst{24-21} = 0b0000; let Inst{20-16} = src; let Inst{4-0} = dst; } let hasNewValue = 1, opNewValue = 0, isCodeGenOnly = 0 in def A2_tfrcrr : TFR_RD_CR_base; def : InstAlias<"$Rd = m0", (A2_tfrcrr IntRegs:$Rd, C6)>; def : InstAlias<"$Rd = m1", (A2_tfrcrr IntRegs:$Rd, C7)>; // Y4_trace: Send value to etm trace. let isSoloAX = 1, hasSideEffects = 0, isCodeGenOnly = 0 in def Y4_trace: CRInst <(outs), (ins IntRegs:$Rs), "trace($Rs)"> { bits<5> Rs; let IClass = 0b0110; let Inst{27-21} = 0b0010010; let Inst{20-16} = Rs; } let AddedComplexity = 100, isPredicated = 1 in def TFR_condset_ri : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, s12Imm:$src3), "Error; should not emit", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), s12ImmPred:$src3)))]>; let AddedComplexity = 100, isPredicated = 1 in def TFR_condset_ir : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Imm:$src2, IntRegs:$src3), "Error; should not emit", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2, (i32 IntRegs:$src3))))]>; let AddedComplexity = 100, isPredicated = 1 in def TFR_condset_ii : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Imm:$src2, s12Imm:$src3), "Error; should not emit", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2, s12ImmPred:$src3)))]>; // Generate frameindex addresses. let isReMaterializable = 1 in def TFR_FI : ALU32_ri<(outs IntRegs:$dst), (ins FrameIndex:$src1), "$dst = add($src1)", [(set (i32 IntRegs:$dst), ADDRri:$src1)]>; // Support for generating global address. // Taken from X86InstrInfo.td. def SDTHexagonCONST32 : SDTypeProfile<1, 1, [ SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>; def HexagonCONST32 : SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>; def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>; // HI/LO Instructions let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0 in def LO : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst.l = #LO($global)", []>; let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0 in def HI : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst.h = #HI($global)", []>; let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0 in def LOi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value), "$dst.l = #LO($imm_value)", []>; let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0 in def HIi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value), "$dst.h = #HI($imm_value)", []>; let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0 in def LO_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt), "$dst.l = #LO($jt)", []>; let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0 in def HI_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt), "$dst.h = #HI($jt)", []>; let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0 in def LO_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), "$dst.l = #LO($label)", []>; let isReMaterializable = 1, isMoveImm = 1 , hasSideEffects = 0 in def HI_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), "$dst.h = #HI($label)", []>; // This pattern is incorrect. When we add small data, we should change // this pattern to use memw(#foo). // This is for sdata. let isMoveImm = 1 in def CONST32 : LDInst<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), (load (HexagonCONST32 tglobaltlsaddr:$global)))]>; // This is for non-sdata. let isReMaterializable = 1, isMoveImm = 1 in def CONST32_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), (HexagonCONST32 tglobaladdr:$global))]>; let isReMaterializable = 1, isMoveImm = 1 in def CONST32_set_jt : LDInst2<(outs IntRegs:$dst), (ins jumptablebase:$jt), "$dst = CONST32(#$jt)", [(set (i32 IntRegs:$dst), (HexagonCONST32 tjumptable:$jt))]>; let isReMaterializable = 1, isMoveImm = 1 in def CONST32GP_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), (HexagonCONST32_GP tglobaladdr:$global))]>; let isReMaterializable = 1, isMoveImm = 1 in def CONST32_Int_Real : LDInst2<(outs IntRegs:$dst), (ins i32imm:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), imm:$global) ]>; // Map BlockAddress lowering to CONST32_Int_Real def : Pat<(HexagonCONST32_GP tblockaddress:$addr), (CONST32_Int_Real tblockaddress:$addr)>; let isReMaterializable = 1, isMoveImm = 1 in def CONST32_Label : LDInst2<(outs IntRegs:$dst), (ins bblabel:$label), "$dst = CONST32($label)", [(set (i32 IntRegs:$dst), (HexagonCONST32 bbl:$label))]>; let isReMaterializable = 1, isMoveImm = 1 in def CONST64_Int_Real : LDInst2<(outs DoubleRegs:$dst), (ins i64imm:$global), "$dst = CONST64(#$global)", [(set (i64 DoubleRegs:$dst), imm:$global) ]>; def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins), "$dst = xor($dst, $dst)", [(set (i1 PredRegs:$dst), 0)]>; def MPY_trsext : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpy($src1, $src2)", [(set (i32 IntRegs:$dst), (trunc (i64 (srl (i64 (mul (i64 (sext (i32 IntRegs:$src1))), (i64 (sext (i32 IntRegs:$src2))))), (i32 32)))))]>; // Pseudo instructions. def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def call : SDNode<"HexagonISD::CALL", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; // For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain, // Optional