//===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // MachineScheduler schedules machine instructions after phi elimination. It // preserves LiveIntervals so it can be invoked before register allocation. // //===----------------------------------------------------------------------===// #include "HexagonMachineScheduler.h" #include "HexagonSubtarget.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/ScheduleDAGMutation.h" #include "llvm/IR/Function.h" #include #include static cl::opt IgnoreBBRegPressure("ignore-bb-reg-pressure", cl::Hidden, cl::ZeroOrMore, cl::init(false)); static cl::opt SchedPredsCloser("sched-preds-closer", cl::Hidden, cl::ZeroOrMore, cl::init(true)); static cl::opt SchedDebugVerboseLevel("misched-verbose-level", cl::Hidden, cl::ZeroOrMore, cl::init(1)); static cl::opt TopUseShorterTie("top-use-shorter-tie", cl::Hidden, cl::ZeroOrMore, cl::init(false)); static cl::opt BotUseShorterTie("bot-use-shorter-tie", cl::Hidden, cl::ZeroOrMore, cl::init(false)); static cl::opt DisableTCTie("disable-tc-tie", cl::Hidden, cl::ZeroOrMore, cl::init(false)); static cl::opt SchedRetvalOptimization("sched-retval-optimization", cl::Hidden, cl::ZeroOrMore, cl::init(true)); // Check if the scheduler should penalize instructions that are available to // early due to a zero-latency dependence. static cl::opt CheckEarlyAvail("check-early-avail", cl::Hidden, cl::ZeroOrMore, cl::init(true)); using namespace llvm; #define DEBUG_TYPE "misched" namespace { class HexagonCallMutation : public ScheduleDAGMutation { public: void apply(ScheduleDAGInstrs *DAG) override; private: bool shouldTFRICallBind(const HexagonInstrInfo &HII, const SUnit &Inst1, const SUnit &Inst2) const; }; } // end anonymous namespace // Check if a call and subsequent A2_tfrpi instructions should maintain // scheduling affinity. We are looking for the TFRI to be consumed in // the next instruction. This should help reduce the instances of // double register pairs being allocated and scheduled before a call // when not used until after the call. This situation is exacerbated // by the fact that we allocate the pair from the callee saves list, // leading to excess spills and restores. bool HexagonCallMutation::shouldTFRICallBind(const HexagonInstrInfo &HII, const SUnit &Inst1, const SUnit &Inst2) const { if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi) return false; // TypeXTYPE are 64 bit operations. unsigned Type = HII.getType(*Inst2.getInstr()); if (Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op || Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM) return true; return false; } void HexagonCallMutation::apply(ScheduleDAGInstrs *DAG) { SUnit* LastSequentialCall = nullptr; unsigned VRegHoldingRet = 0; unsigned RetRegister; SUnit* LastUseOfRet = nullptr; auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo(); auto &HII = *DAG->MF.getSubtarget().getInstrInfo(); // Currently we only catch the situation when compare gets scheduled // before preceding call. for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) { // Remember the call. if (DAG->SUnits[su].getInstr()->isCall()) LastSequentialCall = &DAG->SUnits[su]; // Look for a compare that defines a predicate. else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall) DAG->SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier)); // Look for call and tfri* instructions. else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 && shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1])) DAG->SUnits[su].addPred(SDep(&DAG->SUnits[su-1], SDep::Barrier)); // Prevent redundant register copies between two calls, which are caused by // both the return value and the argument for the next call being in %R0. // Example: // 1: // 2: %VregX = COPY %R0 // 3: // 4: %R0 = ... // 5: // The scheduler would often swap 3 and 4, so an additional register is // needed. This code inserts a Barrier dependence between 3 & 4 to prevent // this. The same applies for %D0 and %V0/%W0, which are also handled. else if (SchedRetvalOptimization) { const MachineInstr *MI = DAG->SUnits[su].getInstr(); if (MI->isCopy() && (MI->readsRegister(Hexagon::R0, &TRI) || MI->readsRegister(Hexagon::V0, &TRI))) { // %vregX = COPY %R0 VRegHoldingRet = MI->getOperand(0).getReg(); RetRegister = MI->getOperand(1).getReg(); LastUseOfRet = nullptr; } else if (VRegHoldingRet && MI->readsVirtualRegister(VRegHoldingRet)) // LastUseOfRet = &DAG->SUnits[su]; else if (LastUseOfRet && MI->definesRegister(RetRegister, &TRI)) // %R0 = ... DAG->SUnits[su].addPred(SDep(LastUseOfRet, SDep::Barrier)); } } } /// Save the last formed packet void VLIWResourceModel::savePacket() { OldPacket = Packet; } /// Check if scheduling of this SU is possible /// in the current packet. /// It is _not_ precise (statefull), it is more like /// another heuristic. Many corner cases are figured /// empirically. bool VLIWResourceModel::isResourceAvailable(SUnit *SU) { if (!SU || !SU->getInstr()) return false; // First see if the pipeline could receive this instruction // in the current cycle. switch (SU->getInstr()->getOpcode()) { default: if (!ResourcesModel->canReserveResources(*SU->getInstr())) return false; case TargetOpcode::EXTRACT_SUBREG: case TargetOpcode::INSERT_SUBREG: case TargetOpcode::SUBREG_TO_REG: case TargetOpcode::REG_SEQUENCE: case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::COPY: case TargetOpcode::INLINEASM: break; } MachineFunction &MF = *SU->getInstr()->getParent()->getParent(); auto &QII = *MF.getSubtarget().getInstrInfo(); // Now see if there are no other dependencies to instructions already // in the packet. for (unsigned i = 0, e = Packet.size(); i != e; ++i) { if (Packet[i]->Succs.size() == 0) continue; // Enable .cur formation. if (QII.mayBeCurLoad(*Packet[i]->getInstr())) continue; for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(), E = Packet[i]->Succs.end(); I != E; ++I) { // Since we do not add pseudos to packets, might as well // ignore order dependencies. if (I->isCtrl()) continue; if (I->getSUnit() == SU) return false; } } return true; } /// Keep track of available resources. bool VLIWResourceModel::reserveResources(SUnit *SU) { bool startNewCycle = false; // Artificially reset state. if (!SU) { ResourcesModel->clearResources(); savePacket(); Packet.clear(); TotalPackets++; return false; } // If this SU does not fit in the packet // start a new one. if (!isResourceAvailable(SU)) { ResourcesModel->clearResources(); savePacket(); Packet.clear(); TotalPackets++; startNewCycle = true; } switch (SU->getInstr()->getOpcode()) { default: ResourcesModel->reserveResources(*SU->getInstr()); break; case TargetOpcode::EXTRACT_SUBREG: case TargetOpcode::INSERT_SUBREG: case TargetOpcode::SUBREG_TO_REG: case TargetOpcode::REG_SEQUENCE: case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::KILL: case TargetOpcode::CFI_INSTRUCTION: case TargetOpcode::EH_LABEL: case TargetOpcode::COPY: case TargetOpcode::INLINEASM: break; } Packet.push_back(SU); #ifndef NDEBUG DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n"); for (unsigned i = 0, e = Packet.size(); i != e; ++i) { DEBUG(dbgs() << "\t[" << i << "] SU("); DEBUG(dbgs() << Packet[i]->NodeNum << ")\t"); DEBUG(Packet[i]->getInstr()->dump()); } #endif // If packet is now full, reset the state so in the next cycle // we start fresh. if (Packet.size() >= SchedModel->getIssueWidth()) { ResourcesModel->clearResources(); savePacket(); Packet.clear(); TotalPackets++; startNewCycle = true; } return startNewCycle; } /// schedule - Called back from MachineScheduler::runOnMachineFunction /// after setting up the current scheduling region. [RegionBegin, RegionEnd) /// only includes instructions that have DAG nodes, not scheduling