//===----- HexagonShuffler.cpp - Instruction bundle shuffling -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the shuffling of insns inside a bundle according to the // packet formation rules of the Hexagon ISA. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "hexagon-shuffle" #include "HexagonShuffler.h" #include "Hexagon.h" #include "MCTargetDesc/HexagonBaseInfo.h" #include "MCTargetDesc/HexagonMCInstrInfo.h" #include "MCTargetDesc/HexagonMCTargetDesc.h" #include "llvm/MC/MCContext.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; namespace { // Insn shuffling priority. class HexagonBid { // The priority is directly proportional to how restricted the insn is based // on its flexibility to run on the available slots. So, the fewer slots it // may run on, the higher its priority. enum { MAX = 360360 }; // LCD of 1/2, 1/3, 1/4,... 1/15. unsigned Bid; public: HexagonBid() : Bid(0) {} HexagonBid(unsigned B) { Bid = B ? MAX / countPopulation(B) : 0; } // Check if the insn priority is overflowed. bool isSold() const { return (Bid >= MAX); } HexagonBid &operator+=(const HexagonBid &B) { Bid += B.Bid; return *this; } }; // Slot shuffling allocation. class HexagonUnitAuction { HexagonBid Scores[HEXAGON_PACKET_SIZE]; // Mask indicating which slot is unavailable. unsigned isSold : HEXAGON_PACKET_SIZE; public: HexagonUnitAuction(unsigned cs = 0) : isSold(cs){}; // Allocate slots. bool bid(unsigned B) { // Exclude already auctioned slots from the bid. unsigned b = B & ~isSold; if (b) { for (unsigned i = 0; i < HEXAGON_PACKET_SIZE; ++i) if (b & (1 << i)) { // Request candidate slots. Scores[i] += HexagonBid(b); isSold |= Scores[i].isSold() << i; } return true; } else // Error if the desired slots are already full. return false; } }; } // end anonymous namespace unsigned HexagonResource::setWeight(unsigned s) { const unsigned SlotWeight = 8; const unsigned MaskWeight = SlotWeight - 1; unsigned Units = getUnits(); unsigned Key = ((1u << s) & Units) != 0; // Calculate relative weight of the insn for the given slot, weighing it the // heavier the more restrictive the insn is and the lowest the slots that the // insn may be executed in. if (Key == 0 || Units == 0 || (SlotWeight * s >= 32)) return Weight = 0; unsigned Ctpop = countPopulation(Units); unsigned Cttz = countTrailingZeros(Units); Weight = (1u << (SlotWeight * s)) * ((MaskWeight - Ctpop) << Cttz); return Weight; } void HexagonCVIResource::SetupTUL(TypeUnitsAndLanes *TUL, StringRef CPU) { (*TUL)[HexagonII::TypeCVI_VA] = UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1); (*TUL)[HexagonII::TypeCVI_VA_DV] = UnitsAndLanes(CVI_XLANE | CVI_MPY0, 2); (*TUL)[HexagonII::TypeCVI_VX] = UnitsAndLanes(CVI_MPY0 | CVI_MPY1, 1); (*TUL)[HexagonII::TypeCVI_VX_LATE] = UnitsAndLanes(CVI_MPY0 | CVI_MPY1, 1); (*TUL)[HexagonII::TypeCVI_VX_DV] = UnitsAndLanes(CVI_MPY0, 2); (*TUL)[HexagonII::TypeCVI_VP] = UnitsAndLanes(CVI_XLANE, 1); (*TUL)[HexagonII::TypeCVI_VP_VS] = UnitsAndLanes(CVI_XLANE, 2); (*TUL)[HexagonII::TypeCVI_VS] = UnitsAndLanes(CVI_SHIFT, 1); (*TUL)[HexagonII::TypeCVI_VINLANESAT] = (CPU == "hexagonv60") ? UnitsAndLanes(CVI_SHIFT, 1) : UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1); (*TUL)[HexagonII::TypeCVI_VM_LD] = UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1); (*TUL)[HexagonII::TypeCVI_VM_TMP_LD] = UnitsAndLanes(CVI_NONE, 0); (*TUL)[HexagonII::TypeCVI_VM_VP_LDU] = UnitsAndLanes(CVI_XLANE, 