Flag and Variable Arguments. // Its 1 Operand has pointer type. def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; let Defs = [R29, R30], Uses = [R31, R30, R29] in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), "Should never be emitted", [(callseq_start timm:$amt)]>; } let Defs = [R29, R30, R31], Uses = [R29] in { def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), "Should never be emitted", [(callseq_end timm:$amt1, timm:$amt2)]>; } // Call subroutine. let isCall = 1, hasSideEffects = 0, Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in { def CALL : JInst<(outs), (ins calltarget:$dst), "call $dst", []>; } // Call subroutine indirectly. let Defs = VolatileV3.Regs, isCodeGenOnly = 0 in def J2_callr : JUMPR_MISC_CALLR<0, 1>; // Indirect tail-call. let isCodeGenOnly = 1, isCall = 1, isReturn = 1 in def TCRETURNR : T_JMPr; // Direct tail-calls. let isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0, isTerminator = 1, isCodeGenOnly = 1 in { def TCRETURNtg : JInst<(outs), (ins calltarget:$dst), "jump $dst", [], "", J_tc_2early_SLOT23>; def TCRETURNtext : JInst<(outs), (ins calltarget:$dst), "jump $dst", [], "", J_tc_2early_SLOT23>; } // Map call instruction. def : Pat<(call (i32 IntRegs:$dst)), (J2_callr (i32 IntRegs:$dst))>, Requires<[HasV2TOnly]>; def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>, Requires<[HasV2TOnly]>; def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>, Requires<[HasV2TOnly]>; //Tail calls. def : Pat<(HexagonTCRet tglobaladdr:$dst), (TCRETURNtg tglobaladdr:$dst)>; def : Pat<(HexagonTCRet texternalsym:$dst), (TCRETURNtext texternalsym:$dst)>; def : Pat<(HexagonTCRet (i32 IntRegs:$dst)), (TCRETURNR (i32 IntRegs:$dst))>; // Atomic load and store support // 8 bit atomic load def : Pat<(atomic_load_8 ADDRriS11_0:$src1), (i32 (L2_loadrub_io AddrFI:$src1, 0))>; def : Pat<(atomic_load_8 (add (i32 IntRegs:$src1), s11_0ImmPred:$offset)), (i32 (L2_loadrub_io (i32 IntRegs:$src1), s11_0ImmPred:$offset))>; // 16 bit atomic load def : Pat<(atomic_load_16 ADDRriS11_1:$src1), (i32 (L2_loadruh_io AddrFI:$src1, 0))>; def : Pat<(atomic_load_16 (add (i32 IntRegs:$src1), s11_1ImmPred:$offset)), (i32 (L2_loadruh_io (i32 IntRegs:$src1), s11_1ImmPred:$offset))>; def : Pat<(atomic_load_32 ADDRriS11_2:$src1), (i32 (L2_loadri_io AddrFI:$src1, 0))>; def : Pat<(atomic_load_32 (add (i32 IntRegs:$src1), s11_2ImmPred:$offset)), (i32 (L2_loadri_io (i32 IntRegs:$src1), s11_2ImmPred:$offset))>; // 64 bit atomic load def : Pat<(atomic_load_64 ADDRriS11_3:$src1), (i64 (L2_loadrd_io AddrFI:$src1, 0))>; def : Pat<(atomic_load_64 (add (i32 IntRegs:$src1), s11_3ImmPred:$offset)), (i64 (L2_loadrd_io (i32 IntRegs:$src1), s11_3ImmPred:$offset))>; def : Pat<(atomic_store_8 ADDRriS11_0:$src2, (i32 IntRegs:$src1)), (S2_storerb_io AddrFI:$src2, 0, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_8 (add (i32 IntRegs:$src2), s11_0ImmPred:$offset), (i32 IntRegs:$src1)), (S2_storerb_io (i32 IntRegs:$src2), s11_0ImmPred:$offset, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_16 ADDRriS11_1:$src2, (i32 IntRegs:$src1)), (S2_storerh_io AddrFI:$src2, 0, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_16 (i32 IntRegs:$src1), (add (i32 IntRegs:$src2), s11_1ImmPred:$offset)), (S2_storerh_io (i32 IntRegs:$src2), s11_1ImmPred:$offset, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_32 ADDRriS11_2:$src2, (i32 IntRegs:$src1)), (S2_storeri_io AddrFI:$src2, 0, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_32 (add (i32 IntRegs:$src2), s11_2ImmPred:$offset), (i32 IntRegs:$src1)), (S2_storeri_io (i32 IntRegs:$src2), s11_2ImmPred:$offset, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_64 ADDRriS11_3:$src2, (i64 DoubleRegs:$src1)), (S2_storerd_io AddrFI:$src2, 0, (i64 DoubleRegs:$src1))>; def : Pat<(atomic_store_64 (add (i32 IntRegs:$src2), s11_3ImmPred:$offset), (i64 DoubleRegs:$src1)), (S2_storerd_io (i32 IntRegs:$src2), s11_3ImmPred:$offset, (i64 DoubleRegs:$src1))>; // Map from r0 = and(r1, 65535) to r0 = zxth(r1) def : Pat <(and (i32 IntRegs:$src1), 65535), (A2_zxth (i32 IntRegs:$src1))>; // Map from r0 = and(r1, 255) to r0 = zxtb(r1). def : Pat <(and (i32 IntRegs:$src1), 255), (A2_zxtb (i32 IntRegs:$src1))>; // Map Add(p1, true) to p1 = not(p1). // Add(p1, false) should never be produced, // if it does, it got to be mapped to NOOP. def : Pat <(add (i1 PredRegs:$src1), -1), (C2_not (i1 PredRegs:$src1))>; // Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i). def : Pat <(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s8ImmPred:$src3), (i32 (TFR_condset_ii (i1 PredRegs:$src1), s8ImmPred:$src3, s8ImmPred:$src2))>; // Map from p0 = pnot(p0); r0 = select(p0, #i, r1) // => r0 = TFR_condset_ri(p0, r1, #i) def : Pat <(select (not (i1 PredRegs:$src1)), s12ImmPred:$src2, (i32 IntRegs:$src3)), (i32 (TFR_condset_ri (i1 PredRegs:$src1), (i32 IntRegs:$src3), s12ImmPred:$src2))>; // Map from p0 = pnot(p0); r0 = mux(p0, r1, #i) // => r0 = TFR_condset_ir(p0, #i, r1) def : Pat <(select (not (i1 PredRegs:$src1)), IntRegs:$src2, s12ImmPred:$src3), (i32 (TFR_condset_ir (i1 PredRegs:$src1), s12ImmPred:$src3, (i32 