//===- HexagonVectorLoopCarriedReuse.cpp ----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass removes the computation of provably redundant expressions that have // been computed earlier in a previous iteration. It relies on the use of PHIs // to identify loop carried dependences. This is scalar replacement for vector // types. // //----------------------------------------------------------------------------- // Motivation: Consider the case where we have the following loop structure. // // Loop: // t0 = a[i]; // t1 = f(t0); // t2 = g(t1); // ... // t3 = a[i+1]; // t4 = f(t3); // t5 = g(t4); // t6 = op(t2, t5) // cond_branch // // This can be converted to // t00 = a[0]; // t10 = f(t00); // t20 = g(t10); // Loop: // t2 = t20; // t3 = a[i+1]; // t4 = f(t3); // t5 = g(t4); // t6 = op(t2, t5) // t20 = t5 // cond_branch // // SROA does a good job of reusing a[i+1] as a[i] in the next iteration. // Such a loop comes to this pass in the following form. // // LoopPreheader: // X0 = a[0]; // Loop: // X2 = PHI<(X0, LoopPreheader), (X1, Loop)> // t1 = f(X2) <-- I1 // t2 = g(t1) // ... // X1 = a[i+1] // t4 = f(X1) <-- I2 // t5 = g(t4) // t6 = op(t2, t5) // cond_branch // // In this pass, we look for PHIs such as X2 whose incoming values come only // from the Loop Preheader and over the backedge and additionaly, both these // values are the results of the same operation in terms of opcode. We call such // a PHI node a dependence chain or DepChain. In this case, the dependence of X2 // over X1 is carried over only one iteration and so the DepChain is only one // PHI node long. // // Then, we traverse the uses of the PHI (X2) and the uses of the value of the // PHI coming over the backedge (X1). We stop at the first pair of such users // I1 (of X2) and I2 (of X1) that meet the following conditions. // 1. I1 and I2 are the same operation, but with different operands. // 2. X2 and X1 are used at the same operand number in the two instructions. // 3. All other operands Op1 of I1 and Op2 of I2 are also such that there is a // a DepChain from Op1 to Op2 of the same length as that between X2 and X1. // // We then make the following transformation // LoopPreheader: // X0 = a[0]; // Y0 = f(X0); // Loop: // X2 = PHI<(X0, LoopPreheader), (X1, Loop)> // Y2 = PHI<(Y0, LoopPreheader), (t4, Loop)> // t1 = f(X2) <-- Will be removed by DCE. // t2 = g(Y2) // ... // X1 = a[i+1] // t4 = f(X1) // t5 = g(t4) // t6 = op(t2, t5) // cond_branch // // We proceed until we cannot find any more such instructions I1 and I2. // // --- DepChains & Loop carried dependences --- // Consider a single basic block loop such as // // LoopPreheader: // X0 = ... // Y0 = ... // Loop: // X2 = PHI<(X0, LoopPreheader), (X1, Loop)> // Y2 = PHI<(Y0, LoopPreheader), (X2, Loop)> // ... // X1 = ... // ... // cond_branch // // Then there is a dependence between X2 and X1 that goes back one iteration, // i.e. X1 is used as X2 in the very next iteration. We represent this as a // DepChain from X2 to X1 (X2->X1). // Similarly, there is a dependence between Y2 and X1 that goes back two // iterations. X1 is used as Y2 two iterations after it is computed. This is // represented by a DepChain as (Y2->X2->X1). // // A DepChain has the following properties. // 1. Num of edges in DepChain = Number of Instructions in DepChain = Number of // iterations of carried dependence + 1. // 2. All instructions in the DepChain except the last are PHIs. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils.h" #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "hexagon-vlcr" STATISTIC(HexagonNumVectorLoopCarriedReuse, "Number of values that were reused from a previous iteration."); static cl::opt HexagonVLCRIterationLim("hexagon-vlcr-iteration-lim", cl::Hidden, cl::desc("Maximum distance of loop carried dependences that are handled"), cl::init(2), cl::ZeroOrMore); namespace llvm { void initializeHexagonVectorLoopCarriedReusePass(PassRegistry&); Pass *createHexagonVectorLoopCarriedReusePass(); } // end namespace llvm namespace { // See info about