boundaries. void VLIWMachineScheduler::schedule() { DEBUG(dbgs() << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber() << " " << BB->getName() << " in_func " << BB->getParent()->getFunction()->getName() << " at loop depth " << MLI->getLoopDepth(BB) << " \n"); buildDAGWithRegPressure(); SmallVector TopRoots, BotRoots; findRootsAndBiasEdges(TopRoots, BotRoots); // Initialize the strategy before modifying the DAG. SchedImpl->initialize(this); DEBUG(unsigned maxH = 0; for (unsigned su = 0, e = SUnits.size(); su != e; ++su) if (SUnits[su].getHeight() > maxH) maxH = SUnits[su].getHeight(); dbgs() << "Max Height " << maxH << "\n";); DEBUG(unsigned maxD = 0; for (unsigned su = 0, e = SUnits.size(); su != e; ++su) if (SUnits[su].getDepth() > maxD) maxD = SUnits[su].getDepth(); dbgs() << "Max Depth " << maxD << "\n";); DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) SUnits[su].dumpAll(this)); initQueues(TopRoots, BotRoots); bool IsTopNode = false; while (true) { DEBUG(dbgs() << "** VLIWMachineScheduler::schedule picking next node\n"); SUnit *SU = SchedImpl->pickNode(IsTopNode); if (!SU) break; if (!checkSchedLimit()) break; scheduleMI(SU, IsTopNode); updateQueues(SU, IsTopNode); // Notify the scheduling strategy after updating the DAG. SchedImpl->schedNode(SU, IsTopNode); } assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); placeDebugValues(); DEBUG({ unsigned BBNum = begin()->getParent()->getNumber(); dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; dumpSchedule(); dbgs() << '\n'; }); } void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) { DAG = static_cast(dag); SchedModel = DAG->getSchedModel(); Top.init(DAG, SchedModel); Bot.init(DAG, SchedModel); // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or // are disabled, then these HazardRecs will be disabled. const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries(); const TargetSubtargetInfo &STI = DAG->MF.getSubtarget(); const TargetInstrInfo *TII = STI.getInstrInfo(); delete Top.HazardRec; delete Bot.HazardRec; Top.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG); Bot.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG); delete Top.ResourceModel; delete Bot.ResourceModel; Top.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel()); Bot.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel()); assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) && "-misched-topdown incompatible with -misched-bottomup"); DAG->addMutation(make_unique()); DAG->addMutation(make_unique()); } void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) { if (SU->isScheduled) return; for (const SDep &PI : SU->Preds) { unsigned PredReadyCycle = PI.getSUnit()->TopReadyCycle; unsigned MinLatency = PI.getLatency(); #ifndef NDEBUG Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); #endif if (SU->TopReadyCycle < PredReadyCycle + MinLatency) SU->TopReadyCycle = PredReadyCycle + MinLatency; } Top.releaseNode(SU, SU->TopReadyCycle); } void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) { if (SU->isScheduled) return; assert(SU->getInstr() && "Scheduled SUnit must have instr"); for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; unsigned MinLatency = I->getLatency(); #ifndef NDEBUG Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); #endif if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) SU->BotReadyCycle = SuccReadyCycle + MinLatency; } Bot.releaseNode(SU, SU->BotReadyCycle); } /// Does this SU have a hazard within the current instruction group. /// /// The scheduler supports two modes of hazard recognition. The first is the /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that /// supports highly complicated in-order reservation tables /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. /// /// The second is a streamlined mechanism that checks for hazards based on /// simple counters