IntRegs:$src2)))>; // Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump. def : Pat <(brcond (not (i1 PredRegs:$src1)), bb:$offset), (J2_jumpf (i1 PredRegs:$src1), bb:$offset)>; // Map from p2 = pnot(p2); p1 = and(p0, p2) => p1 = and(p0, !p2). def : Pat <(and (i1 PredRegs:$src1), (not (i1 PredRegs:$src2))), (i1 (C2_andn (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>; let AddedComplexity = 100 in def : Pat <(i64 (zextloadi1 (HexagonCONST32 tglobaladdr:$global))), (i64 (A2_combinew (A2_tfrsi 0), (L2_loadrub_io (CONST32_set tglobaladdr:$global), 0)))>, Requires<[NoV4T]>; // Map from i1 loads to 32 bits. This assumes that the i1* is byte aligned. let AddedComplexity = 10 in def : Pat <(i32 (zextloadi1 ADDRriS11_0:$addr)), (i32 (A2_and (i32 (L2_loadrb_io AddrFI:$addr, 0)), (A2_tfrsi 0x1)))>; // Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = A2_sxtw(Rss.lo). def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)), (i64 (A2_sxtw (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))>; // Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = A2_sxtw(SXTH(Rss.lo)). def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)), (i64 (A2_sxtw (i32 (A2_sxth (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))))>; // Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = A2_sxtw(SXTB(Rss.lo)). def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)), (i64 (A2_sxtw (i32 (A2_sxtb (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))))>; // We want to prevent emitting pnot's as much as possible. // Map brcond with an unsupported setcc to a J2_jumpf. def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))), bb:$offset), (J2_jumpf (C2_cmpeq (i32 IntRegs:$src1), (i32 IntRegs:$src2)), bb:$offset)>; def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)), bb:$offset), (J2_jumpf (C2_cmpeqi (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>; def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset), (J2_jumpf (i1 PredRegs:$src1), bb:$offset)>; def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset), (J2_jumpt (i1 PredRegs:$src1), bb:$offset)>; // cmp.lt(Rs, Imm) -> !cmp.ge(Rs, Imm) -> !cmp.gt(Rs, Imm-1) def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)), bb:$offset), (J2_jumpf (C2_cmpgti (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ImmPred:$src2)), bb:$offset)>; // cmp.lt(r0, r1) -> cmp.gt(r1, r0) def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), bb:$offset), (J2_jumpt (C2_cmpgt (i32 IntRegs:$src2), (i32 IntRegs:$src1)), bb:$offset)>; def : Pat <(brcond (i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), bb:$offset), (J2_jumpf (C2_cmpgtup (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)), bb:$offset)>; def : Pat <(brcond (i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))), bb:$offset), (J2_jumpf (C2_cmpgtu (i32 IntRegs:$src1), (i32 IntRegs:$src2)), bb:$offset)>; def : Pat <(brcond (i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), bb:$offset), (J2_jumpf (C2_cmpgtup (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), bb:$offset)>; // Map from a 64-bit select to an emulated 64-bit mux. // Hexagon does not support 64-bit MUXes; so emulate with combines. def : Pat <(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src3)), (i64 (A2_combinew (i32 (C2_mux (i1 PredRegs:$src1), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3), subreg_hireg)))), (i32 (C2_mux (i1 PredRegs:$src1), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3), subreg_loreg))))))>; // Map from a 1-bit select to logical ops. // From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3). def : Pat <(select (i1 PredRegs:$src1), (i1 PredRegs:$src2), (i1 PredRegs:$src3)), (C2_or (C2_and (i1 PredRegs:$src1), (i1 PredRegs:$src2)), (C2_and (C2_not (i1 PredRegs:$src1)), (i1 PredRegs:$src3)))>; // Map Pd = load(addr) -> Rs = load(addr); Pd = Rs. def : Pat<(i1 (load ADDRriS11_2:$addr)), (i1 (C2_tfrrp (i32 (L2_loadrb_io AddrFI:$addr, 0))))>; // Map for truncating from 64 immediates to 32 bit immediates. def : Pat<(i32 (trunc (i64 DoubleRegs:$src))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg))>; // Map for truncating from i64 immediates to i1 bit immediates. def : Pat<(i1 (trunc (i64 DoubleRegs:$src))), (i1 (C2_tfrrp (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg))))>; // Map memb(Rs) = Rdd -> memb(Rs) = Rt. def : Pat<(truncstorei8 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), (S2_storerb_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map memh(Rs) = Rdd -> memh(Rs) = Rt. def : Pat<(truncstorei16 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), (S2_storerh_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map memw(Rs) = Rdd -> memw(Rs) = Rt def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), (S2_storeri_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map memw(Rs) = Rdd -> memw(Rs) = Rt. def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), (S2_storeri_io AddrFI:$addr, 0, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map from i1 = constant<-1>; memw(addr) = i1 -> r0 = 1; memw(addr) = r0. def : Pat<(store (i1 -1), ADDRriS11_2:$addr), (S2_storerb_io AddrFI:$addr, 0, (A2_tfrsi 1))>; // Map from i1 = constant<-1>; store i1 -> r0 = 1; store r0. def : Pat<(store (i1 -1), ADDRriS11_2:$addr), (S2_storerb_io AddrFI:$addr, 0, (A2_tfrsi 1))>; // Map from memb(Rs) = Pd -> Rt = mux(Pd, #0, #1); store Rt. def : Pat<(store (i1 PredRegs:$src1), ADDRriS11_2:$addr), (S2_storerb_io AddrFI:$addr, 0, (i32 (C2_muxii (i1 PredRegs:$src1), 1, 0)) )>; // Map Rdd = anyext(Rs) -> Rdd = A2_sxtw(Rs). // Hexagon_TODO: We can probably use combine but that will cost 2 instructions. // Better way to do this? def : Pat<(i64 (anyext (i32 IntRegs:$src1))), (i64 (A2_sxtw (i32 IntRegs:$src1)))>; // Map cmple -> cmpgt. // rs <= rt -> !