//=- HexagonInstrInfoV5.td - Target Desc. for Hexagon Target -*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Hexagon V5 instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // XTYPE/MPY //===----------------------------------------------------------------------===// //Rdd[+]=vrmpybsu(Rss,Rtt) let Predicates = [HasV5T] in { def M5_vrmpybsu: T_XTYPE_Vect<"vrmpybsu", 0b110, 0b001, 0>; def M5_vrmacbsu: T_XTYPE_Vect_acc<"vrmpybsu", 0b110, 0b001, 0>; //Rdd[+]=vrmpybu(Rss,Rtt) def M5_vrmpybuu: T_XTYPE_Vect<"vrmpybu", 0b100, 0b001, 0>; def M5_vrmacbuu: T_XTYPE_Vect_acc<"vrmpybu", 0b100, 0b001, 0>; def M5_vdmpybsu: T_M2_vmpy<"vdmpybsu", 0b101, 0b001, 0, 0, 1>; def M5_vdmacbsu: T_M2_vmpy_acc_sat <"vdmpybsu", 0b001, 0b001, 0, 0>; } // Vector multiply bytes // Rdd=vmpyb[s]u(Rs,Rt) let Predicates = [HasV5T] in { def M5_vmpybsu: T_XTYPE_mpy64 <"vmpybsu", 0b010, 0b001, 0, 0, 0>; def M5_vmpybuu: T_XTYPE_mpy64 <"vmpybu", 0b100, 0b001, 0, 0, 0>; // Rxx+=vmpyb[s]u(Rs,Rt) def M5_vmacbsu: T_XTYPE_mpy64_acc <"vmpybsu", "+", 0b110, 0b001, 0, 0, 0>; def M5_vmacbuu: T_XTYPE_mpy64_acc <"vmpybu", "+", 0b100, 0b001, 0, 0, 0>; // Rd=vaddhub(Rss,Rtt):sat let hasNewValue = 1, opNewValue = 0 in def A5_vaddhubs: T_S3op_1 <"vaddhub", IntRegs, 0b01, 0b001, 0, 1>; } def S2_asr_i_p_rnd : S_2OpInstImm<"asr", 0b110, 0b111, u6_0Imm, [], 1>, Requires<[HasV5T]> { bits<6> src2; let Inst{13-8} = src2; } let isAsmParserOnly = 1 in def S2_asr_i_p_rnd_goodsyntax : MInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6_0Imm:$src2), "$dst = asrrnd($src1, #$src2)">; def C4_fastcorner9 : T_LOGICAL_2OP<"fastcorner9", 0b000, 0, 0>, Requires<[HasV5T]> { let Inst{13,7,4} = 0b111; } def C4_fastcorner9_not : T_LOGICAL_2OP<"!fastcorner9", 0b000, 0, 0>, Requires<[HasV5T]> { let Inst{20,13,7,4} = 0b1111; } let hasNewValue = 1, validSubTargets = HasV5SubT in def S5_popcountp : ALU64_rr<(outs IntRegs:$Rd), (ins DoubleRegs:$Rss), "$Rd = popcount($Rss)", [], "", S_2op_tc_2_SLOT23>, Requires<[HasV5T]> { bits<5> Rd; bits<5> Rss; let IClass = 0b1000; let Inst{27-21} = 0b1000011; let Inst{7-5} = 0b011; let Inst{4-0} = Rd; let Inst{20-16} = Rss; } let isFP = 1, hasNewValue = 1, opNewValue = 0 in class T_MInstFloat MajOp, bits<3> MinOp> : MInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rd = "#mnemonic#"($Rs, $Rt)", [], "" , M_tc_3or4x_SLOT23 > , Requires<[HasV5T]> { bits<5> Rd; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-24} = 0b1011; let Inst{23-21} = MajOp; let Inst{20-16} = Rs; let Inst{13} = 0b0; let Inst{12-8} = Rt; let Inst{7-5} = MinOp; let Inst{4-0} = Rd; } let isCommutable = 1 in { def F2_sfadd : T_MInstFloat < "sfadd", 0b000, 0b000>; def F2_sfmpy : T_MInstFloat < "sfmpy", 