1); (*TUL)[HexagonII::TypeCVI_VM_ST] = UnitsAndLanes(CVI_XLANE | CVI_SHIFT | CVI_MPY0 | CVI_MPY1, 1); (*TUL)[HexagonII::TypeCVI_VM_NEW_ST] = UnitsAndLanes(CVI_NONE, 0); (*TUL)[HexagonII::TypeCVI_VM_STU] = UnitsAndLanes(CVI_XLANE, 1); (*TUL)[HexagonII::TypeCVI_HIST] = UnitsAndLanes(CVI_XLANE, 4); } HexagonCVIResource::HexagonCVIResource(TypeUnitsAndLanes *TUL, MCInstrInfo const &MCII, unsigned s, MCInst const *id) : HexagonResource(s), TUL(TUL) { unsigned T = HexagonMCInstrInfo::getType(MCII, *id); if (TUL->count(T)) { // For an HVX insn. Valid = true; setUnits((*TUL)[T].first); setLanes((*TUL)[T].second); setLoad(HexagonMCInstrInfo::getDesc(MCII, *id).mayLoad()); setStore(HexagonMCInstrInfo::getDesc(MCII, *id).mayStore()); } else { // For core insns. Valid = false; setUnits(0); setLanes(0); setLoad(false); setStore(false); } } struct CVIUnits { unsigned Units; unsigned Lanes; }; typedef SmallVector HVXInstsT; static unsigned makeAllBits(unsigned startBit, unsigned Lanes) { for (unsigned i = 1; i < Lanes; ++i) startBit = (startBit << 1) | startBit; return startBit; } static bool checkHVXPipes(const HVXInstsT &hvxInsts, unsigned startIdx, unsigned usedUnits) { if (startIdx < hvxInsts.size()) { if (!hvxInsts[startIdx].Units) return checkHVXPipes(hvxInsts, startIdx + 1, usedUnits); for (unsigned b = 0x1; b <= 0x8; b <<= 1) { if ((hvxInsts[startIdx].Units & b) == 0) continue; unsigned allBits = makeAllBits(b, hvxInsts[startIdx].Lanes); if ((allBits & usedUnits) == 0) { if (checkHVXPipes(hvxInsts, startIdx + 1, usedUnits | allBits)) return true; } } return false; } return true; } HexagonShuffler::HexagonShuffler(MCContext &Context, bool ReportErrors, MCInstrInfo const &MCII, MCSubtargetInfo const &STI) : Context(Context), MCII(MCII), STI(STI), ReportErrors(ReportErrors) { reset(); HexagonCVIResource::SetupTUL(&TUL, STI.getCPU()); } void HexagonShuffler::reset() { Packet.clear(); BundleFlags = 0; } void HexagonShuffler::append(MCInst const &ID, MCInst const *Extender, unsigned S) { HexagonInstr PI(&TUL, MCII, &ID, Extender, S); Packet.push_back(PI); } static struct { unsigned first; unsigned second; } jumpSlots[] = {{8, 4}, {8, 2}, {8, 1}, {4, 2}, {4, 1}, {2, 1}}; #define MAX_JUMP_SLOTS (sizeof(jumpSlots) / sizeof(jumpSlots[0])) /// Check that the packet is legal and enforce relative insn order. bool HexagonShuffler::check() { // Descriptive slot masks. const unsigned slotSingleLoad = 0x1, slotSingleStore = 0x1, slotOne = 0x2, slotThree = 0x8, // slotFirstJump = 0x8, slotFirstLoadStore = 0x2, slotLastLoadStore = 0x1; // Highest slots for branches and stores used to keep their original order. // unsigned slotJump = slotFirstJump; unsigned slotLoadStore = slotFirstLoadStore; // Number of branches, solo branches, indirect branches. unsigned jumps = 0, jump1 = 0; // Number of memory operations, loads, solo loads, stores, solo stores, single // stores. unsigned memory = 0, loads = 0, load0 = 0, stores = 0, store0 = 0, store1 = 0; // Number of duplex insns unsigned duplex = 0; // Number of insns restricting other insns in slot #1 to A type. unsigned onlyAin1 = 0; // Number of insns restricting any insn in slot #1, except A2_nop. unsigned onlyNo1 = 0; unsigned pSlot3Cnt = 0; unsigned nvstores = 0; unsigned memops = 0; unsigned deallocs = 0; iterator slot3ISJ = end(); std::vector foundBranches; unsigned reservedSlots = 0; // Collect information from the insns in the packet. for (iterator ISJ = begin(); ISJ != end(); ++ISJ) { MCInst const &ID = ISJ->getDesc(); if (HexagonMCInstrInfo::isSoloAin1(MCII, ID)) ++onlyAin1; if (HexagonMCInstrInfo::prefersSlot3(MCII, ID)) { ++pSlot3Cnt; slot3ISJ = ISJ; } reservedSlots |= HexagonMCInstrInfo::getOtherReservedSlots(MCII, STI, ID); if (HexagonMCInstrInfo::isCofMax1(MCII, ID)) ++jump1; switch (HexagonMCInstrInfo::getType(MCII, ID)) { case HexagonII::TypeS_2op: case HexagonII::TypeS_3op: case HexagonII::TypeALU64: break; case HexagonII::TypeJ: ++jumps; foundBranches.push_back(ISJ); break; case HexagonII::TypeCVI_VM_VP_LDU: ++onlyNo1; case HexagonII::TypeCVI_VM_LD: case HexagonII::TypeCVI_VM_TMP_LD: case HexagonII::TypeLD: ++loads; ++memory; if (ISJ->Core.getUnits() == slotSingleLoad || HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_VP_LDU) ++load0; if (HexagonMCInstrInfo::getDesc(MCII, ID).isReturn()) { ++deallocs, ++jumps, ++jump1; // DEALLOC_RETURN is of type LD. foundBranches.push_back(ISJ); } break; case HexagonII::TypeCVI_VM_STU: ++onlyNo1; case HexagonII::TypeCVI_VM_ST: case HexagonII::TypeCVI_VM_NEW_ST: case HexagonII::TypeST: ++stores; ++memory; if (ISJ->Core.getUnits() == slotSingleStore || HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_STU) ++store0; break; case HexagonII::TypeV4LDST: ++loads; ++stores; ++store1; ++memops; ++memory; break; case HexagonII::TypeNCJ: ++memory; // NV insns are memory-like. ++jumps, ++jump1; foundBranches.push_back(ISJ); break; case HexagonII::TypeV2LDST: if (HexagonMCInstrInfo::getDesc(MCII, ID).mayLoad()) { ++loads; ++memory; if (ISJ->Core.getUnits() == slotSingleLoad || HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_VP_LDU) ++load0; } else { assert(HexagonMCInstrInfo::getDesc(MCII, ID).mayStore()); ++memory; ++stores; if (HexagonMCInstrInfo::isNewValue(MCII, ID)) ++nvstores; } break; case HexagonII::TypeCR: // Legacy conditional branch predicated on a register. case HexagonII::TypeCJ: if (HexagonMCInstrInfo::getDesc(MCII, ID).isBranch()) { ++jumps; foundBranches.push_back(ISJ); } break; case HexagonII::TypeDUPLEX: { ++duplex; MCInst const &Inst0 = *ID.getOperand(0).getInst(); MCInst const &Inst1 = *ID.getOperand(1).getInst(); if (HexagonMCInstrInfo::isCofMax1(MCII, Inst0)) ++jump1; if (HexagonMCInstrInfo::isCofMax1(MCII, Inst1)) ++jump1; if (HexagonMCInstrInfo::getDesc(MCII, Inst0).isBranch()) { ++jumps; foundBranches.push_back(ISJ); } if (HexagonMCInstrInfo::getDesc(MCII, Inst1).isBranch()) { ++jumps; foundBranches.push_back(ISJ); } if (HexagonMCInstrInfo::getDesc(MCII, Inst0).isReturn()) { ++deallocs, ++jumps, ++jump1; // DEALLOC_RETURN is of type LD. foundBranches.push_back(ISJ); } if (HexagonMCInstrInfo::getDesc(MCII, Inst1).isReturn()) { ++deallocs, ++jumps, ++jump1; // DEALLOC_RETURN is of type LD. foundBranches.push_back(ISJ); } break; } } } // Check if the packet is legal. if ((load0 > 1 || store0 > 1) || (duplex > 1 || (duplex && memory))) { reportError(llvm::Twine("invalid instruction packet")); return false; } if (jump1 && jumps > 1) { // Error if single branch with another branch. reportError(llvm::Twine("too many branches in packet")); return false; } if ((nvstores || memops) && stores > 1) { reportError(llvm::Twine("slot 0 instruction does not allow slot 1 store")); return false; } if (deallocs && stores) { reportError(llvm::Twine("slot 0 instruction does not allow slot 1 store")); return false; } // Modify packet