//===--- RDFCopy.cpp ------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // RDF-based copy propagation. #include "RDFCopy.h" #include "RDFGraph.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; using namespace rdf; #ifndef NDEBUG static cl::opt CpLimit("rdf-cp-limit", cl::init(0), cl::Hidden); static unsigned CpCount = 0; #endif bool CopyPropagation::interpretAsCopy(const MachineInstr *MI, EqualityMap &EM) { unsigned Opc = MI->getOpcode(); switch (Opc) { case TargetOpcode::COPY: { const MachineOperand &Dst = MI->getOperand(0); const MachineOperand &Src = MI->getOperand(1); RegisterRef DstR = DFG.makeRegRef(Dst.getReg(), Dst.getSubReg()); RegisterRef SrcR = DFG.makeRegRef(Src.getReg(), Src.getSubReg()); assert(TargetRegisterInfo::isPhysicalRegister(DstR.Reg)); assert(TargetRegisterInfo::isPhysicalRegister(SrcR.Reg)); const TargetRegisterInfo &TRI = DFG.getTRI(); if (TRI.getMinimalPhysRegClass(DstR.Reg) != TRI.getMinimalPhysRegClass(SrcR.Reg)) return false; EM.insert(std::make_pair(DstR, SrcR)); return true; } case TargetOpcode::REG_SEQUENCE: llvm_unreachable("Unexpected REG_SEQUENCE"); } return false; } void CopyPropagation::recordCopy(NodeAddr SA, EqualityMap &EM) { CopyMap.insert(std::make_pair(SA.Id, EM)); Copies.push_back(SA.Id); for (auto I : EM) { auto FS = DefM.find(I.second.Reg); if (FS == DefM.end() || FS->second.empty()) continue; // Undefined source RDefMap[I.second][SA.Id] = FS->second.top()->Id; // Insert DstR into the map. RDefMap[I.first]; } } void CopyPropagation::updateMap(NodeAddr IA) { RegisterSet RRs; for (NodeAddr RA : IA.Addr->members(DFG)) RRs.insert(RA.Addr->getRegRef(DFG)); bool Common = false; for (auto &R : RDefMap) { if (!RRs.count(R.first)) continue; Common = true; break; } if (!Common) return; for (auto &R : RDefMap) { if (!RRs.count(R.first)) continue; auto F = DefM.find(R.first.Reg); if (F == DefM.end() || F->second.empty()) continue; R.second[IA.Id] = F->second.top()->Id; } } bool CopyPropagation::scanBlock(MachineBasicBlock *B) { bool Changed = false; auto BA = DFG.getFunc().Addr->findBlock(B, DFG); DFG.markBlock(BA.Id, DefM); for (NodeAddr IA : BA.Addr->members(DFG)) { if (DFG.IsCode(IA)) { NodeAddr SA = IA; EqualityMap EM; if (interpretAsCopy(SA.Addr->getCode(), EM)) recordCopy(SA, EM); } updateMap(IA); DFG.pushDefs(IA, DefM); } MachineDomTreeNode *N = MDT.getNode(B); for (auto I : *N) Changed |= scanBlock(I->getBlock()); DFG.releaseBlock(BA.Id, DefM); return Changed; } bool CopyPropagation::run() { scanBlock(&DFG.getMF().front()); if (trace()) { dbgs() << "Copies:\n"; for (auto I : Copies) { dbgs() << "Instr: " << *DFG.addr(I).Addr->getCode(); dbgs() << " eq: {"; for (auto J : CopyMap[I]) dbgs() << ' ' << Print(J.first, DFG) << '=' << Print(J.second, DFG); dbgs() << " }\n"; } dbgs() << "\nRDef map:\n"; for (auto R : RDefMap) { dbgs() << Print(R.first, DFG) << " -> {"; for (auto &M : R.second) dbgs() << ' ' << Print(M.first, DFG) << ':' << Print(M.second, DFG); dbgs() << " }\n"; } } bool Changed = false; #ifndef NDEBUG bool HasLimit = CpLimit.getNumOccurrences() > 0; #endif auto MinPhysReg = [this] (RegisterRef RR) -> unsigned { const TargetRegisterInfo &TRI = DFG.getTRI(); const TargetRegisterClass &RC = *TRI.getMinimalPhysRegClass(RR.Reg); if ((RC.LaneMask & RR.Mask) == RC.LaneMask) return RR.Reg; for (MCSubRegIndexIterator S(RR.Reg, &TRI); S.isValid(); ++S) if (RR.Mask == TRI.getSubRegIndexLaneMask(S.getSubRegIndex())) return S.getSubReg(); llvm_unreachable("Should have found a register"); return 0; }; for (auto C : Copies) { #ifndef NDEBUG if (HasLimit && CpCount >= CpLimit) break; #endif auto SA = DFG.addr(C); auto FS = CopyMap.find(SA.Id); if (FS == CopyMap.end()) continue; EqualityMap &EM = FS->second; for (NodeAddr DA : SA.Addr->members_if(DFG.IsDef, DFG)) { RegisterRef DR = DA.Addr->getRegRef(DFG); auto FR = EM.find(DR); if (FR == EM.end()) continue; RegisterRef SR = FR->second; if (DR == SR) continue; auto &RDefSR = RDefMap[SR]; NodeId RDefSR_SA = RDefSR[SA.Id]; for (NodeId N = DA.Addr->getReachedUse(), NextN; N; N = NextN) { auto UA = DFG.addr(N); NextN = UA.Addr->getSibling(); uint16_t F = UA.Addr->getFlags(); if ((F & NodeAttrs::PhiRef) || (F & NodeAttrs::Fixed)) continue; if (UA.Addr->getRegRef(DFG) != DR) continue; NodeAddr IA = UA.Addr->getOwner(DFG); assert(DFG.IsCode(IA)); if (RDefSR[IA.Id] != RDefSR_SA) continue; MachineOperand &Op = UA.Addr->getOp(); if (Op.isTied()) continue; if (trace()) { dbgs() << "Can replace " << Print(DR, DFG) << " with " << Print(SR, DFG) << " in " << *NodeAddr(IA).Addr->getCode(); } unsigned NewReg = MinPhysReg(SR); Op.setReg(NewReg); Op.setSubReg(0); DFG.unlinkUse(UA, false); if (RDefSR_SA != 0) { UA.Addr->linkToDef(UA.Id, DFG.addr(RDefSR_SA)); } else { UA.Addr->setReachingDef(0); UA.Addr->setSibling(0); } Changed = true; #ifndef NDEBUG if (HasLimit && CpCount >= CpLimit) break; CpCount++; #endif auto FC = CopyMap.find(IA.Id); if (FC != CopyMap.end()) { // Update the EM map in the copy's entry. auto &M = FC->second; for (auto &J : M) { if (J.second != DR) continue; J.second = SR; break; } } } // for (N in reached-uses) } // for (DA in defs) } // for (C in Copies) return Changed; }