0b010, 0b000>; } def F2_sfsub : T_MInstFloat < "sfsub", 0b000, 0b001>; let Itinerary = M_tc_3x_SLOT23 in { def F2_sfmax : T_MInstFloat < "sfmax", 0b100, 0b000>; def F2_sfmin : T_MInstFloat < "sfmin", 0b100, 0b001>; } let Itinerary = M_tc_3or4x_SLOT23 in { def F2_sffixupn : T_MInstFloat < "sffixupn", 0b110, 0b000>; def F2_sffixupd : T_MInstFloat < "sffixupd", 0b110, 0b001>; } // F2_sfrecipa: Reciprocal approximation for division. let Uses = [USR], isPredicateLate = 1, isFP = 1, hasSideEffects = 0, hasNewValue = 1, Itinerary = M_tc_3or4x_SLOT23 in def F2_sfrecipa: MInst < (outs IntRegs:$Rd, PredRegs:$Pe), (ins IntRegs:$Rs, IntRegs:$Rt), "$Rd, $Pe = sfrecipa($Rs, $Rt)">, Requires<[HasV5T]> { bits<5> Rd; bits<2> Pe; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-21} = 0b1011111; let Inst{20-16} = Rs; let Inst{13} = 0b0; let Inst{12-8} = Rt; let Inst{7} = 0b1; let Inst{6-5} = Pe; let Inst{4-0} = Rd; } // F2_dfcmpeq: Floating point compare for equal. let Uses = [USR], isCompare = 1, isFP = 1 in class T_fcmp MinOp, list pattern = [] > : ALU64Inst <(outs PredRegs:$dst), (ins RC:$src1, RC:$src2), "$dst = "#mnemonic#"($src1, $src2)", pattern, "" , ALU64_tc_2early_SLOT23 > , Requires<[HasV5T]> { bits<2> dst; bits<5> src1; bits<5> src2; let IClass = 0b1101; let Inst{27-21} = 0b0010111; let Inst{20-16} = src1; let Inst{12-8} = src2; let Inst{7-5} = MinOp; let Inst{1-0} = dst; } class T_fcmp64 MinOp> : T_fcmp { let IClass = 0b1101; let Inst{27-21} = 0b0010111; } class T_fcmp32 MinOp> : T_fcmp { let IClass = 0b1100; let Inst{27-21} = 0b0111111; } def F2_dfcmpeq : T_fcmp64<"dfcmp.eq", setoeq, 0b000>; def F2_dfcmpgt : T_fcmp64<"dfcmp.gt", setogt, 0b001>; def F2_dfcmpge : T_fcmp64<"dfcmp.ge", setoge, 0b010>; def F2_dfcmpuo : T_fcmp64<"dfcmp.uo", setuo, 0b011>; def F2_sfcmpge : T_fcmp32<"sfcmp.ge", setoge, 0b000>; def F2_sfcmpuo : T_fcmp32<"sfcmp.uo", setuo, 0b001>; def F2_sfcmpeq : T_fcmp32<"sfcmp.eq", setoeq, 0b011>; def F2_sfcmpgt : T_fcmp32<"sfcmp.gt", setogt, 0b100>; // F2 convert template classes: let Uses = [USR], isFP = 1 in class F2_RDD_RSS_CONVERT MinOp, string chop =""> : SInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss), "$Rdd = "#mnemonic#"($Rss)"#chop, [], "", S_2op_tc_3or4x_SLOT23> { bits<5> Rdd; bits<5> Rss; let IClass = 0b1000; let Inst{27-21} = 0b0000111; let Inst{20-16} = Rss; let Inst{7-5} = MinOp; let Inst{4-0} = Rdd; } let Uses = [USR], isFP = 1 in class F2_RDD_RS_CONVERT MinOp, string chop =""> : SInst <(outs DoubleRegs:$Rdd), (ins IntRegs:$Rs), "$Rdd = "#mnemonic#"($Rs)"#chop, [], "", S_2op_tc_3or4x_SLOT23> { bits<5> Rdd; bits<5> Rs; let IClass = 0b1000; let Inst{27-21} = 0b0100100; let Inst{20-16} = Rs; let