that the scheduler itself maintains. It explicitly checks /// for instruction dispatch limitations, including the number of micro-ops that /// can dispatch per cycle. /// /// TODO: Also check whether the SU must start a new group. bool ConvergingVLIWScheduler::VLIWSchedBoundary::checkHazard(SUnit *SU) { if (HazardRec->isEnabled()) return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); if (IssueCount + uops > SchedModel->getIssueWidth()) return true; return false; } void ConvergingVLIWScheduler::VLIWSchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { if (ReadyCycle < MinReadyCycle) MinReadyCycle = ReadyCycle; // Check for interlocks first. For the purpose of other heuristics, an // instruction that cannot issue appears as if it's not in the ReadyQueue. if (ReadyCycle > CurrCycle || checkHazard(SU)) Pending.push(SU); else Available.push(SU); } /// Move the boundary of scheduled code by one cycle. void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpCycle() { unsigned Width = SchedModel->getIssueWidth(); IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle); if (!HazardRec->isEnabled()) { // Bypass HazardRec virtual calls. CurrCycle = NextCycle; } else { // Bypass getHazardType calls in case of long latency. for (; CurrCycle != NextCycle; ++CurrCycle) { if (isTop()) HazardRec->AdvanceCycle(); else HazardRec->RecedeCycle(); } } CheckPending = true; DEBUG(dbgs() << "*** Next cycle " << Available.getName() << " cycle " << CurrCycle << '\n'); } /// Move the boundary of scheduled code by one SUnit. void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpNode(SUnit *SU) { bool startNewCycle = false; // Update the reservation table. if (HazardRec->isEnabled()) { if (!isTop() && SU->isCall) { // Calls are scheduled with their preceding instructions. For bottom-up // scheduling, clear the pipeline state before emitting. HazardRec->Reset(); } HazardRec->EmitInstruction(SU); } // Update DFA model. startNewCycle = ResourceModel->reserveResources(SU); // Check the instruction group dispatch limit. // TODO: Check if this SU must end a dispatch group. IssueCount += SchedModel->getNumMicroOps(SU->getInstr()); if (startNewCycle) { DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n'); bumpCycle(); } else DEBUG(dbgs() << "*** IssueCount " << IssueCount << " at cycle " << CurrCycle << '\n'); } /// Release pending ready nodes in to the available queue. This makes them /// visible to heuristics. void ConvergingVLIWScheduler::VLIWSchedBoundary::releasePending() { // If the available queue is empty, it is safe to reset MinReadyCycle. if (Available.empty()) MinReadyCycle = UINT_MAX; // Check to see if any of the pending instructions are ready to issue. If // so, add them to the available queue. for (unsigned i = 0, e = Pending.size(); i != e; ++i) { SUnit *SU = *(Pending.begin()+i); unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; if (ReadyCycle < MinReadyCycle) MinReadyCycle = ReadyCycle; if (ReadyCycle > CurrCycle) continue; if (checkHazard(SU)) continue; Available.push(SU); Pending.remove(Pending.begin()+i); --i; --e; } CheckPending = false; } /// Remove SU from the ready set for this boundary. void ConvergingVLIWScheduler::VLIWSchedBoundary::removeReady(SUnit *SU) { if (Available.isInQueue(SU)) Available.remove(Available.find(SU)); else { assert(Pending.isInQueue(SU) && "bad ready count"); Pending.remove(Pending.find(SU)); } } /// If this queue only has one ready candidate, return it. As a side effect, /// advance the cycle until at least one node is ready. If multiple instructions /// are ready, return NULL. SUnit *ConvergingVLIWScheduler::VLIWSchedBoundary::pickOnlyChoice() { if (CheckPending) releasePending(); for (unsigned i = 0; Available.empty(); ++i) { assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && "permanent hazard"); (void)i; ResourceModel->reserveResources(nullptr); bumpCycle(); releasePending(); } if (Available.size() == 1) return *Available.begin(); return nullptr; } #ifndef NDEBUG void ConvergingVLIWScheduler::traceCandidate(const char *Label, const ReadyQueue &Q, SUnit *SU, int Cost, PressureChange P) { dbgs() << Label << " " << Q.getName() << " "; if (P.isValid()) dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":" << P.getUnitInc() << " "; else dbgs() << " "; dbgs() << "cost(" << Cost << ")\t"; SU->dump(DAG); } // Very detailed queue dump, to be used with higher verbosity levels. void ConvergingVLIWScheduler::readyQueueVerboseDump( const RegPressureTracker &RPTracker, SchedCandidate &Candidate, ReadyQueue &Q) { RegPressureTracker &TempTracker = const_cast(RPTracker); dbgs() << ">>> " << Q.getName() << "\n"; for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { RegPressureDelta RPDelta; TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta, DAG->getRegionCriticalPSets(), DAG->getRegPressure().MaxSetPressure); std::stringstream dbgstr; dbgstr << "SU(" << std::setw(3) << (*I)->NodeNum << ")"; dbgs() << dbgstr.str(); SchedulingCost(Q, *I, Candidate, RPDelta, true); dbgs() << "\t"; (*I)->getInstr()->dump(); } dbgs() << "\n"; } #endif /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor /// of SU, return it, otherwise return null. static SUnit *getSingleUnscheduledPred(SUnit *SU) { SUnit *OnlyAvailablePred = nullptr; for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { SUnit &Pred = *I->getSUnit(); if (!Pred.isScheduled) { // We found an available, but not scheduled, predecessor. If it's the // only one we have found, keep track of it... otherwise give up. if (OnlyAvailablePred && OnlyAvailablePred != &Pred) return nullptr; OnlyAvailablePred = &Pred; } } return OnlyAvailablePred; } /// getSingleUnscheduledSucc - If there is exactly one unscheduled successor /// of SU, return it, otherwise return null. static SUnit *getSingleUnscheduledSucc(SUnit *SU) { SUnit *OnlyAvailableSucc = nullptr; for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { SUnit &Succ = *I->getSUnit(); if (!Succ.isScheduled) { // We found an available, but not scheduled, successor. If it's the // only one we have found, keep track of it... otherwise give up. if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ) return nullptr; OnlyAvailableSucc = &Succ; } } return OnlyAvailableSucc; } // Constants used to denote relative importance of // heuristic components for cost computation. static const unsigned PriorityOne = 200; static const unsigned PriorityTwo = 50; static const unsigned PriorityThree = 75; static const unsigned ScaleTwo = 10; static const unsigned FactorOne = 2; /// Single point to compute overall scheduling cost. /// TODO: More heuristics will be used soon. int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU, SchedCandidate &Candidate, RegPressureDelta &Delta, bool verbose) { // Initial trivial priority. int ResCount = 1; // Do not waste time on a node that is already scheduled. if (!SU || SU->isScheduled) return ResCount; MachineInstr &Instr = *SU->getInstr(); DEBUG(if (verbose) dbgs() << ((Q.getID() == TopQID) ? "(top|" : "(bot|")); // Forced priority is high. if (SU->isScheduleHigh) { ResCount += PriorityOne; DEBUG(dbgs() << "H|"); } // Critical path first. if (Q.getID() == TopQID) { ResCount += (SU->getHeight() * ScaleTwo); DEBUG(if (verbose) { std::stringstream dbgstr; dbgstr << "h" << std::setw(3) << SU->getHeight() << "|"; dbgs() << dbgstr.str(); }); // If resources are available for it, multiply the // chance of scheduling. if (Top.ResourceModel->isResourceAvailable(SU)) { ResCount <<= FactorOne; ResCount += PriorityThree; DEBUG(if (verbose) dbgs() << "A|"); } else DEBUG(if (verbose) dbgs() << " |"); } else { ResCount += (SU->getDepth() * ScaleTwo); DEBUG(if (verbose) { std::stringstream dbgstr; dbgstr << "d" << std::setw(3) << SU->getDepth() << "|"; dbgs() << dbgstr.str(); }); // If resources are available for it, multiply the // chance of scheduling. if (Bot.ResourceModel->isResourceAvailable(SU)) { ResCount <<= FactorOne; ResCount += PriorityThree; DEBUG(if (verbose) dbgs() << "A|"); } else DEBUG(if (verbose) dbgs() << " |"); } unsigned NumNodesBlocking = 0; if (Q.getID() == TopQID) { // How many SUs does it block from scheduling? // Look at all of the successors of this node. // Count the number of nodes that // this node is the sole unscheduled node for. for (const SDep &SI : SU->Succs) if (getSingleUnscheduledPred(SI.getSUnit()) == SU) ++NumNodesBlocking; } else { // How many unscheduled predecessors block this node? for (const SDep &PI : SU->Preds) if (getSingleUnscheduledSucc(PI.getSUnit()) == SU) ++NumNodesBlocking; } ResCount += (NumNodesBlocking * ScaleTwo); DEBUG(if (verbose) { std::stringstream dbgstr; dbgstr << "blk " << std::setw(2) << NumNodesBlocking << ")|"; dbgs() << dbgstr.str(); }); // Factor in reg pressure as a heuristic. if (!IgnoreBBRegPressure) { // Decrease priority by the amount that register pressure exceeds the limit. ResCount -= (Delta.Excess.getUnitInc()*PriorityOne); // Decrease priority if register pressure exceeds the limit. ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityOne); // Decrease priority slightly if register pressure would increase over the // current maximum. ResCount -= (Delta.CurrentMax.getUnitInc()*PriorityTwo); DEBUG(if (verbose) { dbgs() << "RP " << Delta.Excess.getUnitInc() << "/" << Delta.CriticalMax.getUnitInc() <<"/" << Delta.CurrentMax.getUnitInc() << ")|"; }); } // Give a little extra priority to a .cur instruction if there is a resource // available for it. auto &QST = DAG->MF.getSubtarget(); auto &QII = *QST.getInstrInfo(); if (SU->isInstr() && QII.mayBeCurLoad(*SU->getInstr())) { if (Q.getID() == TopQID && Top.ResourceModel->isResourceAvailable(SU)) { ResCount += PriorityTwo; DEBUG(if (verbose) dbgs() << "C|"); } else if (Q.getID() == BotQID && Bot.ResourceModel->isResourceAvailable(SU)) { ResCount += PriorityTwo; DEBUG(if (verbose) dbgs() << "C|"); } } // Give preference to a zero latency instruction if the dependent // instruction is in the current packet. if (Q.getID() == TopQID) { for (const SDep &PI : SU->Preds) { if (!PI.getSUnit()->getInstr()->isPseudo() && PI.isAssignedRegDep() && PI.getLatency() == 0 && Top.ResourceModel->isInPacket(PI.getSUnit())) { ResCount += PriorityThree; DEBUG(if (verbose) dbgs() << "Z|"); } } } else { for (const SDep &SI : SU->Succs) { if (!SI.getSUnit()->getInstr()->isPseudo() && SI.isAssignedRegDep() && SI.getLatency() == 0 && Bot.ResourceModel->isInPacket(SI.getSUnit())) { ResCount += PriorityThree; DEBUG(if (verbose) dbgs() << "Z|"); } } } // Give less preference to an instruction that will cause a stall with // an instruction in the previous packet. if (QII.isHVXVec(Instr)) { // Check for stalls in the previous packet. if (Q.getID() == TopQID) { for (auto J : Top.ResourceModel->OldPacket) if (QII.producesStall(*J->getInstr(), Instr)) ResCount -= PriorityOne; } else { for (auto J : Bot.ResourceModel->OldPacket) if (QII.producesStall(Instr, *J->getInstr())) ResCount -= PriorityOne; } } // If the instruction has a non-zero latency dependence with an instruction in // the current packet, then it should not be scheduled yet. The case occurs // when the dependent instruction is scheduled in a new packet, so the // scheduler updates the current cycle and pending instructions become // available. if (CheckEarlyAvail) { if (Q.getID() == TopQID) { for (const auto &PI : SU->Preds) { if (PI.getLatency() > 0 && Top.ResourceModel->isInPacket(PI.getSUnit())) { ResCount -= PriorityOne; DEBUG(if (verbose) dbgs() << "D|"); } } } else { for (const auto &SI : SU->Succs) { if (SI.getLatency() > 0 && Bot.ResourceModel->isInPacket(SI.getSUnit())) { ResCount -= PriorityOne; DEBUG(if (verbose) dbgs() << "D|"); } } } } DEBUG(if (verbose) { std::stringstream dbgstr; dbgstr << "Total " << std::setw(4) << ResCount << ")"; dbgs() << dbgstr.str(); }); return ResCount; } /// Pick the best candidate from the top queue. /// /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during /// DAG building. To adjust for the current scheduling location we need to /// maintain the number of vreg uses remaining to be top-scheduled. ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler:: pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker, SchedCandidate &Candidate) { DEBUG(if (SchedDebugVerboseLevel > 1) readyQueueVerboseDump(RPTracker, Candidate, Q); else Q.dump();); // getMaxPressureDelta temporarily modifies the tracker. RegPressureTracker &TempTracker = const_cast(RPTracker); // BestSU remains NULL if no top candidates beat the best existing candidate. CandResult FoundCandidate = NoCand; for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { RegPressureDelta RPDelta; TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta, DAG->getRegionCriticalPSets(), DAG->getRegPressure().MaxSetPressure); int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false); // Initialize the candidate if needed. if (!Candidate.SU) { DEBUG(traceCandidate("DCAND", Q, *I, CurrentCost)); Candidate.SU = *I; Candidate.RPDelta = RPDelta; Candidate.SCost = CurrentCost; FoundCandidate = NodeOrder; continue; } // Best cost. if (CurrentCost > Candidate.SCost) { DEBUG(traceCandidate("CCAND", Q, *I, CurrentCost)); Candidate.SU = *I; Candidate.RPDelta = RPDelta; Candidate.SCost = CurrentCost; FoundCandidate = BestCost; continue; } // Tie breaker using Timing Class. if (!DisableTCTie) { auto &QST = DAG->MF.getSubtarget(); auto &QII = *QST.getInstrInfo(); const MachineInstr *MI = (*I)->getInstr(); const MachineInstr *CandI = Candidate.SU->getInstr(); const InstrItineraryData *InstrItins = QST.getInstrItineraryData(); unsigned InstrLatency = QII.getInstrTimingClassLatency(InstrItins, *MI); unsigned CandLatency = QII.getInstrTimingClassLatency(InstrItins, *CandI); DEBUG(dbgs() << "TC Tie Breaker Cand: " << CandLatency << " Instr:" << InstrLatency << "\n" << *MI << *CandI << "\n"); if (Q.getID() == TopQID && CurrentCost == Candidate.SCost) { if (InstrLatency < CandLatency && TopUseShorterTie) { Candidate.SU = *I; Candidate.RPDelta = RPDelta; Candidate.SCost = CurrentCost; FoundCandidate = BestCost; DEBUG(dbgs() << "Used top shorter tie breaker\n"); continue; } else if (InstrLatency > CandLatency && !TopUseShorterTie) { Candidate.SU = *I; Candidate.RPDelta = RPDelta; Candidate.SCost = CurrentCost; FoundCandidate = BestCost; DEBUG(dbgs() << "Used top longer tie breaker\n"); continue; } } else if (Q.getID() == BotQID && CurrentCost == Candidate.SCost) { if (InstrLatency < CandLatency && BotUseShorterTie) { Candidate.SU = *I; Candidate.RPDelta = RPDelta; Candidate.SCost = CurrentCost; FoundCandidate = BestCost; DEBUG(dbgs() << "Used Bot shorter tie breaker\n"); continue; } else if (InstrLatency > CandLatency && !BotUseShorterTie) { Candidate.SU = *I; Candidate.RPDelta = RPDelta; Candidate.SCost = CurrentCost; FoundCandidate = BestCost; DEBUG(dbgs() << "Used Bot longer tie breaker\n"); continue; } } } if (CurrentCost == Candidate.SCost) { if ((Q.getID() == TopQID && (*I)->Succs.size() > Candidate.SU->Succs.size()) || (Q.getID() == BotQID && (*I)->Preds.size() < Candidate.SU->Preds.size())) { DEBUG(traceCandidate("SPCAND", Q, *I, CurrentCost)); Candidate.SU = *I; Candidate.RPDelta = RPDelta; Candidate.SCost = CurrentCost; FoundCandidate = BestCost; continue; } } // Fall through to original instruction order. // Only consider node order if Candidate was chosen from this Q. if (FoundCandidate == NoCand) continue; } return FoundCandidate; } /// Pick the best