(rs > rt). def : Pat<(i1 (setle (i32 IntRegs:$src1), s10ExtPred:$src2)), (i1 (C2_not (C2_cmpgti (i32 IntRegs:$src1), s10ExtPred:$src2)))>; // rs <= rt -> !(rs > rt). def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (C2_not (C2_cmpgt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>; // Rss <= Rtt -> !(Rss > Rtt). def : Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (C2_not (C2_cmpgtp (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>; // Map cmpne -> cmpeq. // Hexagon_TODO: We should improve on this. // rs != rt -> !(rs == rt). def : Pat <(i1 (setne (i32 IntRegs:$src1), s10ExtPred:$src2)), (i1 (C2_not(i1 (C2_cmpeqi (i32 IntRegs:$src1), s10ExtPred:$src2))))>; // Map cmpne(Rs) -> !cmpeqe(Rs). // rs != rt -> !(rs == rt). def : Pat <(i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (C2_not (i1 (C2_cmpeq (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>; // Convert setne back to xor for hexagon since we compute w/ pred registers. def : Pat <(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))), (i1 (C2_xor (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>; // Map cmpne(Rss) -> !cmpew(Rss). // rs != rt -> !(rs == rt). def : Pat <(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (C2_not (i1 (C2_cmpeqp (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)))))>; // Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt). // rs >= rt -> !(rt > rs). def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (C2_not (i1 (C2_cmpgt (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>; // cmpge(Rs, Imm) -> cmpgt(Rs, Imm-1) def : Pat <(i1 (setge (i32 IntRegs:$src1), s8ExtPred:$src2)), (i1 (C2_cmpgti (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2)))>; // Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss). // rss >= rtt -> !(rtt > rss). def : Pat <(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (C2_not (i1 (C2_cmpgtp (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))))>; // Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm). // !cmpge(Rs, Imm) -> !cmpgt(Rs, Imm-1). // rs < rt -> !(rs >= rt). def : Pat <(i1 (setlt (i32 IntRegs:$src1), s8ExtPred:$src2)), (i1 (C2_not (C2_cmpgti (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2))))>; // Map cmplt(Rs, Rt) -> cmpgt(Rt, Rs). // rs < rt -> rt > rs. // We can let assembler map it, or we can do in the compiler itself. def : Pat <(i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (C2_cmpgt (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>; // Map cmplt(Rss, Rtt) -> cmpgt(Rtt, Rss). // rss < rtt -> (rtt > rss). def : Pat <(i1 (setlt (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (C2_cmpgtp (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>; // Map from cmpltu(Rs, Rd) -> cmpgtu(Rd, Rs) // rs < rt -> rt > rs. // We can let assembler map it, or we can do in the compiler itself. def : Pat <(i1 (setult (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (C2_cmpgtu (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>; // Map from cmpltu(Rss, Rdd) -> cmpgtu(Rdd, Rss). // rs < rt -> rt > rs. def : Pat <(i1 (setult (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (C2_cmpgtup (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>; // Generate cmpgeu(Rs, #0) -> cmpeq(Rs, Rs) def : Pat <(i1 (setuge (i32 IntRegs:$src1), 0)), (i1 (C2_cmpeq (i32 IntRegs:$src1), (i32 IntRegs:$src1)))>; // Generate cmpgeu(Rs, #u8) -> cmpgtu(Rs, #u8 -1) def : Pat <(i1 (setuge (i32 IntRegs:$src1), u8ExtPred:$src2)), (i1 (C2_cmpgtui (i32 IntRegs:$src1), (DEC_CONST_UNSIGNED u8ExtPred:$src2)))>; // Generate cmpgtu(Rs, #u9) def : Pat <(i1 (setugt (i32 IntRegs:$src1), u9ExtPred:$src2)), (i1 (C2_cmpgtui (i32 IntRegs:$src1), u9ExtPred:$src2))>; // Map from Rs >= Rt -> !(Rt > Rs). // rs >= rt -> !(rt > rs). def : Pat <(i1 (setuge (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (C2_not (C2_cmpgtu (i32 IntRegs:$src2), (i32 IntRegs:$src1))))>; // Map from Rs >= Rt -> !(Rt > Rs). // rs >= rt -> !(rt > rs). def : Pat <(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (C2_not (C2_cmpgtup (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))))>; // Map from cmpleu(Rs, Rt) -> !cmpgtu(Rs, Rt). // Map from (Rs <= Rt) -> !(Rs > Rt). def : Pat <(i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (C2_not (C2_cmpgtu (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>; // Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1). // Map from (Rs <= Rt) -> !