Inst{7-5} = MinOp; let Inst{4-0} = Rdd; } let Uses = [USR], isFP = 1, hasNewValue = 1 in class F2_RD_RSS_CONVERT MinOp, string chop =""> : SInst <(outs IntRegs:$Rd), (ins DoubleRegs:$Rss), "$Rd = "#mnemonic#"($Rss)"#chop, [], "", S_2op_tc_3or4x_SLOT23> { bits<5> Rd; bits<5> Rss; let IClass = 0b1000; let Inst{27-24} = 0b1000; let Inst{23-21} = MinOp; let Inst{20-16} = Rss; let Inst{7-5} = 0b001; let Inst{4-0} = Rd; } let Uses = [USR], isFP = 1, hasNewValue = 1 in class F2_RD_RS_CONVERT MajOp, bits<3> MinOp, string chop =""> : SInst <(outs IntRegs:$Rd), (ins IntRegs:$Rs), "$Rd = "#mnemonic#"($Rs)"#chop, [], "", S_2op_tc_3or4x_SLOT23> { bits<5> Rd; bits<5> Rs; let IClass = 0b1000; let Inst{27-24} = 0b1011; let Inst{23-21} = MajOp; let Inst{20-16} = Rs; let Inst{7-5} = MinOp; let Inst{4-0} = Rd; } // Convert single precision to double precision and vice-versa. def F2_conv_sf2df : F2_RDD_RS_CONVERT <"convert_sf2df", 0b000>; def F2_conv_df2sf : F2_RD_RSS_CONVERT <"convert_df2sf", 0b000>; // Convert Integer to Floating Point. def F2_conv_d2sf : F2_RD_RSS_CONVERT <"convert_d2sf", 0b010>; def F2_conv_ud2sf : F2_RD_RSS_CONVERT <"convert_ud2sf", 0b001>; def F2_conv_uw2sf : F2_RD_RS_CONVERT <"convert_uw2sf", 0b001, 0b000>; def F2_conv_w2sf : F2_RD_RS_CONVERT <"convert_w2sf", 0b010, 0b000>; def F2_conv_d2df : F2_RDD_RSS_CONVERT <"convert_d2df", 0b011>; def F2_conv_ud2df : F2_RDD_RSS_CONVERT <"convert_ud2df", 0b010>; def F2_conv_uw2df : F2_RDD_RS_CONVERT <"convert_uw2df", 0b001>; def F2_conv_w2df : F2_RDD_RS_CONVERT <"convert_w2df", 0b010>; // Convert Floating Point to Integer. def F2_conv_df2uw_chop : F2_RD_RSS_CONVERT <"convert_df2uw", 0b101, ":chop">; def F2_conv_df2w_chop : F2_RD_RSS_CONVERT <"convert_df2w", 0b111, ":chop">; def F2_conv_sf2uw_chop : F2_RD_RS_CONVERT <"convert_sf2uw", 0b011, 0b001, ":chop">; def F2_conv_sf2w_chop : F2_RD_RS_CONVERT <"convert_sf2w", 0b100, 0b001, ":chop">; def F2_conv_df2d_chop : F2_RDD_RSS_CONVERT <"convert_df2d", 0b110, ":chop">; def F2_conv_df2ud_chop : F2_RDD_RSS_CONVERT <"convert_df2ud", 0b111, ":chop">; def F2_conv_sf2d_chop : F2_RDD_RS_CONVERT <"convert_sf2d", 0b110, ":chop">; def F2_conv_sf2ud_chop : F2_RDD_RS_CONVERT <"convert_sf2ud", 0b101, ":chop">; // Convert Floating Point to Integer: non-chopped. let AddedComplexity = 20, Predicates = [HasV5T] in { def F2_conv_df2d : F2_RDD_RSS_CONVERT <"convert_df2d", 0b000>; def F2_conv_df2ud : F2_RDD_RSS_CONVERT <"convert_df2ud", 0b001>; def F2_conv_sf2ud : F2_RDD_RS_CONVERT <"convert_sf2ud", 0b011>; def F2_conv_sf2d : F2_RDD_RS_CONVERT <"convert_sf2d", 0b100>; def F2_conv_df2uw : F2_RD_RSS_CONVERT <"convert_df2uw", 0b011>; def F2_conv_df2w : F2_RD_RSS_CONVERT <"convert_df2w", 