DepChain in the comments at the top of this file. using ChainOfDependences = SmallVector; class DepChain { ChainOfDependences Chain; public: bool isIdentical(DepChain &Other) const { if (Other.size() != size()) return false; ChainOfDependences &OtherChain = Other.getChain(); for (int i = 0; i < size(); ++i) { if (Chain[i] != OtherChain[i]) return false; } return true; } ChainOfDependences &getChain() { return Chain; } int size() const { return Chain.size(); } void clear() { Chain.clear(); } void push_back(Instruction *I) { Chain.push_back(I); } int iterations() const { return size() - 1; } Instruction *front() const { return Chain.front(); } Instruction *back() const { return Chain.back(); } Instruction *&operator[](const int index) { return Chain[index]; } friend raw_ostream &operator<< (raw_ostream &OS, const DepChain &D); }; LLVM_ATTRIBUTE_UNUSED raw_ostream &operator<<(raw_ostream &OS, const DepChain &D) { const ChainOfDependences &CD = D.Chain; int ChainSize = CD.size(); OS << "**DepChain Start::**\n"; for (int i = 0; i < ChainSize -1; ++i) { OS << *(CD[i]) << " -->\n"; } OS << *CD[ChainSize-1] << "\n"; return OS; } struct ReuseValue { Instruction *Inst2Replace = nullptr; // In the new PHI node that we'll construct this is the value that'll be // used over the backedge. This is teh value that gets reused from a // previous iteration. Instruction *BackedgeInst = nullptr; ReuseValue() = default; void reset() { Inst2Replace = nullptr; BackedgeInst = nullptr; } bool isDefined() { return Inst2Replace != nullptr; } }; LLVM_ATTRIBUTE_UNUSED raw_ostream &operator<<(raw_ostream &OS, const ReuseValue &RU) { OS << "** ReuseValue ***\n"; OS << "Instruction to Replace: " << *(RU.Inst2Replace) << "\n"; OS << "Backedge Instruction: " << *(RU.BackedgeInst) << "\n"; return OS; } class HexagonVectorLoopCarriedReuse : public LoopPass { public: static char ID; explicit HexagonVectorLoopCarriedReuse() : LoopPass(ID) { PassRegistry *PR = PassRegistry::getPassRegistry(); initializeHexagonVectorLoopCarriedReusePass(*PR); } StringRef getPassName() const override { return "Hexagon-specific loop carried reuse for HVX vectors"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addPreservedID(LCSSAID); AU.setPreservesCFG(); } bool runOnLoop(Loop *L, LPPassManager &LPM) override; private: SetVector Dependences; std::set ReplacedInsts; Loop *CurLoop; ReuseValue ReuseCandidate; bool doVLCR(); void findLoopCarriedDeps(); void findValueToReuse(); void findDepChainFromPHI(Instruction *I, DepChain &D); void reuseValue(); Value *findValueInBlock(Value *Op, BasicBlock *BB); bool isDepChainBtwn(Instruction *I1, Instruction *I2, int Iters); DepChain *getDepChainBtwn(Instruction *I1, Instruction *I2); bool isEquivalentOperation(Instruction *I1, Instruction *I2); bool canReplace(Instruction *I); }; } // end anonymous namespace char HexagonVectorLoopCarriedReuse::ID = 0; INITIALIZE_PASS_BEGIN(HexagonVectorLoopCarriedReuse, "hexagon-vlcr", "Hexagon-specific predictive commoning for HVX vectors", false, false) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) INITIALIZE_PASS_END(HexagonVectorLoopCarriedReuse, "hexagon-vlcr", "Hexagon-specific predictive commoning for HVX vectors", false, false) bool HexagonVectorLoopCarriedReuse::runOnLoop(Loop *L, LPPassManager &LPM) { if (skipLoop(L)) return false; if (!L->getLoopPreheader()) return false; // Work only on innermost loops. if (!L->getSubLoops().empty()) return false; // Work only on single basic blocks loops. if (L->getNumBlocks() != 1) return false; CurLoop = L; return doVLCR(); } bool HexagonVectorLoopCarriedReuse::isEquivalentOperation(Instruction *I1, Instruction *I2) { if (!I1->isSameOperationAs(I2)) return false; // This check is in place specifically for intrinsics. isSameOperationAs will // return two for any two hexagon intrinsics because they are essentially the // same instruciton (CallInst). We need to scratch the surface to see if they // are calls to the same function. if (CallInst *C1 = dyn_cast(I1)) { if (CallInst *C2 = dyn_cast(I2)) { if (C1->getCalledFunction() != C2->getCalledFunction()) return false; } } // If both the Instructions are of Vector Type and any of the element // is integer constant, check their values too for equivalence. if (I1->getType()->isVectorTy() && I2->getType()->isVectorTy()) { unsigned NumOperands = I1->getNumOperands(); for (unsigned i = 0; i < NumOperands; ++i) { ConstantInt *C1 = dyn_cast(I1->getOperand(i)); ConstantInt *C2 = dyn_cast(I2->getOperand(i)); if(!C1) continue; assert(C2); if (C1->getSExtValue() != C2->getSExtValue()) return false; } } return true; } bool HexagonVectorLoopCarriedReuse::canReplace(Instruction *I) { const IntrinsicInst *II = dyn_cast(I); if (II && (II->getIntrinsicID() == Intrinsic::hexagon_V6_hi || II->getIntrinsicID() == Intrinsic::hexagon_V6_lo)) { LLVM_DEBUG(dbgs() << "Not considering for reuse: " << *II << "\n"); return false; } return true; } void HexagonVectorLoopCarriedReuse::findValueToReuse() { for (auto *D : Dependences) { LLVM_DEBUG(dbgs() << "Processing dependence " << *(D->front()) << "\n"); if (D->iterations() > HexagonVLCRIterationLim) { LLVM_DEBUG( dbgs() << ".. Skipping because number of iterations > than the limit\n"); continue; } PHINode *PN = cast(D->front()); Instruction *BEInst = D->back(); int Iters = D->iterations(); BasicBlock *BB = PN->getParent(); LLVM_DEBUG(dbgs() << "Checking if any uses of " << *PN << " can be reused\n"); SmallVector PNUsers; for (auto UI = PN->use_begin(), E = PN->use_end(); UI != E; ++UI) { Use &U = *UI; Instruction *User = cast(U.getUser()); if (User->getParent() != BB) continue; if (ReplacedInsts.count(User)) { LLVM_DEBUG(dbgs() << *User << " has already been replaced. Skipping...\n"); continue; } if (isa(User)) continue; if (User->mayHaveSideEffects()) continue; if (!canReplace(User)) continue; PNUsers.push_back(User); } LLVM_DEBUG(dbgs() << PNUsers.size() << " use(s) of the PHI in the block\n"); // For each interesting use I of PN, find an Instruction BEUser that // performs the same operation as I on BEInst and whose other operands, // if any, can also be rematerialized in OtherBB. We stop when we find the // first such Instruction BEUser. This is because once BEUser is // rematerialized in OtherBB, we may find more such "fixup" opportunities // in this block. So, we'll start over again. for (Instruction *I : PNUsers) { for (auto UI = BEInst->use_begin(), E = BEInst->use_end(); UI != E; ++UI) { Use &U = *UI; Instruction *BEUser = cast(U.getUser()); if (BEUser->getParent() != BB) continue; if (!isEquivalentOperation(I, BEUser)) continue; int NumOperands = I->getNumOperands(); for (int OpNo = 0; OpNo < NumOperands; ++OpNo) { Value *Op = I->getOperand(OpNo); Instruction *OpInst = dyn_cast(Op); if (!OpInst) continue; Value *BEOp = BEUser->getOperand(OpNo); Instruction *BEOpInst = dyn_cast(BEOp); if (!isDepChainBtwn(OpInst, BEOpInst, Iters)) { BEUser = nullptr; break; } } if (BEUser) { LLVM_DEBUG(dbgs() << "Found Value for reuse.\n"); ReuseCandidate.Inst2Replace = I; ReuseCandidate.BackedgeInst = BEUser; return; } else ReuseCandidate.reset(); } } } ReuseCandidate.reset(); } Value *HexagonVectorLoopCarriedReuse::findValueInBlock(Value *Op, BasicBlock *BB) { PHINode *PN = dyn_cast(Op); assert(PN); Value *ValueInBlock = PN->getIncomingValueForBlock(BB); return ValueInBlock; } void HexagonVectorLoopCarriedReuse::reuseValue() { LLVM_DEBUG(dbgs() << ReuseCandidate); Instruction *Inst2Replace = ReuseCandidate.Inst2Replace; Instruction *BEInst = ReuseCandidate.BackedgeInst; int NumOperands = Inst2Replace->getNumOperands(); std::map DepChains; int Iterations = -1; BasicBlock *LoopPH = CurLoop->getLoopPreheader(); for (int i = 0; i < NumOperands; ++i) { Instruction *I = dyn_cast(Inst2Replace->getOperand(i)); if(!I) continue; else { Instruction *J = cast(BEInst->getOperand(i)); DepChain *D = getDepChainBtwn(I, J); assert(D && "No DepChain between corresponding operands in ReuseCandidate\n"); if (Iterations == -1) Iterations = D->iterations(); assert(Iterations == D->iterations() && "Iterations