candidate node from either the top or bottom queue. SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) { // Schedule as far as possible in the direction of no choice. This is most // efficient, but also provides the best heuristics for CriticalPSets. if (SUnit *SU = Bot.pickOnlyChoice()) { DEBUG(dbgs() << "Picked only Bottom\n"); IsTopNode = false; return SU; } if (SUnit *SU = Top.pickOnlyChoice()) { DEBUG(dbgs() << "Picked only Top\n"); IsTopNode = true; return SU; } SchedCandidate BotCand; // Prefer bottom scheduling when heuristics are silent. CandResult BotResult = pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand); assert(BotResult != NoCand && "failed to find the first candidate"); // If either Q has a single candidate that provides the least increase in // Excess pressure, we can immediately schedule from that Q. // // RegionCriticalPSets summarizes the pressure within the scheduled region and // affects picking from either Q. If scheduling in one direction must // increase pressure for one of the excess PSets, then schedule in that // direction first to provide more freedom in the other direction. if (BotResult == SingleExcess || BotResult == SingleCritical) { DEBUG(dbgs() << "Prefered Bottom Node\n"); IsTopNode = false; return BotCand.SU; } // Check if the top Q has a better candidate. SchedCandidate TopCand; CandResult TopResult = pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand); assert(TopResult != NoCand && "failed to find the first candidate"); if (TopResult == SingleExcess || TopResult == SingleCritical) { DEBUG(dbgs() << "Prefered Top Node\n"); IsTopNode = true; return TopCand.SU; } // If either Q has a single candidate that minimizes pressure above the // original region's pressure pick it. if (BotResult == SingleMax) { DEBUG(dbgs() << "Prefered Bottom Node SingleMax\n"); IsTopNode = false; return BotCand.SU; } if (TopResult == SingleMax) { DEBUG(dbgs() << "Prefered Top Node SingleMax\n"); IsTopNode = true; return TopCand.SU; } if (TopCand.SCost > BotCand.SCost) { DEBUG(dbgs() << "Prefered Top Node Cost\n"); IsTopNode = true; return TopCand.SU; } // Otherwise prefer the bottom candidate in node order. DEBUG(dbgs() << "Prefered Bottom in Node order\n"); IsTopNode = false; return BotCand.SU; } /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) { if (DAG->top() == DAG->bottom()) { assert(Top.Available.empty() && Top.Pending.empty() && Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); return nullptr; } SUnit *SU; if (llvm::ForceTopDown) { SU = Top.pickOnlyChoice(); if (!SU) { SchedCandidate TopCand; CandResult TopResult = pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand); assert(TopResult != NoCand && "failed to find the first candidate"); (void)TopResult; SU = TopCand.SU; } IsTopNode = true; } else if (llvm::ForceBottomUp) { SU = Bot.pickOnlyChoice(); if (!SU) { SchedCandidate BotCand; CandResult BotResult = pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand); assert(BotResult != NoCand && "failed to find the first candidate"); (void)BotResult; SU = BotCand.SU; } IsTopNode = false; } else { SU = pickNodeBidrectional(IsTopNode); } if (SU->isTopReady()) Top.removeReady(SU); if (SU->isBottomReady()) Bot.removeReady(SU); DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom") << " Scheduling Instruction in cycle " << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n'; SU->dump(DAG)); return SU; } /// Update the scheduler's state after scheduling a node. This is the same node /// that was just returned by pickNode(). However, VLIWMachineScheduler needs /// to update it's state based on the current cycle before MachineSchedStrategy /// does. void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) { if (IsTopNode) { SU->TopReadyCycle = Top.CurrCycle; Top.bumpNode(SU); } else { SU->BotReadyCycle = Bot.CurrCycle; Bot.bumpNode(SU); } }