0b100>; def F2_conv_sf2uw : F2_RD_RS_CONVERT <"convert_sf2uw", 0b011, 0b000>; def F2_conv_sf2w : F2_RD_RS_CONVERT <"convert_sf2w", 0b100, 0b000>; } // Fix up radicand. let Uses = [USR], isFP = 1, hasNewValue = 1 in def F2_sffixupr: SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs), "$Rd = sffixupr($Rs)", [], "" , S_2op_tc_3or4x_SLOT23>, Requires<[HasV5T]> { bits<5> Rd; bits<5> Rs; let IClass = 0b1000; let Inst{27-21} = 0b1011101; let Inst{20-16} = Rs; let Inst{7-5} = 0b000; let Inst{4-0} = Rd; } // F2_sffma: Floating-point fused multiply add. let Uses = [USR], isFP = 1, hasNewValue = 1 in class T_sfmpy_acc : MInst<(outs IntRegs:$Rx), (ins IntRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt), "$Rx "#!if(isSub, "-=","+=")#" sfmpy($Rs, $Rt)"#!if(isLib, ":lib",""), [], "$dst2 = $Rx" , M_tc_3or4x_SLOT23 > , Requires<[HasV5T]> { bits<5> Rx; bits<5> Rs; bits<5> Rt; let IClass = 0b1110; let Inst{27-21} = 0b1111000; let Inst{20-16} = Rs; let Inst{13} = 0b0; let Inst{12-8} = Rt; let Inst{7} = 0b1; let Inst{6} = isLib; let Inst{5} = isSub; let Inst{4-0} = Rx; } def F2_sffma: T_sfmpy_acc <0, 0>; def F2_sffms: T_sfmpy_acc <1, 0>; def F2_sffma_lib: T_sfmpy_acc <0, 1>; def F2_sffms_lib: T_sfmpy_acc <1, 1>; // Floating-point fused multiply add w/ additional scaling (2**pu). let Uses = [USR], isFP = 1, hasNewValue = 1 in def F2_sffma_sc: MInst < (outs IntRegs:$Rx), (ins IntRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt, PredRegs:$Pu), "$Rx += sfmpy($Rs, $Rt, $Pu):scale" , [], "$dst2 = $Rx" , M_tc_3or4x_SLOT23 > , Requires<[HasV5T]> { bits<5> Rx; bits<5> Rs; bits<5> Rt; bits<2> Pu; let IClass = 0b1110; let Inst{27-21} = 0b1111011; let Inst{20-16} = Rs; let Inst{13} = 0b0; let Inst{12-8} = Rt; let Inst{7} = 0b1; let Inst{6-5} = Pu; let Inst{4-0} = Rx; } //===----------------------------------------------------------------------===// // :natural forms of vasrh and vasrhub insns //===----------------------------------------------------------------------===// // S5_asrhub_rnd_sat: Vector arithmetic shift right by immediate with round, // saturate, and pack. let Defs = [USR_OVF], hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in class T_ASRHUB : SInst <(outs IntRegs:$Rd), (ins DoubleRegs:$Rss, u4_0Imm:$u4), "$Rd = vasrhub($Rss, #$u4):"#!if(isSat, "sat", "raw"), [], "", S_2op_tc_2_SLOT23>, Requires<[HasV5T]> { bits<5> Rd; bits<5> Rss; bits<4> u4; let IClass = 0b1000; let Inst{27-21} = 0b1000011; let Inst{20-16} = Rss; let Inst{13-12} = 0b00; let Inst{11-8} = u4; let Inst{7-6} = 0b10; let Inst{5} = isSat; let Inst{4-0} = Rd; } def S5_asrhub_rnd_sat : T_ASRHUB <0>; def S5_asrhub_sat : T_ASRHUB <1>; let isAsmParserOnly = 1 in def