(Rs > Rt). def : Pat <(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (C2_not (C2_cmpgtup (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>; // Sign extends. // i1 -> i32 def : Pat <(i32 (sext (i1 PredRegs:$src1))), (i32 (C2_muxii (i1 PredRegs:$src1), -1, 0))>; // i1 -> i64 def : Pat <(i64 (sext (i1 PredRegs:$src1))), (i64 (A2_combinew (A2_tfrsi -1), (C2_muxii (i1 PredRegs:$src1), -1, 0)))>; // Convert sign-extended load back to load and sign extend. // i8 -> i64 def: Pat <(i64 (sextloadi8 ADDRriS11_0:$src1)), (i64 (A2_sxtw (L2_loadrb_io AddrFI:$src1, 0)))>; // Convert any-extended load back to load and sign extend. // i8 -> i64 def: Pat <(i64 (extloadi8 ADDRriS11_0:$src1)), (i64 (A2_sxtw (L2_loadrb_io AddrFI:$src1, 0)))>; // Convert sign-extended load back to load and sign extend. // i16 -> i64 def: Pat <(i64 (sextloadi16 ADDRriS11_1:$src1)), (i64 (A2_sxtw (L2_loadrh_io AddrFI:$src1, 0)))>; // Convert sign-extended load back to load and sign extend. // i32 -> i64 def: Pat <(i64 (sextloadi32 ADDRriS11_2:$src1)), (i64 (A2_sxtw (L2_loadri_io AddrFI:$src1, 0)))>; // Zero extends. // i1 -> i32 def : Pat <(i32 (zext (i1 PredRegs:$src1))), (i32 (C2_muxii (i1 PredRegs:$src1), 1, 0))>; // i1 -> i64 def : Pat <(i64 (zext (i1 PredRegs:$src1))), (i64 (A2_combinew (A2_tfrsi 0), (C2_muxii (i1 PredRegs:$src1), 1, 0)))>, Requires<[NoV4T]>; // i32 -> i64 def : Pat <(i64 (zext (i32 IntRegs:$src1))), (i64 (A2_combinew (A2_tfrsi 0), (i32 IntRegs:$src1)))>, Requires<[NoV4T]>; // i8 -> i64 def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)), (i64 (A2_combinew (A2_tfrsi 0), (L2_loadrub_io AddrFI:$src1, 0)))>, Requires<[NoV4T]>; let AddedComplexity = 20 in def: Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1), s11_0ExtPred:$offset))), (i64 (A2_combinew (A2_tfrsi 0), (L2_loadrub_io IntRegs:$src1, s11_0ExtPred:$offset)))>, Requires<[NoV4T]>; // i1 -> i64 def: Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)), (i64 (A2_combinew (A2_tfrsi 0), (L2_loadrub_io AddrFI:$src1, 0)))>, Requires<[NoV4T]>; let AddedComplexity = 20 in def: Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1), s11_0ExtPred:$offset))), (i64 (A2_combinew (A2_tfrsi 0), (L2_loadrub_io IntRegs:$src1, s11_0ExtPred:$offset)))>, Requires<[NoV4T]>; // i16 -> i64 def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)), (i64 (A2_combinew (A2_tfrsi 0), (L2_loadruh_io AddrFI:$src1, 0)))>, Requires<[NoV4T]>; let AddedComplexity = 20 in def: Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1), s11_1ExtPred:$offset))), (i64 (A2_combinew (A2_tfrsi 0), (L2_loadruh_io IntRegs:$src1, s11_1ExtPred:$offset)))>, Requires<[NoV4T]>; // i32 -> i64 def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)), (i64 (A2_combinew (A2_tfrsi 0), (L2_loadri_io AddrFI:$src1, 0)))>, Requires<[NoV4T]>; let AddedComplexity = 100 in def: Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))), (i64 (A2_combinew (A2_tfrsi 0), (L2_loadri_io IntRegs:$src1, s11_2ExtPred:$offset)))>, Requires<[NoV4T]>; let AddedComplexity = 10 in def: Pat <(i32 (zextloadi1 ADDRriS11_0:$src1)), (i32 (L2_loadri_io AddrFI:$src1, 0))>; // Map from Rs = Pd to Pd = mux(Pd, #1, #0) def : Pat <(i32 (zext (i1 PredRegs:$src1))), (i32 (C2_muxii (i1 PredRegs:$src1), 1, 0))>; // Map from Rs = Pd to Pd = mux(Pd, #1, #0) def : Pat <(i32 (anyext (i1 PredRegs:$src1))), (i32 (C2_muxii (i1 PredRegs:$src1), 1, 0))>; // Map from Rss = Pd to Rdd = A2_sxtw (mux(Pd, #1, #0)) def : Pat <(i64 (anyext (i1 PredRegs:$src1))), (i64 (A2_sxtw (i32 (C2_muxii (i1 PredRegs:$src1), 1, 0))))>; let AddedComplexity = 100 in def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), (i32 32))), (i64 (zextloadi32 (i32 (add IntRegs:$src2, s11_2ExtPred:$offset2)))))), (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), (L2_loadri_io IntRegs:$src2, s11_2ExtPred:$offset2)))>; def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), (i32 32))), (i64 (zextloadi32 ADDRriS11_2:$srcLow)))), (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), (L2_loadri_io AddrFI:$srcLow, 0)))>; def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), (i32 32))), (i64 (zext (i32 IntRegs:$srcLow))))), (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), IntRegs:$srcLow))>; let AddedComplexity = 100 in def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), (i32 32))), (i64 (zextloadi32 (i32 (add IntRegs:$src2, s11_2ExtPred:$offset2)))))), (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), (L2_loadri_io IntRegs:$src2, s11_2ExtPred:$offset2)))>; def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), (i32 32))), (i64 (zextloadi32 ADDRriS11_2:$srcLow)))), (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), (L2_loadri_io AddrFI:$srcLow, 0)))>; def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), (i32 32))), (i64 (zext (i32 IntRegs:$srcLow))))), (i64 (A2_combinew (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), IntRegs:$srcLow))>; // Any extended 64-bit load. // anyext i32 -> i64 def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)), (i64 (A2_combinew (A2_tfrsi 0), (L2_loadri_io AddrFI:$src1, 0)))>, Requires<[NoV4T]>; // When there is an offset we should prefer the pattern below over the pattern above. // The complexity of the above is 13 (gleaned from