mismatch"); DepChains[I] = D; } } LLVM_DEBUG(dbgs() << "reuseValue is making the following changes\n"); SmallVector InstsInPreheader; for (int i = 0; i < Iterations; ++i) { Instruction *InstInPreheader = Inst2Replace->clone(); SmallVector Ops; for (int j = 0; j < NumOperands; ++j) { Instruction *I = dyn_cast(Inst2Replace->getOperand(j)); if (!I) continue; // Get the DepChain corresponding to this operand. DepChain &D = *DepChains[I]; // Get the PHI for the iteration number and find // the incoming value from the Loop Preheader for // that PHI. Value *ValInPreheader = findValueInBlock(D[i], LoopPH); InstInPreheader->setOperand(j, ValInPreheader); } InstsInPreheader.push_back(InstInPreheader); InstInPreheader->setName(Inst2Replace->getName() + ".hexagon.vlcr"); InstInPreheader->insertBefore(LoopPH->getTerminator()); LLVM_DEBUG(dbgs() << "Added " << *InstInPreheader << " to " << LoopPH->getName() << "\n"); } BasicBlock *BB = BEInst->getParent(); IRBuilder<> IRB(BB); IRB.SetInsertPoint(BB->getFirstNonPHI()); Value *BEVal = BEInst; PHINode *NewPhi; for (int i = Iterations-1; i >=0 ; --i) { Instruction *InstInPreheader = InstsInPreheader[i]; NewPhi = IRB.CreatePHI(InstInPreheader->getType(), 2); NewPhi->addIncoming(InstInPreheader, LoopPH); NewPhi->addIncoming(BEVal, BB); LLVM_DEBUG(dbgs() << "Adding " << *NewPhi << " to " << BB->getName() << "\n"); BEVal = NewPhi; } // We are in LCSSA form. So, a value defined inside the Loop is used only // inside the loop. So, the following is safe. Inst2Replace->replaceAllUsesWith(NewPhi); ReplacedInsts.insert(Inst2Replace); ++HexagonNumVectorLoopCarriedReuse; } bool HexagonVectorLoopCarriedReuse::doVLCR() { assert(CurLoop->getSubLoops().empty() && "Can do VLCR on the innermost loop only"); assert((CurLoop->getNumBlocks() == 1) && "Can do VLCR only on single block loops"); bool Changed = false; bool Continue; LLVM_DEBUG(dbgs() << "Working on Loop: " << *CurLoop->getHeader() << "\n"); do { // Reset datastructures. Dependences.clear(); Continue = false; findLoopCarriedDeps(); findValueToReuse(); if (ReuseCandidate.isDefined()) { reuseValue(); Changed = true; Continue = true; } llvm::for_each(Dependences, std::default_delete()); } while (Continue); return Changed; } void HexagonVectorLoopCarriedReuse::findDepChainFromPHI(Instruction *I, DepChain &D) { PHINode *PN = dyn_cast(I); if (!PN) { D.push_back(I); return; } else { auto NumIncomingValues = PN->getNumIncomingValues(); if (NumIncomingValues != 2) { D.clear(); return; } BasicBlock *BB = PN->getParent(); if (BB != CurLoop->getHeader()) { D.clear(); return; } Value *BEVal = PN->getIncomingValueForBlock(BB); Instruction *BEInst = dyn_cast(BEVal); // This is a single block loop with a preheader, so at least // one value should come over the backedge. assert(BEInst && "There should be a value over the backedge"); Value *PreHdrVal = PN->getIncomingValueForBlock(CurLoop->getLoopPreheader()); if(!PreHdrVal || !isa(PreHdrVal)) { D.clear(); return; } D.push_back(PN); findDepChainFromPHI(BEInst, D); } } bool HexagonVectorLoopCarriedReuse::isDepChainBtwn(Instruction *I1, Instruction *I2, int Iters) { for (auto *D : Dependences) { if (D->front() == I1 && D->back() == I2 && D->iterations() == Iters) return true; } return false; } DepChain *HexagonVectorLoopCarriedReuse::getDepChainBtwn(Instruction *I1, Instruction *I2) { for (auto *D : Dependences) { if (D->front() == I1 && D->back() == I2) return D; } return nullptr; } void HexagonVectorLoopCarriedReuse::findLoopCarriedDeps() { BasicBlock *BB = CurLoop->getHeader(); for (auto I = BB->begin(), E = BB->end(); I != E && isa(I); ++I) { auto *PN = cast(I); if (!isa(PN->getType())) continue; DepChain *D = new DepChain(); findDepChainFromPHI(PN, *D); if (D->size() != 0) Dependences.insert(D); else delete D; } LLVM_DEBUG(dbgs() << "Found " << Dependences.size() << " dependences\n"); LLVM_DEBUG(for (size_t i = 0; i < Dependences.size(); ++i) { dbgs() << *Dependences[i] << "\n"; }); } Pass *llvm::createHexagonVectorLoopCarriedReusePass() { return new HexagonVectorLoopCarriedReuse(); }