S5_asrhub_rnd_sat_goodsyntax : SInst <(outs IntRegs:$Rd), (ins DoubleRegs:$Rss, u4_0Imm:$u4), "$Rd = vasrhub($Rss, #$u4):rnd:sat">, Requires<[HasV5T]>; // S5_vasrhrnd: Vector arithmetic shift right by immediate with round. let hasSideEffects = 0 in def S5_vasrhrnd : SInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, u4_0Imm:$u4), "$Rdd = vasrh($Rss, #$u4):raw">, Requires<[HasV5T]> { bits<5> Rdd; bits<5> Rss; bits<4> u4; let IClass = 0b1000; let Inst{27-21} = 0b0000001; let Inst{20-16} = Rss; let Inst{13-12} = 0b00; let Inst{11-8} = u4; let Inst{7-5} = 0b000; let Inst{4-0} = Rdd; } let isAsmParserOnly = 1 in def S5_vasrhrnd_goodsyntax : SInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, u4_0Imm:$u4), "$Rdd = vasrh($Rss,#$u4):rnd">, Requires<[HasV5T]>; // Floating point reciprocal square root approximation let Uses = [USR], isPredicateLate = 1, isFP = 1, hasSideEffects = 0, hasNewValue = 1, opNewValue = 0, validSubTargets = HasV5SubT in def F2_sfinvsqrta: SInst < (outs IntRegs:$Rd, PredRegs:$Pe), (ins IntRegs:$Rs), "$Rd, $Pe = sfinvsqrta($Rs)" > , Requires<[HasV5T]> { bits<5> Rd; bits<2> Pe; bits<5> Rs; let IClass = 0b1000; let Inst{27-21} = 0b1011111; let Inst{20-16} = Rs; let Inst{7} = 0b0; let Inst{6-5} = Pe; let Inst{4-0} = Rd; } // Complex multiply 32x16 let Defs = [USR_OVF], Itinerary = S_3op_tc_3x_SLOT23 in { def M4_cmpyi_whc : T_S3op_8<"cmpyiwh", 0b101, 1, 1, 1, 1>; def M4_cmpyr_whc : T_S3op_8<"cmpyrwh", 0b111, 1, 1, 1, 1>; } // Classify floating-point value let Uses = [USR], isFP = 1 in def F2_sfclass : T_TEST_BIT_IMM<"sfclass", 0b111>, Requires<[HasV5T]>; let Uses = [USR], isFP = 1 in def F2_dfclass: ALU64Inst<(outs PredRegs:$Pd), (ins DoubleRegs:$Rss, u5_0Imm:$u5), "$Pd = dfclass($Rss, #$u5)", [], "" , ALU64_tc_2early_SLOT23 > , Requires<[HasV5T]> { bits<2> Pd; bits<5> Rss; bits<5> u5; let IClass = 0b1101; let Inst{27-21} = 0b1100100; let Inst{20-16} = Rss; let Inst{12-10} = 0b000; let Inst{9-5} = u5; let Inst{4-3} = 0b10; let Inst{1-0} = Pd; } // Instructions to create floating point constant class T_fimm RegType, bit isNeg> : ALU64Inst<(outs RC:$dst), (ins u10_0Imm:$src), "$dst = "#mnemonic#"(#$src)"#!if(isNeg, ":neg", ":pos"), [], "", ALU64_tc_2_SLOT23>, Requires<[HasV5T]> { bits<5> dst; bits<10> src; let IClass = 0b1101; let Inst{27-24} = RegType; let Inst{23} = 0b0; let Inst{22} = isNeg; let Inst{21} = src{9}; let Inst{13-5} = src{8-0}; let Inst{4-0} = dst; } let hasNewValue = 1, opNewValue = 0 in { def F2_sfimm_p : T_fimm <"sfmake", IntRegs, 0b0110, 0>; def F2_sfimm_n : T_fimm <"sfmake", IntRegs, 0b0110, 1>; } def F2_dfimm_p : T_fimm <"dfmake", DoubleRegs, 0b1001, 0>; def F2_dfimm_n : T_fimm <"dfmake", DoubleRegs, 0b1001, 1>;