accordingly. // TODO: need to reserve slots #0 and #1 for duplex insns. bool bOnlySlot3 = false; for (iterator ISJ = begin(); ISJ != end(); ++ISJ) { MCInst const &ID = ISJ->getDesc(); if (!ISJ->Core.getUnits()) { // Error if insn may not be executed in any slot. return false; } // Exclude from slot #1 any insn but A2_nop. if (HexagonMCInstrInfo::getDesc(MCII, ID).getOpcode() != Hexagon::A2_nop) if (onlyNo1) ISJ->Core.setUnits(ISJ->Core.getUnits() & ~slotOne); // Exclude from slot #1 any insn but A-type. if (HexagonMCInstrInfo::getType(MCII, ID) != HexagonII::TypeALU32_2op && HexagonMCInstrInfo::getType(MCII, ID) != HexagonII::TypeALU32_3op && HexagonMCInstrInfo::getType(MCII, ID) != HexagonII::TypeALU32_ADDI) if (onlyAin1) ISJ->Core.setUnits(ISJ->Core.getUnits() & ~slotOne); // A single load must use slot #0. if (HexagonMCInstrInfo::getDesc(MCII, ID).mayLoad()) { if (loads == 1 && loads == memory && memops == 0) // Pin the load to slot #0. ISJ->Core.setUnits(ISJ->Core.getUnits() & slotSingleLoad); } // A single store must use slot #0. if (HexagonMCInstrInfo::getDesc(MCII, ID).mayStore()) { if (!store0) { if (stores == 1) ISJ->Core.setUnits(ISJ->Core.getUnits() & slotSingleStore); else if (stores > 1) { if (slotLoadStore < slotLastLoadStore) { // Error if no more slots available for stores. reportError( llvm::Twine("invalid instruction packet: too many stores")); return false; } // Pin the store to the highest slot available to it. ISJ->Core.setUnits(ISJ->Core.getUnits() & slotLoadStore); // Update the next highest slot available to stores. slotLoadStore >>= 1; } } if (store1 && stores > 1) { // Error if a single store with another store. reportError(llvm::Twine("invalid instruction packet: too many stores")); return false; } } // flag if an instruction requires to be in slot 3 if (ISJ->Core.getUnits() == slotThree) bOnlySlot3 = true; if (!ISJ->Core.getUnits()) { // Error if insn may not be executed in any slot. reportError(llvm::Twine("invalid instruction packet: out of slots")); return false; } } // preserve branch order bool validateSlots = true; if (jumps > 1) { if (foundBranches.size() > 2) { reportError(llvm::Twine("too many branches in packet")); return false; } // try all possible choices for (unsigned int i = 0; i < MAX_JUMP_SLOTS; ++i) { // validate first jump with this slot rule if (!(jumpSlots[i].first & foundBranches[0]->Core.getUnits())) continue; // validate second jump with this slot rule if (!(jumpSlots[i].second & foundBranches[1]->Core.getUnits())) continue; // both valid for this configuration, set new slot rules PacketSave = Packet; foundBranches[0]->Core.setUnits(jumpSlots[i].first); foundBranches[1]->Core.setUnits(jumpSlots[i].second); HexagonUnitAuction AuctionCore(reservedSlots); std::sort(begin(), end(), HexagonInstr::lessCore); // see if things ok with that instruction being pinned to slot "slotJump" bool bFail = false; for (iterator I = begin(); I != end() && bFail != true; ++I) if (!AuctionCore.bid(I->Core.getUnits())) bFail = true; // if yes, great, if not then restore original slot mask if (!bFail) { validateSlots = false; // all good, no need to re-do auction break; } else // restore original values Packet = PacketSave; } if (validateSlots == true) { reportError(llvm::Twine("invalid instruction packet: out of slots")); return false; } } if (jumps <= 1 && bOnlySlot3 == false && pSlot3Cnt == 1 && slot3ISJ != end()) { validateSlots = true; // save