HexagonGenDAGIsel.inc) // So this complexity below is comfortably higher to allow for choosing the below. // If this is not done then we generate addresses such as // ******************************************** // r1 = add (r0, #4) // r1 = memw(r1 + #0) // instead of // r1 = memw(r0 + #4) // ******************************************** let AddedComplexity = 100 in def: Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))), (i64 (A2_combinew (A2_tfrsi 0), (L2_loadri_io IntRegs:$src1, s11_2ExtPred:$offset)))>, Requires<[NoV4T]>; // anyext i16 -> i64. def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)), (i64 (A2_combinew (A2_tfrsi 0), (L2_loadrh_io AddrFI:$src1, 0)))>, Requires<[NoV4T]>; let AddedComplexity = 20 in def: Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1), s11_1ExtPred:$offset))), (i64 (A2_combinew (A2_tfrsi 0), (L2_loadrh_io IntRegs:$src1, s11_1ExtPred:$offset)))>, Requires<[NoV4T]>; // Map from Rdd = zxtw(Rs) -> Rdd = combine(0, Rs). def : Pat<(i64 (zext (i32 IntRegs:$src1))), (i64 (A2_combinew (A2_tfrsi 0), (i32 IntRegs:$src1)))>, Requires<[NoV4T]>; // Multiply 64-bit unsigned and use upper result. def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), (i64 (M2_dpmpyuu_acc_s0 (i64 (A2_combinew (A2_tfrsi 0), (i32 (EXTRACT_SUBREG (i64 (S2_lsr_i_p (i64 (M2_dpmpyuu_acc_s0 (i64 (M2_dpmpyuu_acc_s0 (i64 (A2_combinew (A2_tfrsi 0), (i32 (EXTRACT_SUBREG (i64 (S2_lsr_i_p (i64 (M2_dpmpyuu_s0 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), 32)), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))), 32)), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>; // Multiply 64-bit signed and use upper result. def : Pat <(mulhs (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), (i64 (M2_dpmpyss_acc_s0 (i64 (A2_combinew (A2_tfrsi 0), (i32 (EXTRACT_SUBREG (i64 (S2_lsr_i_p (i64 (M2_dpmpyss_acc_s0 (i64 (M2_dpmpyss_acc_s0 (i64 (A2_combinew (A2_tfrsi 0), (i32 (EXTRACT_SUBREG (i64 (S2_lsr_i_p (i64 (M2_dpmpyuu_s0 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), 32)), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))), 32)), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>; // Hexagon specific ISD nodes. //def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>]>; def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC", SDTHexagonADJDYNALLOC>; // Needed to tag these instructions for stack layout. let usesCustomInserter = 1 in def ADJDYNALLOC : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1, s16Imm:$src2), "$dst = add($src1, #$src2)", [(set (i32 IntRegs:$dst), (Hexagon_ADJDYNALLOC (i32 IntRegs:$src1), s16ImmPred:$src2))]>; def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>; def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>; def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = $src1", [(set (i32 IntRegs:$dst), (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>; let AddedComplexity = 100 in def : Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)), (COPY (i32 IntRegs:$src1))>; def HexagonWrapperJT: SDNode<"HexagonISD::WrapperJT", SDTIntUnaryOp>; def : Pat<(HexagonWrapperJT tjumptable:$dst), (i32 (CONST32_set_jt tjumptable:$dst))>; // XTYPE/SHIFT // //===----------------------------------------------------------------------===// // Template Class // Shift by immediate/register and accumulate/logical //===----------------------------------------------------------------------===// // Rx[+-&|]=asr(Rs,#u5) // Rx[+-&|^]=lsr(Rs,#u5) // Rx[+-&|^]=asl(Rs,#u5) let hasNewValue = 1, opNewValue = 0 in class T_shift_imm_acc_r majOp, bits<2> minOp> : SInst_acc<(outs IntRegs:$Rx), (ins IntRegs:$src1, IntRegs:$Rs, u5Imm:$u5), "$Rx "#opc2#opc1#"($Rs, #$u5)", [(set (i32 IntRegs:$Rx), (OpNode2 (i32 IntRegs:$src1), (OpNode1 (i32 IntRegs:$Rs), u5ImmPred:$u5)))], "$src1 = $Rx", S_2op_tc_2_SLOT23> { bits<5> Rx; bits<5> Rs; bits<5> u5; let IClass = 0b1000; let Inst{27-24} = 0b1110; let Inst{23-22} = majOp{2-1}; let Inst{13} = 0b0; let Inst{7} = majOp{0}; let Inst{6-5} = minOp; let Inst{4-0} = Rx; let Inst{20-16} = Rs; let Inst{12-8} = u5; } // Rx[+-&|]=asr(Rs,Rt) // Rx[+-&|^]=lsr(Rs,Rt) // Rx[+-&|^]=asl(Rs,Rt) let hasNewValue = 1, opNewValue = 0 in class T_shift_reg_acc_r majOp, bits<2> minOp> : SInst_acc<(outs IntRegs:$Rx), (ins IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt), "$Rx "#opc2#opc1#"($Rs, $Rt)", [(set (i32 IntRegs:$Rx), (OpNode2 (i32 IntRegs:$src1), (OpNode1 (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))], "$src1 = $Rx", S_3op_tc_2_SLOT23 > { bits<5> Rx; bits<5> Rs; bits<5> Rt; let IClass = 0b1100; let Inst{27-24} = 0b1100; let Inst{23-22} = majOp; let Inst{7-6} = minOp; let Inst{4-0} = Rx; let Inst{20-16} = Rs; let Inst{12-8} = Rt; } // Rxx[+-&|]=asr(Rss,#u6) // Rxx[+-&|^]=lsr(Rss,#u6) // Rxx[+-&|^]=asl(Rss,#u6) class T_shift_imm_acc_p majOp, bits<2> minOp> : SInst_acc<(outs DoubleRegs:$Rxx), (ins DoubleRegs:$src1, DoubleRegs:$Rss, u6Imm:$u6), "$Rxx "#opc2#opc1#"($Rss, #$u6)", [(set (i64 DoubleRegs:$Rxx), (OpNode2 (i64 DoubleRegs:$src1), (OpNode1 (i64 DoubleRegs:$Rss), u6ImmPred:$u6)))], "$src1 = $Rxx", S_2op_tc_2_SLOT23> { bits<5> Rxx; bits<5> Rss; bits<6> u6; let IClass = 0b1000; let Inst{27-24} = 0b0010; let Inst{23-22} = majOp{2-1}; let Inst{7} = majOp{0}; let Inst{6-5} = minOp; let Inst{4-0} = Rxx; let Inst{20-16} = Rss; let Inst{13-8} = u6; } // Rxx[+-&|]=asr(Rss,Rt) // Rxx[+-&|^]=lsr(Rss,Rt) // Rxx[+-&|^]=asl(Rss,Rt) // Rxx[+-&|^]=lsl(Rss,Rt) class T_shift_reg_acc_p majOp, bits<2> minOp> : SInst_acc<(outs DoubleRegs:$Rxx), (ins DoubleRegs:$src1, DoubleRegs:$Rss, IntRegs:$Rt), "$Rxx "#opc2#opc1#"($Rss, $Rt)", [(set (i64 DoubleRegs:$Rxx), (OpNode2 (i64 DoubleRegs:$src1), (OpNode1 (i64 DoubleRegs:$Rss), (i32 IntRegs:$Rt))))], "$src1 = $Rxx", S_3op_tc_2_SLOT23> { bits<5> Rxx; bits<5> Rss; bits<5> Rt; let IClass = 0b1100; let Inst{27-24} = 0b1011; let Inst{23-21} = majOp; let Inst{20-16} = Rss; let Inst{12-8} = Rt; let Inst{7-6} = minOp; let Inst{4-0} = Rxx; } //===----------------------------------------------------------------------===// // Multi-class for the shift instructions with logical/arithmetic operators. //===----------------------------------------------------------------------===// multiclass xtype_imm_base majOp, bits<2> minOp > { def _i_r#NAME : T_shift_imm_acc_r< OpcStr1, OpcStr2, OpNode1, OpNode2, majOp, minOp >; def _i_p#NAME : T_shift_imm_acc_p< OpcStr1, OpcStr2, OpNode1, OpNode2, majOp, minOp >; } multiclass xtype_imm_accminOp> { let AddedComplexity = 100 in defm _acc : xtype_imm_base< opc1, "+= ", OpNode, add, 0b001, minOp>; defm _nac : xtype_imm_base< opc1, "-= ", OpNode, sub, 0b000, minOp>; defm _and : xtype_imm_base< opc1, "&= ", OpNode, and, 0b010, minOp>; defm _or : xtype_imm_base< opc1, "|= ", OpNode, or, 0b011, minOp>; } multiclass xtype_xor_imm_accminOp> { let AddedComplexity = 100 in defm _xacc : xtype_imm_base< opc1, "^= ", OpNode, xor, 0b100, minOp>; } let isCodeGenOnly = 0 in { defm S2_asr : xtype_imm_acc<"asr", sra, 0b00>; defm S2_lsr : xtype_imm_acc<"lsr", srl, 0b01>, xtype_xor_imm_acc<"lsr", srl, 0b01>; defm S2_asl : xtype_imm_acc<"asl", shl, 0b10>, xtype_xor_imm_acc<"asl", shl, 0b10>; } multiclass xtype_reg_acc_rminOp> { let AddedComplexity = 100 in def _acc : T_shift_reg_acc_r ; defm S2_asr : xtype_reg_acc<"asr", sra, 0b00>; defm S2_lsr : xtype_reg_acc<"lsr", srl, 0b01>; defm S2_lsl : xtype_reg_acc<"lsl", shl, 0b11>; } //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_S3op_1 MajOp, bits<3> MinOp, bit SwapOps, bit isSat = 0, bit isRnd = 0, bit hasShift = 0> : SInst <(outs RC:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = "#mnemonic#"($src1, $src2)"#!if(isRnd, ":rnd", "") #!if(hasShift,":>>1","") #!if(isSat, ":sat", ""), [], "", S_3op_tc_2_SLOT23 > { bits<5> dst; bits<5> src1; bits<5> src2; let IClass = 0b1100; let Inst{27-24} = 0b0001; let Inst{23-22} = MajOp; let Inst{20-16} = !if (SwapOps, src2, src1); let Inst{12-8} = !if (SwapOps, src1, src2); let Inst{7-5} = MinOp; let Inst{4-0} = dst; } class T_S3op_64 MajOp, bits<3> MinOp, bit SwapOps, bit isSat = 0, bit isRnd = 0, bit hasShift = 0 > : T_S3op_1 ; let isCodeGenOnly = 0 in def S2_lfsp : T_S3op_64 < "lfs", 0b10, 0b110, 0>; //===----------------------------------------------------------------------===// // Template class used by vector shift, vector rotate, vector neg, // 32-bit shift, 64-bit shifts, etc. //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_S3op_3 MajOp, bits<2> MinOp, bit isSat = 0, list pattern = [] > : SInst <(outs RC:$dst), (ins RC:$src1, IntRegs:$src2), "$dst = "#mnemonic#"($src1, $src2)"#!if(isSat, ":sat", ""), pattern, "", S_3op_tc_1_SLOT23> { bits<5> dst; bits<5> src1; bits<5> src2; let IClass = 0b1100; let Inst{27-24} = !if(!eq(!cast(RC), "IntRegs"), 0b0110, 0b0011); let Inst{23-22} = MajOp; let Inst{20-16} = src1; let Inst{12-8} = src2; let Inst{7-6} = MinOp; let Inst{4-0} = dst; } let hasNewValue = 1 in class T_S3op_shift32 MinOp> : T_S3op_3 ; let hasNewValue = 1, Itinerary = S_3op_tc_2_SLOT23 in class T_S3op_shift32_Sat MinOp> : T_S3op_3 ; class T_S3op_shift64 MinOp> : T_S3op_3 ; class T_S3op_shiftVect MajOp, bits<2> MinOp> : T_S3op_3 ; // Shift by register // Rdd=[asr|lsr|asl|lsl](Rss,Rt) let isCodeGenOnly = 0 in { def S2_asr_r_p : T_S3op_shift64 < "asr", sra, 0b00>; def S2_lsr_r_p : T_S3op_shift64 < "lsr", srl, 0b01>; def S2_asl_r_p : T_S3op_shift64 < "asl", shl, 0b10>; def S2_lsl_r_p : T_S3op_shift64 < "lsl", shl, 0b11>; } // Rd=[asr|lsr|asl|lsl](Rs,Rt) let isCodeGenOnly = 0 in { def S2_asr_r_r : T_S3op_shift32<"asr", sra, 0b00>; def S2_lsr_r_r : T_S3op_shift32<"lsr", srl, 0b01>; def S2_asl_r_r : T_S3op_shift32<"asl", shl, 0b10>; def S2_lsl_r_r : T_S3op_shift32<"lsl", shl, 0b11>; } // Shift by register with saturation // Rd=asr(Rs,Rt):sat // Rd=asl(Rs,Rt):sat let Defs = [USR_OVF], isCodeGenOnly = 0 in { def S2_asr_r_r_sat : T_S3op_shift32_Sat<"asr", 0b00>; def S2_asl_r_r_sat : T_S3op_shift32_Sat<"asl", 0b10>; } //===----------------------------------------------------------------------===// // Template class for 'insert bitfield' instructions //===----------------------------------------------------------------------===// let hasSideEffects = 0 in class T_S3op_insert : SInst <(outs RC:$dst), (ins RC:$src1, RC:$src2, DoubleRegs:$src3), "$dst = "#mnemonic#"($src2, $src3)" , [], "$src1 = $dst", S_3op_tc_1_SLOT23 > { bits<5> dst; bits<5> src2; bits<5> src3; let IClass = 0b1100; let Inst{27-26} = 0b10; let Inst{25-24} = !if(!eq(!cast(RC), "IntRegs"), 0b00, 0b10); let Inst{23} = 0b0; let Inst{20-16} = src2; let Inst{12-8} = src3; let Inst{4-0} = dst; } let hasSideEffects = 0 in class T_S2op_insert RegTyBits, RegisterClass RC, Operand ImmOp> : SInst <(outs RC:$dst), (ins RC:$dst2, RC:$src1, ImmOp:$src2, ImmOp:$src3), "$dst = insert($src1, #$src2, #$src3)", [], "$dst2 = $dst", S_2op_tc_2_SLOT23> { bits<5> dst; bits<5> src1; bits<6> src2; bits<6> src3; bit bit23; bit bit13; string ImmOpStr = !cast(ImmOp); let bit23 = !if (!eq(ImmOpStr, "u6Imm"), src3{5}, 0); let bit13 = !if (!eq(ImmOpStr, "u6Imm"), src2{5}, 0); let IClass = 0b1000; let Inst{27-24} = RegTyBits; let Inst{23} = bit23; let Inst{22-21} = src3{4-3}; let Inst{20-16} = src1; let Inst{13} = bit13; let Inst{12-8} = src2{4-0}; let Inst{7-5} = src3{2-0}; let Inst{4-0} = dst; } // Rx=insert(Rs,Rtt) // Rx=insert(Rs,#u5,#U5) let hasNewValue = 1, isCodeGenOnly = 0 in { def S2_insert_rp : T_S3op_insert <"insert", IntRegs>; def S2_insert : T_S2op_insert <0b1111, IntRegs, u5Imm>; } // Rxx=insert(Rss,Rtt) // Rxx=insert(Rss,#u6,#U6) let isCodeGenOnly = 0 in { def S2_insertp_rp : T_S3op_insert<"insert", DoubleRegs>; def S2_insertp : T_S2op_insert <0b0011, DoubleRegs, u6Imm>; } //===----------------------------------------------------------------------===// // Template class for 'extract bitfield' instructions //===----------------------------------------------------------------------===// let hasNewValue = 1, hasSideEffects = 0 in class T_S3op_extract MinOp> : SInst <(outs IntRegs:$Rd), (ins IntRegs:$Rs, DoubleRegs:$Rtt), "$Rd = "#mnemonic#"($Rs, $Rtt)", [], "", S_3op_tc_2_SLOT23 > { bits<5> Rd; bits<5> Rs; bits<5> Rtt; let IClass = 0b1100; let Inst{27-22} = 0b100100; let Inst{20-16} = Rs; let Inst{12-8} = Rtt; let Inst{7-6} = MinOp; let Inst{4-0} = Rd; } let hasSideEffects = 0 in class T_S2op_extract RegTyBits, RegisterClass RC, Operand ImmOp> : SInst <(outs RC:$dst), (ins RC:$src1, ImmOp:$src2, ImmOp:$src3), "$dst = "#mnemonic#"($src1, #$src2, #$src3)", [], "", S_2op_tc_2_SLOT23> { bits<5> dst; bits<5> src1; bits<6> src2; bits<6> src3; bit bit23; bit bit13; string ImmOpStr = !cast(ImmOp); let bit23 = !if (!eq(ImmOpStr, "u6Imm"), src3{5}, !if (!eq(mnemonic, "extractu"), 0, 1)); let bit13 = !if (!eq(ImmOpStr, "u6Imm"), src2{5}, 0); let IClass = 0b1000; let Inst{27-24} = RegTyBits; let Inst{23} = bit23; let Inst{22-21} = src3{4-3}; let Inst{20-16} = src1; let Inst{13} = bit13; let Inst{12-8} = src2{4-0}; let Inst{7-5} = src3{2-0}; let Inst{4-0} = dst; } // Extract bitfield // Rdd=extractu(Rss,Rtt) // Rdd=extractu(Rss,#u6,#U6) let isCodeGenOnly = 0 in { def S2_extractup_rp : T_S3op_64 < "extractu", 0b00, 0b000, 0>; def S2_extractup : T_S2op_extract <"extractu", 0b0001, DoubleRegs, u6Imm>; } // Rd=extractu(Rs,Rtt) // Rd=extractu(Rs,#u5,#U5) let hasNewValue = 1, isCodeGenOnly = 0 in { def S2_extractu_rp : T_S3op_extract<"extractu", 0b00>; def S2_extractu : T_S2op_extract <"extractu", 0b1101, IntRegs, u5Imm>; } //===----------------------------------------------------------------------===// // :raw for of tableindx[bdhw] insns //===----------------------------------------------------------------------===// let hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in class tableidxRawMinOp> : SInst <(outs IntRegs:$Rx), (ins IntRegs:$_dst_, IntRegs:$Rs, u4Imm:$u4, s6Imm:$S6), "$Rx = "#OpStr#"($Rs, #$u4, #$S6):raw", [], "$Rx = $_dst_" > { bits<5> Rx; bits<5> Rs; bits<4> u4; bits<6> S6; let IClass = 0b1000; let Inst{27-24} = 0b0111; let Inst{23-22} = MinOp; let Inst{21} = u4{3}; let Inst{20-16} = Rs; let Inst{13-8} = S6; let Inst{7-5} = u4{2-0}; let Inst{4-0} = Rx; } let isCodeGenOnly = 0 in { def S2_tableidxb : tableidxRaw<"tableidxb", 0b00>; def S2_tableidxh : tableidxRaw<"tableidxh", 0b01>; def S2_tableidxw : tableidxRaw<"tableidxw", 0b10>; def S2_tableidxd : tableidxRaw<"tableidxd", 0b11>; } // Change the sign of the immediate for Rd=-mpyi(Rs,#u8) def : Pat <(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)), (i32 (M2_mpysin (i32 IntRegs:$src1), u8ImmPred:$src2))>; //===----------------------------------------------------------------------===// // V3 Instructions + //===----------------------------------------------------------------------===// include "HexagonInstrInfoV3.td" //===----------------------------------------------------------------------===// // V3 Instructions - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // V4 Instructions + //===----------------------------------------------------------------------===// include "HexagonInstrInfoV4.td" //===----------------------------------------------------------------------===// // V4 Instructions - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // V5 Instructions + //===----------------------------------------------------------------------===// include "HexagonInstrInfoV5.td" //===----------------------------------------------------------------------===// // V5 Instructions - //===----------------------------------------------------------------------===//