off slot mask of instruction marked with A_PREFER_SLOT3 // and then pin it to slot #3 unsigned saveUnits = slot3ISJ->Core.getUnits(); slot3ISJ->Core.setUnits(saveUnits & slotThree); HexagonUnitAuction AuctionCore(reservedSlots); std::sort(begin(), end(), HexagonInstr::lessCore); // see if things ok with that instruction being pinned to slot #3 bool bFail = false; for (iterator I = begin(); I != end() && bFail != true; ++I) if (!AuctionCore.bid(I->Core.getUnits())) bFail = true; // if yes, great, if not then restore original slot mask if (!bFail) validateSlots = false; // all good, no need to re-do auction else for (iterator ISJ = begin(); ISJ != end(); ++ISJ) { MCInst const &ID = ISJ->getDesc(); if (HexagonMCInstrInfo::prefersSlot3(MCII, ID)) ISJ->Core.setUnits(saveUnits); } } // Check if any slot, core or CVI, is over-subscribed. // Verify the core slot subscriptions. if (validateSlots) { HexagonUnitAuction AuctionCore(reservedSlots); std::sort(begin(), end(), HexagonInstr::lessCore); for (iterator I = begin(); I != end(); ++I) if (!AuctionCore.bid(I->Core.getUnits())) { reportError(llvm::Twine("invalid instruction packet: slot error")); return false; } } // Verify the CVI slot subscriptions. std::sort(begin(), end(), HexagonInstr::lessCVI); // create vector of hvx instructions to check HVXInstsT hvxInsts; hvxInsts.clear(); for (iterator I = begin(); I != end(); ++I) { struct CVIUnits inst; inst.Units = I->CVI.getUnits(); inst.Lanes = I->CVI.getLanes(); if (inst.Units == 0) continue; // not an hvx inst or an hvx inst that doesn't uses any pipes hvxInsts.push_back(inst); } // if there are any hvx instructions in this packet, check pipe usage if (hvxInsts.size() > 0) { unsigned startIdx, usedUnits; startIdx = usedUnits = 0x0; if (checkHVXPipes(hvxInsts, startIdx, usedUnits) == false) { // too many pipes used to be valid reportError(llvm::Twine("invalid instruction packet: slot error")); return false; } } return true; } bool HexagonShuffler::shuffle() { if (size() > HEXAGON_PACKET_SIZE) { // Ignore a packet with with more than what a packet can hold // or with compound or duplex insns for now. reportError(llvm::Twine("invalid instruction packet")); return false; } // Check and prepare packet. bool Ok = true; if (size() > 1 && (Ok = check())) // Reorder the handles for each slot. for (unsigned nSlot = 0, emptySlots = 0; nSlot < HEXAGON_PACKET_SIZE; ++nSlot) { iterator ISJ, ISK; unsigned slotSkip, slotWeight; // Prioritize the handles considering their restrictions. for (ISJ = ISK = Packet.begin(), slotSkip = slotWeight = 0; ISK != Packet.end(); ++ISK, ++slotSkip) if (slotSkip < nSlot - emptySlots) // Note which handle to begin at. ++ISJ; else // Calculate the weight of the slot. slotWeight += ISK->Core.setWeight(HEXAGON_PACKET_SIZE - nSlot - 1); if (slotWeight) // Sort the packet, favoring source order, // beginning after the previous slot. std::sort(ISJ, Packet.end()); else // Skip unused slot. ++emptySlots; } for (iterator ISJ = begin(); ISJ != end(); ++ISJ) DEBUG(dbgs().write_hex(ISJ->Core.getUnits()); if (ISJ->CVI.isValid()) { dbgs() << '/'; dbgs().write_hex(ISJ->CVI.getUnits()) << '|'; dbgs() << ISJ->CVI.getLanes(); } dbgs() << ':' << HexagonMCInstrInfo::getDesc(MCII, ISJ->getDesc()).getOpcode(); dbgs() << '\n'); DEBUG(dbgs() << '\n'); return Ok; } void HexagonShuffler::reportError(llvm::Twine const &Msg) { if (ReportErrors) Context.reportError(Loc, Msg); }